It is made available under a CC-BY-NC-ND 4.0 International license .

1	The Presence of Ambulatory Hypoxia as an Early Predictor of Moderate to Severe
2	COVID-19 Disease
3	Ajay Bhasin MD ^{1,2} , Melissa Bregger MD ¹ , Mark Kluk MD MPH ^{1,2} , Peter Park MD ¹ , Joe
4	Feinglass PhD ³ , Jeffrey Barsuk MD MS ¹
5	Affiliations:
6	¹ Department of Medicine, Division of Hospital Medicine, Northwestern Memorial Hospital,
7	Feinberg School of Medicine
8	² Department of Pediatrics, Division of Hospital Based Medicine, Ann & Robert H Lurie
9	Children's Hospital, Feinberg School of Medicine
10	³ Department of Preventive Medicine, Division of General Internal Medicine and Geriatrics,
11	Northwestern Memorial Hospital, Feinberg School of Medicine
12	Article Type: Clinical Research Study
13	Abstract Word Count: 256
14	Word Count: 1199
15	Conflict of Interest: To the best of our knowledge, no conflict of interest, financial or other,
16	exists for authors contributing to this report.
17	Corresponding Author: Ajay Bhasin, MD. 211 E. Ontario, Suite 700, Chicago, IL, 60611.
18	Phone (312) 926-5893. <u>Ajay.bhasin@nm.org</u> . @AjayBhasin19
19	Key Words: COVID-19, Ambulatory Hypoxia, Hospital Medicine

It is made available under a CC-BY-NC-ND 4.0 International license .

- 20 Author Involvement: All authors had access to the data, a role inwriting, reviewing, and
- 21 approving the manuscript.

22

It is made available under a CC-BY-NC-ND 4.0 International license .

24 Abstract

- 25 Importance: The development and importance of ambulatory hypoxia in COVID-19 is
- unknown. The presence of ambulatory hypoxia may help risk-stratify hospitalized patients with
- 27 COVID-19. If sufficient lead-time exists between development of ambulatory hypoxia and other
- 28 outcome measures, interventions might be initiated earlier.
- 29 **Objective**: To determine the association of ambulatory hypoxia with the eventual need for nasal
- 30 cannula or advanced oxygenation therapies (defined as use of high flow nasal cannula, Bi-PAP,
- 31 ventilator, or extracorporeal membrane oxygenation).

32 Design: Retrospective, observational study of patients hospitalized with COVID-19 from March
33 1, 2020 to October 30, 2020.

- Setting: Ten hospitals in an integrated academic medical system (Northwestern Medicine) in the
 Chicagoland area.
- 36 **Participants**: Adult patients (age ≥ 18) hospitalized for COVID-19 who had ambulatory 37 oximetry measured.

38 **Intervention(s)** / **Exposure(s)**: Ambulatory oximetry measurement.

Main outcomes and measures: The association of ambulatory hypoxia with subsequent use of nasal cannula and advanced oxygen therapies and the time between ambulatory hypoxia and need for these oxygen therapies. Patients who had ambulatory oximetry measurements after use of nasal cannula or advanced oxygen therapies were excluded.

- **Results**: Of 531 patients with ambulatory oximetry measured, 132 (24.9%) had ambulatory
- 44 hypoxia. Presence of ambulatory hypoxia was strongly associated with subsequent use of nasal

It is made available under a CC-BY-NC-ND 4.0 International license .

- 45 cannula (OR 4.8, 95% CI 2.8 8.4) and advanced oxygen therapy (IRR 7.7, 95% CI 3.4 17.5).
- 46 Ambulatory hypoxia measurement preceded nasal cannula use by a median 12.5 hours [IQR
- 47 3.25, 29.25] and advanced oxygenation therapies by 54 hours [IQR 25, 82].
- 48 Conclusion and Relevance: Ambulatory hypoxia is associated with moderate to severe COVID-
- 49 19. It may serