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Abstract
To understand and model public health emergencies, epidemiologists need data that describes how humans are
moving and interacting across physical space. Such data has traditionally been difficult for researchers to obtain
with the temporal resolution and geographic breadth that is needed to study, for example, a global pandemic.
This paper describes Colocation Maps, which are spatial network datasets that have been developed within
Facebook’s Data For Good program. These Maps estimate how often people from different regions are colocated:
in particular, for a pair of geographic regions x and y, these Maps estimate the probability that a randomly chosen
person from x and a randomly chosen person from y are simultaneously located in the same place during a
randomly chosen minute in a given week. These datasets are well suited to parametrize metapopulation models
of disease spread or to measure temporal changes in interactions between people from different regions; indeed,
they have already been used for both of these purposes during the COVID-19 pandemic. In this paper, we show
how Colocation Maps differ from existing data sources, describe how the datasets are built, provide examples
of their use in compartmental modeling, and summarize ideas for further development of these and related
datasets. We also conduct the first large-scale analysis of human colocation patterns across the world. Among
the findings of this study, we observe that a pair of regions can exhibit high colocation despite few people moving
between them. We also find that although few pairs of people are colocated for many days over the course of a
week, these pairs can contribute significant fractions of the total colocation time within a region or between pairs
of regions.
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1. Introduction
The worldwide use of mobile phones generates rich data de-
scribing human mobility, and epidemiologists have empha-
sized that this data can be vitally important for understanding
the spread of infectious disease [1, 2, 3]. During the ongoing
COVID-19 pandemic, such data has been used to parametrize
compartmental models [4, 5] and to measure the causal im-
pact of mobility-oriented interventions [6, 7, 8, 9, 10, 11].
However, this data is usually only available to researchers for
specific parts of the world at specific times, through limited
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agreements with regional mobile-phone providers. In a local-
ized epidemic, there may be no mobile-phone provider that is
willing or able to provide such data, and in a global pandemic,
there may be no way to obtain data with worldwide breadth.

Over the past three years, the Facebook Data for Good pro-
gram has made aggregated mobility datasets, based upon the
mobility traces of consenting Facebook users and with privacy
protections applied, available to humanitarian organizations
who are responding to natural disasters around the world [12].
In this paper, we describe Colocation Maps, our first map built
in consultation with epidemiologists and tailored specifically
to the epidemiological use case. Colocation Maps answer the
following question: for a pair of geographic regions x and y
(e.g., counties in the US), what is the probability that a ran-
domly chosen person from x and a randomly chosen person
from y are simultaneously located in the same small region
(approximately 0.6km × 0.6km squares) during a randomly
chosen minute in a given week? Figure 1 shows an example
colocation network for Italy, where the links between regions
are weighted by the probability defined above.

Estimating colocation is especially useful for epidemiolog-
ical modeling of human-to-human disease transmission. Such
modeling requires an understanding of mixing patterns (i.e.
how often people could transmit a disease by coming into con-
tact with other people). Colocation Maps can provide such an
understanding, and directly inform metapopulation models of
disease spread. In these models, epidemiologists consider var-
ious subpopulations representing different geographic regions,
and the level of coupling between subpopulations depends
on how often people from each region come into contact
that is sufficient to transmit a disease. Epidemiologists often
indirectly parametrize these couplings through data that do
not actually represent contact rates, such as counts of people
who move between locations (e.g., travel or commuting data)
[13, 14, 15]. Colocation Maps can offer a better parametriza-
tion and one that can evolve temporally over, for example, the
course of the COVID-19 pandemic, where policy and mobility
patterns will continue to evolve rapidly.

While Colocation Maps were first shared with epidemiolo-
gists in April 2020 [16], this is the first paper to describe them
in detail and demonstrate how they can be used to model the
spread of contagious disease. This paper is intended both as a
resource for epidemiologists and other researchers who use
Colocation Maps and as an exploration of human colocation
patterns. We begin, in the Materials and Methods Section, by
describing the underlying data source and specifying the trans-
formations performed upon that raw data to produce Coloca-
tion Maps. We continue in the Applications of Colocation
Maps section by providing a derivation of a simple metapopu-
lation SIR model parametrized with Colocation Maps (thus
demonstrating how the datasets can be applied in practice),
by showing how colocation data differs from movement data
(thus showing how these datasets can yield different insights
than traditional mobility datasets), and by surveying work
from research groups that leveraged Colocation Maps during

Figure 1. Example Colocation Map for Italy for the week of
2020-02-26 to 2020-03-03. Red links correspond to the
strongest colocation ties, blue links indicate intermediate ties,
and black ties are the weakest.

the early months of the COVID-19 pandemic. A key finding in
this section is that pairs of regions can exhibit high colocation
despite there not being much direct movement between the
regions. We continue in the Assumptions of Colocation Maps
section by reporting analyses that test the underlying assump-
tions of Colocation Maps. Along the way, we find that a small
fraction of pairs of people that are frequently colocated can
nevertheless account for a large fraction of total colocation
time. In our concluding section, we propose directions for
further development of these datasets.

2. Materials and Methods
2.1 Data Sources
Facebook Location History Data
Generally speaking, the term “human mobility data” means
any data about how people move through physical space [17].
For the purpose of this paper, mobility data specifically refers
to location updates from a mobile phone in the form of lon-
gitude x and latitude y coordinates at a given time t, where
such an update could be written (x, y, t). Facebook collects
mobility data from people who have explicitly chosen to en-
able location services for Facebook applications. In particular,
Colocation Maps utilizes mobility data from the main Face-
book application on iOS and Android, and only includes data
from people who opt in to Location History (LH) and Back-
ground Location collection (BC)1.

People specify their Location Settings in the app and can
change them at any time. In July 2020, for those with LH

1For more details on the Location History setting, please see:
https://www.facebook.com/help/278928889350358
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and BC enabled, 54% of the population provided a location
update in at least half of the five-minute intervals covering
each day. This coverage varied by time of day, with daytime
having 58% of people with location updates in at least half of
five minute intervals; while at night only 46% did. Use of this
pair of settings varied by country, with adoption at a median
of 5.2%, ranging from less than 1% to 8.4% for the 10th and
90th percentile countries, respectively.

Comparison of Location History Data to Other Data Sources
Traditional data sources for human mobility data include
censuses [18, 19, 20], local surveys [21, 22], and travel de-
mand data from airlines or other transportation providers
[23, 24, 25, 26]. In recent years, popular data sources in-
clude call detail records (CDR) from mobile phone providers
[21, 20, 27, 28] and global positioning system (GPS) traces
[29]. Data from location-based services on web platforms
(e.g., Twitter) has also been used [18, 30, 31, 12].

Facebook LH data has spatial and temporal resolution
that is comparable to GPS data, but with greater interna-
tional breadth. The spatial resolution is finer than many CDR
datasets, which aggregate up to the cell-site level. Also, im-
portantly, Colocation Maps transform the raw LH data in a
manner that is more aligned with the needs of metapopulation
modeling than GPS or CDR datasets, which are often shared
as matrices of transition counts between locations. This type
of aggregation does not necessarily approximate the amount
of contacts that could result in disease transmission. Colo-
cation Maps instead aggregate the raw data (on Facebook’s
servers) so as to bridge the gap between these transition-count
datasets and datasets that directly measure face-to-face con-
tact. Except in certain limited contexts where agreements are
made with small populations [32], datasets describing very
close-range face-to-face interactions are difficult and invasive
to obtain. By measuring when people are colocated within a
somewhat larger spatial scale, Colocation Maps can provide
data that more closely approximate disease-transmitting con-
tacts than transition matrices and do it at a scale that would
not be possible when measuring actual face-to-face contact.

Colocation Maps are built from data from online social
network users, and researchers have expressed concern about
how well such data represents the population on the ground
[17]. Researchers have indeed found that Twitter users who
share their location constitute a biased slice of the popula-
tion [33]. We explore the representativeness of Colocation
Maps datasets further in the Assumptions of Colocation Maps
section. However, it is worth noting that representativeness
questions appear in different forms with all of the traditional
sources of human mobility data listed above. Surprisingly and
perhaps reassuringly, researchers have found that mobility
inferences gleaned from different sources are often consistent
[18].

Administrative Polygons
Epidemiological models can incorporate various levels of de-
tail in the contact structure between individuals, ranging from

whole-population models (where everyone in the population
is assumed to interact with everyone else at the same rate
[34]) to very detailed agent-based models [35, 36]. Colo-
cation Maps are intended to be most directly applicable to
metapopulation models, which sit between these extremes. In
these models, the full population of interest is divided up into
subpopulations. The rate at which a person in subpopulation i
interacts with someone in subpopulation j can be different for
each pair of subpopulations i j [37]. Often, the subpopulations
correspond to geographic regions, and in these circumstances,
it is convenient to use regions that correspond to political
administrative units, because these are the geographic units to
which interventions can be most easily delivered. Generally,
public health decisions (or relevant data, such as disease inci-
dence numbers) occur within countries, at the county-scale.
Therefore, Colocation Maps are aggregated at the level of
administrative regions on the scale of counties or cities. In
particular, our administrative boundaries are Pitney-Bowes
polygons (a commercially available set of polygons) at level
three if possible, otherwise level four [38]. In the United
States, level 3 divides the country into 3,142 counties, and at
level 4, the country is represented by 35,502 towns. Admin-
istrative regions at a larger scale, such as states or countries,
would be a less accurate description of mixing patterns and
less actionable. Meanwhile, if we were to aggregate at a
finer scale, we would need to discard more data to remain in
accordance with the privacy principles that we describe below.

2.2 Dataset Preparation
In this section, we describe the series of steps that lead from
raw LH data to Colocation Maps.

Defining the Relevant Area
To build a Colocation Map, we first need to specify an area
of the world to study. This area is determined by the specific
modeling goals of the research team that is requesting the data.
When we receive a request for data, we leverage the existing
infrastructure from the Disaster Maps component of our Data
for Good program, where we draw a rectangular bounding
box that encapsulates the area affected by a natural disaster. In
the Disaster Maps context, this bounding box defines a Face-
book Data For Good crisis [12]. In the Disease Prevention
Maps context, the term “crisis” is not always relevant (e.g.,
if epidemiologists use the data to study hypothetical scenar-
ios for preventative research), so we use the term “project”
instead to refer to the instantiation of the bounding box in
our pipelines. The Pitney-Bowes administrative polygons are
then intersected with the bounding box for the project, and
any geographic region that overlaps with the bounding box
is included in the resulting map. Example bounding boxes
enclose a geographical region containing an entire country,
the data from which could serve to support epidemiological
research on a country scale.

Once a project area is specified through the creation of a
bounding box, Colocation Maps are automatically produced
on a weekly basis for that region, where each week’s compu-
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tation is entirely independent, except for utilizing the same
bounding box. When we refer to a singular map, we mean a
single week’s computation for a particular project.

Identifying a Home Population for an Administrative Re-
gion
Our first task in computing colocation is to assign home re-
gions to those people who have LH and BC enabled. Even
among this population, mobility data may be incomplete, with
gaps between location updates. This can occur for a variety of
reasons, such as turning off one’s phone, a lack of cell phone
coverage, and differences in behavior between iOS and An-
droid. Thus, we only include people in the calculation if their
mobility trace over the calculation satisfies certain properties,
which we will motivate as we describe the calculation below.

Home-estimation approaches typically focus on people’s
mobility data at night, since it is expected that people are
likely to spend the night near their homes [39]. We define the
“night” of a specific date (e.g., 2020-03-03) to correspond to
20:00 (8pm) on the previous calendar day (e.g., 2020-03-02)
to 06:00 (6am) on the calendar day itself (see panel a of of
Supplementary Figure S1 for an illustration of our division of
dates into day and night). We map pings to local times (and
subsequently classify them as daytime pings, nighttime pings,
or neither) based on the geographic location where the ping
was recorded; for instance, if a ping was recorded at 9pm in
New York, that would be considered a nighttime ping, but a
ping that was recorded at the same time in California would
not be considered a nighttime ping, since it would only be
6pm there. If a person logged at least three nighttime pings
for a given date, we compute a nightly modal region for that
person for that date. We consider all of an individual’s nightly
modal locations over a 10-date interval around the date of
the computation and assign a home region to the individual
if the same region is their nightly modal region on at least 6
nights. This process is illustrated in panel b of Supplementary
Figure S1. If an individual does not have a consistent nightly
modal location over six nights, then they are not included in
the calculation.

Trajectory Construction
Who has sufficiently complete trajectories?: Our next task
is to construct trajectories for the remaining people in the
computation. Eventually, we will need to intersect trajectories
to determine if pairs of people were colocated. However, as
noted above, we may only have irregular and intermittent loca-
tion updates for any given person, so it is not possible to assert
whether two people were colocated at precisely the same time.
To resolve this, we divide the week into five minute bins, and
our definition of colocation is that two people are within the
same level 16 Bing tile (approximately 600 meter by 600
meter squares, at the equator) within the same five minute
bin. Even with this binning, location updates for an individual
may be too sparse in time to credibly reconstruct a trajectory.
Therefore, we place conditions on the observed frequency of
location updates over the period of the calculation. Because

the collection rate of LH pings differs between the day and
night, we introduce different conditions for different parts of
the day. In particular, we require that an individual have a
location update in at least 9 of 10 hours during the day, 4 of
10 hours at night, and 17 out of 24 hours over the full 24 hours
corresponding to a date. We further require that the individual
satisfy these three criteria on all 10 days of a period including
the calculation date. See panel c of Supplementary Figure S1
for an example. People who do not satisfy these criteria are
excluded from the calculation.

For the remaining individuals, we construct observed tra-
jectories, consisting of temporal sequences of (x, y, t) points,
from the LH data. Although we have focused on local days
and local nights up to this step in the calculation, we now
shift to constructing trajectories for a fixed one-week window,
spanning the seven days up to and including the calculation
date in Pacific time. There are three reasons for this:

1. Averaging over any contiguous week averages over the
same number of daytimes, nighttimes, etc. everywhere
in the world.

2. Bracketing trajectories for individuals by the local time
of pings can introduce anomalies that can lead to incon-
sistencies in the calculation (e.g., if we end the calcula-
tion at midnight on a given date, but then an individual
travels across a time zone barrier between 12pm and
1am, they can have another ping that falls within the
allowed local time window).

3. It is much more computationally efficient to work with
a universal, fixed-time window.

Speed-based Filtering of Trajectories: We next filter
trajectories that include unrealistically fast movement (e.g.,
where the person seems to move at thousands of miles an
hour multiple times). We have observed examples of this in
the data, where many people seem to “teleport” to a single
level-16 Bing tile many times. This can be a data quality
concern for Colocation Maps: in particular, it would result
in a large number of (likely) inaccurate colocation events.
To combat this, between every consecutive pair of observed
location updates (x1, y1, t1) and (x2, y2, t2) in a trajectory, we
estimate the average speed required to go from one update to
the other and record that transition as a speed outlier if it is
above 200 MPH. We illustrate an example of this in panel d
of Supplementary Figure S1. We exclude any trajectory that
has five or more speed outliers over the week.

Trajectory imputation: After filtering trajectories based
on update frequency and speed, we complete the remaining
trajectories. Because we have imposed requirements on the
frequency of pings in a time interval that includes the seven-
day colocation period, we are guaranteed that trajectories are
reasonably complete for the people remaining in our computa-
tion. Nevertheless, there can still be many missing five-minute
bins for which we need to impute locations. We utilize a sim-
ple imputation strategy that asserts that an individual remains
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stationary until halfway between observed location updates.
To be specific, if an individual has two consecutive location
updates (x1, y1, t1) and (x2, y2, t2) where t2 > t1 and there
are n21 five-minute bins between t1 and t2, we impute that
their location is (x1, y1) for the first ⌊ n21

2 ⌋ of the intervening
five-minute bins and that their location is (x2, y2) for the last
⌊ n21

2 ⌋ of the intervening five-minute bins. If n21 is odd, then
there will be one five-minute bin that is equidistant in time
from the observed bins, and we break that tie randomly to
impute one of the two observed locations. This process is
illustrated in panel d of Supplementary Figure S1.

Estimating Colocation Probabilities
We now have complete week-long trajectories for all people
who remain in the calculation, and we can therefore compute
Xi jr, the number of people assigned to administrative region r
who are located within level 16 Bing tile i during five minute
time bin j. From this, we can in turn calculate mrs, the number
of weekly colocations between two regions r and s:

mrs = ∑
i j

Xi jrXi js (1)

The sum over i iterates over all possible level 16 Bing tiles,
and the sum over j iterates over all 2016 five-minute time bins
in the week under consideration If r = s, we instead compute
mrr = ∑i j Xi jr(Xi jr −1) to avoid counting a user as colocated
with themselves. Following network-science convention for
adjacency matrices, this intentionally double counts the num-
ber of colocations for within-region colocations [40]. This
process of counting the number of people in each Bing tile in
each time bin and then performing the sum in equation (1) is
the computationally tractable way of performing, at scale, the
trajectory intersections illustrated in panel e of Supplementary
Figure S1.

The result of a Colocation Map calculation is a probability
matrix, where matrix element prs is the probability of colo-
cation between region r and s. We compute this probability
from m as follows

prs =
1

2016
mrs

nrns
(2)

for distinct regions r and s. If r = s, we divide by nr(nr −1)
instead of nrns. Regardless of whether r = s or not, this prob-
ability can be interpreted as the number of realized colocation
events in the numerator divided by the number of possible
colocation events in the denominator. It hence is correctly
normalized to the range of zero to one.

The matrix prs is shared with partners through a secured
portal called GeoInsights, which we will describe below. Part-
ners can inspect the matrix within GeoInsights (Supplemen-
tary Figure S2 shows an example visualization in the tool),
or download a CSV file that contains one row per pair of
polygons r and s. Supplementary Table S1 enumerates the
columns that are included in the CSV and their meanings.

Privacy Protections
We will now discuss the principles around how we think about
privacy in the context of Colocation Maps and, in particu-
lar, how the quantity prs is defined with privacy considera-
tions in mind. Privacy researchers have consistently found
that individual-level human-mobility data is vulnerable to
reidentification attacks, even when all explicitly identifiable
information (e.g., names, social security numbers, etc.) is
removed. Here, a reidentification attack refers to a situation
where an attacker knows some mobility information about
an individual, uses that information to identify that person’s
records in a dataset, and thereby learns new information about
that target individual [41]. Because mobility traces are highly
unique across individuals, this type of reidentification is often
possible in individual-level datasets. For example, in 2011,
Zang and Bolot published a study of three months of CDRs
for 25 million mobile-phone users in the United States, find-
ing that 50% of people are unique once their top three most
frequently visited locations are specified at the cell-site level.
Meanwhile, de Montjoye et al. also looked at CDR data at
the cell-site level, but considered trajectory data, where the
dataset reports precise times at which an individual visited a
particular location. These authors found that 95% of people
can be uniquely identified by four spatiotemporal points [42].

Due to the vulnerabilities of individual-level mobility data,
within Facebook, this data is stored in anonymized form, is ac-
cessible only to developers who are working on specific prod-
ucts, and is permanently deleted within 60 days. Meanwhile,
the datasets that we share with humanitarians and epidemiolo-
gists through the Data for Good program are all de-identified
and aggregated over many individuals [12]. However, it is
important to note that, with certain aggregation approaches,
substantial reidentification risk can remain after aggregation.
This is due to three empirically well-established properties of
human mobility:

1. human mobility is highly diverse across individuals

2. human mobility is highly recurrent, day over day, for
the same individual

3. people tend to demonstrate little mobility at night, and
their mobility during the day is continuous (i.e., people
cannot teleport)

Xu et al. have shown that these three properties can be lever-
aged to reconstruct accurate trajectories from datasets that
report the aggregate number of people observed in a given
location at a given time [39]. These reconstructed trajectories
are then vulnerable to reidentification attacks, along the lines
of [43] and [42].

Colocation Maps are designed with this vulnerability in
mind. Recall that prs estimates the amount of time a randomly
chosen person from region r spends near a randomly chosen
person from region s over the course of a week. By report-
ing this rate at a temporal granularity of a week, Colocation
Maps average over the diurnal rhythms in people’s movements,
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and it is precisely these rhythms that make human-mobility
data such distinctive digital fingerprints of individuals. Fur-
thermore, the maps do not indicate where or precisely when
colocation events occur: the colocation rate for Los Ange-
les County and San Francisco County sums over colocation
events that happen in Los Angeles, in San Francisco, and in
all other administrative polygons (e.g., if an individual from
Los Angeles and an individual from San Francisco happen
to be near one another in Yosemite or in New York). Finally,
as in our other Disaster and Disease Prevention Maps [12],
we aggregate up to polygons that are generally on the scale
of counties in the United States and drop data for polygons
that are underrepresented in our data (i.e., that are the home
polygons of fewer than 10 people). This means that the end
user of the dataset can tell that there were nr people whose
(inferred) home location was Los Angeles County (where
nr ≥ 10) but cannot even identify, with complete certainty,
a second location that any of those people visited over the
course of the week.

Facebook’s Data for Good Program
The privacy protections that we have built into the construc-
tion of Colocation Maps are meant to mitigate the risk that an
individual can be explicitly reidentified in the data. However,
as has been noted in the literature, statistical privacy protec-
tions are not meant to prevent the end user from learning
general behavioral trends for the population [44, 45]. Indeed,
learning these trends is the very point of dataset release. Thus,
to ensure that these trends are only learned by trustworthy end
users, procedural privacy protections are necessary as well.
Such protections are managed through Facebook’s Data for
Good program [46].

The Data for Good program makes data sets available
taking direction from general guidelines provided by civil
society and academic data privacy advocates [47]. Public
health experts [2] were consulted extensively to define the
specific colocation data likely to provide efficacy for pandemic
response. Access to Colocation Maps is available to vetted
non-profit organizations and academic research institutions
through Facebook’s Data for Good program. Partners only
have access to de-identified and aggregate information from
Facebook and thus no individual level information is shared.
Data sets, including Colocation Maps, are made available
through the Data for Good program under the terms of a data
license agreement which defines the allowed terms of use by
partners.

Once a partner institution’s request for access is vetted and
an appropriate data license agreement is signed, then access
is granted through a Facebook’s web-based spatial visualiza-
tion tool called GeoInsights. An example visualization of
colocation data in GeoInsights is shown above in Figure 2.
GeoInsights also allows data to be downloaded by partners in
a variety of file formats2.

2Those interested in requesting access to Colocation Maps, or any other
Facebook Data for Good maps, can do so via the instructions provided on

3. Applications of Colocation Maps
We now demonstrate why Colocation Maps are useful for
epidemiological modeling. First, we provide an example of
how these datasets can be used to parametrize compartmental
models. Next, we empirically demonstrate that the mixing pat-
terns captured by Colocation Maps are not well represented by
measurements of movement between regions, and therefore,
studies that leverage Colocation Maps can lead to different
insights than those that utilize conventional human-mobility
data sources. Finally, we survey work that has leveraged Colo-
cation Maps in the first months of the COVID-19 pandemic.

3.1 An Example Metapopulation Model
We now provide a derivation of a simple SIR metapopulation
model using the probabilities provided by Colocation Maps
from a network model of disease spread. We do not imply
here that this model accurately predicts the spread of any
disease, and instead, we include this here purely to give an
example that researchers can reference when parameterizing
more practically relevant models.

We assume we have an individual-level colocation net-
work G with time-varying adjacency matrix given by Ai jk
where Ai jk = 1 if user i and j are colocated during five-minute
time bin k and zero otherwise. Let P(Si), P(Ii), P(Ri) be the
time-varying marginal probabilities that vertex i is suscepti-
ble, infected, and recovered in an SIR model, where β is the
constant rate at which infection is spread from an infected
to susceptible individual while two individuals are colocated,
and γ is the constant rate at which a person recovers. Ignoring
correlations (i.e., utilizing the naive mean-field approximation,
in which we assume for example that P(Si, I j)≈ P(Si)P(I j)),
we have the following nearly standard set of differential equa-
tions:

dP(Si)

dt
= −βP(Si)∑

j
Ai j,k(t)P(I j)

dP(Ii)

dt
= −γP(Ii)+βP(Si)∑

j
Ai j,k(t)P(I j)

dP(Ri)

dt
= γP(Ii) (3)

where k(t) is the five minute time bin associated with time t.
We cannot actually utilize this model because we do not

know Ai j,k(t) for the population. To arrive at a usable model,
we assume each user has been assigned to a geographic region,
and make the following homogeneity approximation for a user
i who has been assigned to region r

P(Si) ≈ 1
nr

∑ j 1( j ∈ region r)P(S j) =
S̄r
nr

P(Ii) ≈ 1
nr

∑ j 1( j ∈ region r)P(I j) =
Īr
nr

P(Ri) ≈ 1
nr

∑ j 1( j ∈ region r)P(R j) =
R̄r
nr

(4)

the program’s website (https://dataforgood.fb.com/). The program website
also maintains a collection of research publications which have made use of
Colocation Maps and other resources to aid those seeking to make use of the
data for their crisis-response work.
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where the second equality defines X̄r as the expected number
of users assigned to region r in state X .

Writing the dynamical equation for S̄r using this assump-
tion, we find:

dS̄r

dt
=−β S̄r ∑

s

mrs,k(t)

nrns
Īs (5)

where mrs,k(t) is the number of colocations between region r
and s (twice this if r = s) during time bin k. Details of this cal-
culation can be found in the Supplementary Information. We
now make an additional approximation that mrs,k ≈ prsnrns

3.
Essentially, this asserts that the expected number of coloca-
tions between two regions is uniform across time bins during
the week. Using this additional approximation yields:

dS̄r

dt
= −β S̄r ∑

s
prs Īs

dĪr

dt
= −γ Īr +β S̄r ∑

s
prs Īs

dR̄r

dt
= γ Īr (6)

This metapopulation SIR model is defined entirely in terms
of the probabilities provided by Colocation Maps and the SIR
parameters β and γ .

In Figure S3, we plot example trajectories from an SIR
metapopulation model, realized by adapting equations (6) to
predict the spread of an infectious disease through Italy. Each
sub-population represents one of Italy’s 110 provinces. For
this example, we choose β = 4× 10−4 and γ = 0.25, and
initialize the simulated outbreak to start with 10 individuals
in the province of Milano. We simulate the disease spread
starting in the week of March 3, 2020 through the week of
June 6, 2020, using each week’s colocation matrix to repre-
sent the interaction strengths between individuals in different
provinces. In Supplementary Figure S3, we also plot the first
time at which the number of infected individuals reaches 100
in each province, plotted against the log of the colocation
strength between that province and Milano. We observe that
the simulated epidemic more quickly reaches provinces which
interact more strongly with Milano.

3.2 Colocation vs. Movement
The datasets that are often used to parametrize compartmental
models such as (6) measure the number of people who are
moving between pairs of places. How is the colocation rate
between a pair of places related to the movement flux between
those places? If colocation is highly correlated with movement

3In practice, we recommend inserting another unknown parameter κ such
that mrs,k ≈ nrns(1+δrsκr)prs to rescale the diagonal values of prs (where
the Kronecker delta δrs = 1 if r = s and zero otherwise). We suggest this
modification because within-region colocation tends to occur for different rea-
sons than between-region colocation. Within-region colocation is generally
much larger than between-region colocation, and can be driven by nighttime
contributions. This additional unknown parameter can help account for this
difference in scale. See 4.2 and 4.4 for more details.

flux, then perhaps Colocation Maps would not add much
information beyond traditionally available datasets. However,
this turns out to not be the case; there can be large variance in
the level of colocation over pairs of regions that have similar
amounts of movement flux, especially when the movement
flux is low.

To demonstrate this, for several regions of the world, we
construct a weighted, undirected “colocation network” and a
weighted, unirected “movement network” for the week ending
2020-08-11. In both networks, the nodes represent administra-
tive regions but the edges between these regions are weighted
differently. In the colocation network, each edge is weighted
by mrs, the number of colocation events between people from
the regions during the week. In the movement network, each
edge is weighted based on data from Facebook Movement
Maps, which measure, in eight-hour intervals, the number of
people who move between regions [12]. The edges of the
movement network are weighted by the maximum movement
flow between the two regions (in either direction) over the
week.

Figure 3 shows distributions of the log of the number of
colocation events, cut by the max movement flow, for 18 dif-
ferent colocation maps. In the legend, within parentheses, we
also include the Kendall τb correlation between the movement
and colocation weights within each country. This plot shows
that:

• Especially in the lowest movement bins, the distribution
of the number of colocation events varies over many
orders of magnitude, sometimes with non-negligible
amount of weight of the distribution at relatively high
values (e.g., mrs ≥ 104).

• The variance of the colocation distribution decreases as
movement grows.

• The values of the Kendall τb correlation, while all sta-
tistically significantly different from 0, are nevertheless
quantitatively weak, indicating that the movement val-
ues are not a good guide to even the rank ordering of
the colocation values.

3.3 Applications of Colocation Maps to Research on
COVID-19

Since Colocation Maps were made available to the research
community in April 2020, they have been used by multiple
research teams to understand the unfolding COVID-19 pan-
demic. Chang et al. used Facebook Colocation Maps and
Movement Maps to model the spread of COVID-19 in Taiwan.
They showed that, in terms of the total number of infections,
reducing intra-city travel would have a stronger impact on
spread than reducing inter-city travel, but that inter-city travel
reductions are more effective in containing the scope of out-
break in one area and in helping officials target resources to
the right location [4]. Meanwhile, researchers at Texas A&M
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Figure 2. Example trajectories from Eq. 6, adapted to represent metapopulation SIR infectious disease dynamics for the
provinces of Italy. The initial outbreak occurs in Milan, and we plot the population fractions of susceptible, infected, and
recovered individuals over the course of 14 weeks for 12 provinces.

conducted spatial network analysis of the temporal coloca-
tion network amongst United States counties and correlated
trends in edge weights with trends in COVID-19 cases, find-
ing that the colocation reduction is associated with a reduction
in case growth with a week of delay [5]. Finally, multiple
research teams have created dashboards and visualizations of
the colocation data to track the spread of the disease:

• A team at the University of Adelaide used Colocation
Maps to derive estimates for the average number of
contacts per person in a given region with people in
another region4.

• A team at Chapman University used colocation data to
track the spread of COVID-19 in Hong Kong and to
visualize the colocation probabilities among different
regions5. The same team built another visualization
showing the level of connectivity in different regions in
Hong Kong to aid with COVID-19 response6.

• A team at the London School of Hygiene & Tropical
Medicine used Colocation Maps to create a dashboard
showing the colocation probability over time in the
United Kingdom7.

4. Assumptions of Colocation Maps
Having demonstrated how Colocation Maps can be applied
in practice, we now turn to analyses of the assumptions that

4http://maths.adelaide.edu.au/lewis.mitchell/socialdistancing Last time
visited on July 27th 2020.

5https://chapman.maps.arcgis.com/apps/opsdashboard/index.html/
d5d4047f03b742e9bddb2af75e5b9ba8 Last time visited on July 27th 2020.

6https://chapman.maps.arcgis.com/apps/opsdashboard/index.html/
3eb4582a297d42d498066309668427bf Last time visited on July 27th 2020.

7https://cmmid.github.io/colocation dashboard cmmid/ Last time visited
on July 27th 2020.

are built into these datasets. These include the assumption of
representativeness of our data, the assumption that colocation
can approximate face-to-face contact, and the assumptions of
spatial and temporal homogeneity that we used in our simple
metapopulation model. These assumptions are, of course,
not strictly true. However, the spatial and temporal homo-
geneity assumptions are not just features of Colocation Maps
datasets, but are also built into most metapopulation mod-
els [37]. Indeed, they are what differentiate metapopulation
models from more fine-grained modeling approaches, such as
network modeling [48, 49] and agent-based modeling [50, 35].
Metapopulation models are useful because the additional re-
finement of these other modeling approaches is not always
necessary for gaining meaningful understanding about the pro-
gression of an epidemic, and Colocation Maps datasets remain
useful, despite the inexactness of their core assumptions, for
the same reason. Moreover, we should also note up front that
relaxing some of these assumptions, or defining colocation on
finer spatial scales so as to get “closer” to face-to-face contact,
entails tradeoffs with privacy. Despite these considerations,
it is valuable to measure the extent to which the assumptions
behind Colocation Maps hold, so that end users of the datasets
are aware of the biases that may be present in the data and in
order to formulate ideas for mitigating those biases.

4.1 Representativeness
As noted above, researchers have expressed concerns about
the representativeness of datasets derived from usage of web
products [18, 17]. In practice, all data sources for human
mobility have their limitations. Censuses offer some of the
most comprehensive surveys of the population and can even
be used to glean insights about mobility (e.g., through com-
muting flows or year-over-year relocation counts), but they
are infrequently conducted, not available for all countries,
and cannot be used to pose questions like those addressed by
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Figure 3. Distributions of the number of weekly colocation
events over polygon-polygon pairs between which there is a
given level of movement. For example, the 10-99 bin along
the y-axis includes all polygon-polygon pairs such that the
maximum observed movement between the polygons was
between 10-99 people. Movement here refers to the number
of people who were observed in the first polygon during an
8-hour bin during a given week and then in the second
polygon during the next 8-hour bin. Each violin in the 10-99
bin shows the distribution, in a given region of the world, of
the log of the number of colocation events between the
polygons in the pair. A colocation event occurs whenever an
individual from the first polygon and an individual from the
second polygon are in the same level-16 Bing tile in the same
five-minute window. Data is plotted for the week ending
2020-08-11 for 18 different regions of the world. For each
region of the world, we also include in parentheses the
Kendall τb correlation between movement and colocation
weights within each country.

Colocation Maps. By contrast, data from web products are
inevitably biased towards that segment of the population that
uses the internet most, but they can offer insights into how
situations evolve on shorter time scales.

Our goal here is to give practitioners who are using Colo-
cation Maps a window into where our data sets are likely to
be most trustworthy. In terms of the number of users that are
included in Colocation Maps, we have decent coverage for
most countries in Europe, North America, South America,
South Asia and Southeast Asia, but less coverage in other
parts of Asia, Africa and Oceania. Figure 4 compares the age
distribution of people who are included in Colocation Maps to
distributions from the high-resolution settlement layer (HRSL)
and from population data from the United Nations (UN)8

when HRSL is not available. The HRSL is a dataset, built by
data scientists at Facebook based only on satellite data, which
provides state-of-the-art estimates of population density in
many regions of the world [51]. Due to the age restriction
of Facebook users and the limit of HRSL, we only include
population with age more than 14 years old. From Figure 4,
the Colocation population is skewed towards older population
(defined as age more than 29 years old) in most regions of
the world, which might be contrary to the general impression
that Internet is for young people. Supplementary Figure S4
performs a similar comparison for gender and shows that the
Colocation population is skewed towards female in South
America and East Europe, and skewed towards male in South
Asia and Africa.

4.2 Within-Region Colocation vs. Between-Region
Colocation

In a metapopulation model, the population associated with
a given administrative polygon may interact very differently
with itself than with other populations. Figure 5 shows that the
colocation probabilities prs are indeed substantively different
within-region than between-region. We observe that the scale
of within-region colocation is orders of magnitude larger than
between-region colocation. Next, there is not a clear behavior
for between-region colocation versus the product of trajectory
counts on the x-axis. The diagonal line of between-region
points corresponds to samples where mrs ≈ 1. On the other
hand, the within-region points appear to scale as a function
of the product of trajectory counts. The three lines, linear on
the log-scale, correspond to the colocation probability scaling
like 1/n, 1/n3/4, and 1/n1/2 respectively. If the colocation
network was sparse within polygons (i.e. mrr ∝ nr), we would
expect a 1/n scaling. Instead we see that colocation within-
regions appears more dense.

These observations may reflect the fact that within-region
colocation can happen for qualitatively different reasons than
between-region colocation. For example, two users that live in
the same apartment building might always be colocated in the
same Bing tile at night, and perhaps also during the day (es-

8https://population.un.org/wpp/DataQuery/ Last time visited on August
6th 2020.
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Figure 4. A global map that compares the age distribution of Colocation Map population and the overall population, July 2020.
Red indicates that ”young” fraction (defined as age between 15 and 29) is higher in Colocation Map population than in the
HRSL and UN data, while blue indicates that ”young” fraction is lower in Colocation Map population.

pecially during the COVID-19 pandemic, when many people
are working from home). This points to a potential problem
with Colocation Maps datasets, because people are unlikely
to transmit infectious diseases between one another when
they are simply sleeping in different rooms in an apartment
complex. We will explore this issue further below.

4.3 Contact Heterogeneity
While Figure 5 explored how colocation rates vary over pairs
of regions, we now examine heterogeneity in colocation over
pairs of people. Figure 6 plots cumulative distributions of
contact time over pairs. Consider any pair of people i and j
who are ever colocated over the course of a week. To each
such pair, we can assign the total number of minutes for
which they are colocated, and we can also classify the pair as
within-region (i.e., i and j’s homes are the same region) or
between-region. The red and blue lines show the cumulative
distributions of total colocation time over between-region and
within-region pairs respectively. We find that the vast majority
of pairs are colocated for very short periods of time, but there
are a few that are colocated for many days over the course of
a week.

A pair that is colocated for many days contributes more to
the overall colocation time (colocation minutes summed over
all pairs) than a pair that is colocated for a very short period
of time. To gain a better understanding of this, in Figure 6, we

Figure 5. Samples (from 2020-04-07) of scaled within-
(green) and between-polygon (orange) colocation
probabilities prs on a log-scale versus the product of
trajectory counts nrns. Lines indicate a scaling of the
within-region colocation probability as 1/n (two-dash red),
1/n3/4 (dashed green), and 1/n1/2 (dot-dash blue).
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Figure 6. In dark blue and dark red respectively, the fractions
of within-region pairs and between-region pairs accounted for
by pairs that are colocated up to a certain amount of time. In
teal and orange respectively, the fractions of overall
within-region and between-region colocation time accounted
for by pairs that are colocated up to a certain amount of time.

also plot the fraction of the total between-region (orange data
points) and within-region (teal data points) colocation time
that is accounted for by pairs that are colocated for up to a cer-
tain amount of time. We find that these distributions are broad,
with the small percentage of pairs that are colocated for many
days accounting for a substantial fraction of overall colocation
time. In the case of between-region time, 75% of the overall
colocation time comes from pairs that are colocated for less
than a day, but that still leaves a quarter of the colocation time
to come from pairs that are colocated for more than a full day
over the course of the week. For within-region time, pairs that
are colocated for long periods of time account for even more
of the overall colocation time, with approximately a quarter
of the time accounted for by pairs that are colocated for more
than six days over the course of the week.

These observations point to considerable heterogeneity
amongst pairs of people in the amount of time that they spend
colocated. Network models or agent-based models would
need to account for this heterogeneity to provide incremen-
tal value on top of metapopulation models. The differences
between within-polygon and between-polygon behavior in
Figure 6 also echo the potential problem with within-polygon
colocation that we discussed above: within-polygon coloca-
tion time may be greatly affected by time that individuals
spend sleeping or working in the same building, while not
coming into contact that could result in infectious disease
transmission.

4.4 Heterogeneity over Time
Colocation Maps aggregate colocation rates at the level of
weeks. This is analogous to the situation with essentially any
aggregate mobility dataset, where individual interactions are
not reported alongside precise times, but it washes away or-
dering of contacts within the week. For example, it could be
the case that colocation between two specific regions tends
to happen earlier in the week and then fade away as the week
progresses, with people from the two regions instead inter-
acting more strongly with other regions. Such an interaction
pattern could indeed affect the course of disease spread.

Do we see such interaction patterns in colocation data?
Figure 7 shows how the colocation probabilities within and
between the provinces of Torino and Milano in Italy vary
hour-by-hour over the course of the week from Wednesday
morning of July 8, 2020 through Wednesday morning of July
15, 2020. We see fluctuations over the course of each day,
with colocation probabilities reaching a maximum within each
province at night, when users are likely to be at home asleep.
Within-region colocation probabilities reach a minimum dur-
ing the day on weekdays. On Saturday and Sunday, however,
we see slightly different behavior; most noticeably, the colo-
cation between Torino and Milano increases on the weekends,
perhaps reflecting weekend travel between the nearby regions.

These properties of our data might affect epidemiological
modeling efforts as well. We note how a large fraction of
within-region colocation events appear to occur at night be-
tween 6 PM and 6 AM. It is reasonable to speculate that at this
time many users are at home and interacting with members of
their own households. Thus, the elevated within-region colo-
cation scores do not necessarily reflect homogeneous mixing
between individuals from different households, and it may be
that including the nighttime colocation events exaggerate the
average within-region colocation score.

4.5 Colocation vs. Face-to-Face Contact
A final issue is the distinction between disease-causing con-
tacts and colocation. In order for a disease to be transmit-
ted between individuals, very close proximity is often nec-
essary, so that, for example, an uninfected individual could
encounter a cough from an infected individual [52]. Because
droplets from a cough do not travel half a kilometer, Colo-
cation Maps are measuring colocation over a substantially
larger spatial scale than would be needed to directly measure
disease-causing contacts. Measuring physical proximity at the
scale of a few meters would be technically difficult and, unless
care is taken to obtain permissions from a willing population
(as in [32]), possibly invasive. The perspective in Coloca-
tion Maps, then, is to get closer to the underlying network
of possible disease-transmission events than is possible with
traditional mobility data sources and to thereby enable better
metapopulation modeling, while still respecting technical and
ethical limitations.

Nevertheless, for end users of these datasets, it is impor-
tant to understand the differences between “possible contacts”
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Figure 7. Colocation probabilities within and between the provinces of Torino and Milano in Italy, broken down by hour over
the course of the week beginning Wednesday morning, July 8, 2020 and ending Wednesday morning, July 15, 2020.

(which are aggregated into Colocation Maps) and “actual con-
tacts” (to which we do not have access). Clearly, for a fixed
set of individuals, the network of possible contacts will be
much denser than the network of actual contacts. One in-
teresting question, however, is the extent to which the edge
weights in those two networks are correlated. We do not have
the means to address this question with our data, but it has
been addressed previously in the literature, by Génois and
Barrat [32]. These authors compared face-to-face contact
networks between people who consented to using wearable
sensors in various contexts (schools, offices, hospitals, aca-
demic conferences) and colocation networks (measured at a
30 meter scale) for the same people. Génois and Barrat com-
puted cosine similarities9 between the face-to-face contact
and colocation networks and found reasonable values (∼ 0.7)
across the different social contexts. These authors also found
that individual-level properties (e.g., ordering of people based
on contact degree) were not well conserved by the colocation
networks. For our purposes, where we are not interested in
sharing individual-level information and in fact want it to be as
obscured as possible, this is an acceptable limitation. Génois
and Barrat also found that downsampling approaches (where
some colocation events are treated as face-to-face contacts
and others are discarded) can help recover more realistic face-
to-face contact networks and boost cosine similarity scores
with the measured face-to-face contact network (up to the
0.9 range, depending on social context). We will discuss this
possibility of downsampling our data in the Future Directions
section below [32].

5. Future Directions
In this paper, we have described the construction of Face-
book Colocation Maps and showed how they can facilitate
improved metapopulation modeling of infectious diseases.
Meanwhile, we have also critically examined the assumptions
that underlie Colocation Maps, identifying certain discrep-
ancies between the colocation rates in our datasets and the
“real” networks of contacts that these datasets are meant to
approximate. Although we have argued that our current Colo-
cation Maps approximate the network of potential disease-
transmission events better than usual mobility datasets (e.g.,

9Génois and Barrat compute cosine similarities between adjacency matri-
ces by simply concatenating the rows of the matrices into vectors [32].

community flows), our explorations in the Assumptions of
Colocation Maps section do motivate future improvements to
these datasets . Here we will enumerate several directions for
this work.

Assuming most people spend more time in their homes
than any other locations, we should expect dramatically more
colocation among people that live in the same tile. If those
people share a household, then frequent contact is likely. But,
when multiple homes or, especially, dense apartment buildings
fall into the same tile, much of the observed colocation will be
while people are sleeping and contagious disease transmission
is unlikely. In the calculation of the final colocation rates, it
may be worthwhile to subtract out colocation events that an
individual logs within their own home region at night.

Additional signals about the context for a colocation event
can be difficult to collect but could also improve the applica-
bility of these datasets for modeling infectious-disease trans-
mission. For example, whether colocation occurs indoors or
outdoors can be relevant to the chances that the colocation
leads to disease transmission. Satellite data, or other data on
the fraction of a region that is covered by buildings, could be
incorporated in the colocation calculation to weight coloca-
tion events based on whether they are likely to have occurred
indoors or outdoors. Similarly, satellite data can help iden-
tify colocation events that happen on roadways, where people
who are colocated because they are traveling in different ve-
hicles are unlikely to transmit infectious diseases. Finally,
social network data could be useful for better understanding
colocations. For example, colocation events between people
that know each other may be more likely to involve physical
contact or close proximity than colocations between strangers,
and the former could be upweighted in the calculation of the
colocation rates.

Génois and Barrat have shown that downsampling colo-
cation networks can yield contact networks that more closely
approximate face-to-face contact networks [32]. This ap-
proach of downsampling the observed colocation events may
provide an unifying framework for incorporating many of
the considerations above. For example, it may be possible to
retain each colocation event with a probability that depends
upon:

• whether the colocation event happens at night between
people from the same region
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• whether the colocation event happens in a tile that con-
tains a lot of indoor space

• whether the colocation event happens between people
who are likely to know one another (e.g., Facebook
friends)

This would amount to constructing a model that predicts when
a colocation event is likely to correspond to close contact. This
is a challenging task, but one that could improve the appli-
cability of Colocation Maps to studies of infectious-disease
transmission.

One limitation of our work is that biases in the underlying
data, as well as those introduced via our trajectory filtering
steps, have an unclear effect on colocation probabilities. The
source data is a convenience sample of locations from Face-
book users with smartphones who have opted into the Loca-
tion History and background data collection features. Future
work could provide a better understanding of how represen-
tative this population is, the implications of the biases on
colocation probability, and an exploration of methods for bias
correction.
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Hu, José J Ramasco, and Alessandro Vespignani. Multi-
scale mobility networks and the spatial spreading of in-
fectious diseases. Proceedings of the National Academy
of Sciences, 106(51):21484–21489, 2009.

[15] Wouter Van den Broeck, Corrado Gioannini, Bruno
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Supplementary Material

Derivation of SIR Dynamical Equations Using Colo-
cation Probabilities
In the “Applications of Colocation Maps” section of the main
paper, we provide a derivation of a metapopulation SIR model
in terms of the parameters measured by Colocation Maps.
Here, we provide some details of the derivation of the dy-
namical equations (6). These derivations use the assumption
of homogeneity over individuals within subpopulations (see
equation (6) in the main paper) and the assumption that colo-
cation rates are constant over the week-long colocation period
(i.e., that mrs,k ≈ prsnrns):

dS̄r

dt
= −β S̄r ∑

i j
1(i ∈ region r)

Ai j,k(t)

nr
P(I j)

= −β S̄r ∑
i j,s

1(i ∈ region r, j ∈ region s)
Ai j,k(t)

nr
P(I j)

= −β S̄r ∑
s

(
∑
i j

1(i ∈ region r, j ∈ region s)
Ai j,k(t)

nrns

)
Īs

= −β S̄r ∑
s

mrs,k(t)

nrns
Īs

= −β S̄r ∑
s

prs Īs (7)
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Table S1. Columns of the dataset that is shared through GeoInsights
Column Name Column Meaning

polygon1 id a unique id for region 1
polygon1 name the name of region 1
lon 1 the longitude of the centroid of region 1
lat 1 the latitude of the centroid of region 1
fb population 1 the number of people who were included in the calculation for region 1
polygon2 id a unique id for region 2
polygon2 name the name of region 2
lon 2 the longitude of the centroid of region 2
lat 2 the latitude of the centroid of region 2
fb population 2 the number of people who were included in the calculation for region 2
link value average fraction of the 1-week period in which pairs from regions 1 and 2 are colocated

Figure S1. Details of calculation
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Figure S2. Example visualization of Colocation Maps in GeoInsights. This example shows strong connections for Hamilton
County, Iowa in the period June 16 - June 22, 2020.

Figure S3. Time to 100 infections for the simulated outbreak shown in Figure 2 in the main text. The simulated outbreak starts
in Milano. The x-axis shows the log of the colocation strength between each province and Milano where the outbreak starts.
The y-axis shows the number of days until the number of infections reaches 100. The negative correlation suggests that the
disease spreads more quickly to provinces which interact more strongly with the source of the outbreak.
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Figure S4. A global map that compares the gender distribution of Colocation Map population and the overall population, July
2020. Red indicates that female fraction is higher in Colocation Map population than in the HRSL and UN data, while blue
indicates that female fraction is lower in Colocation Map population.
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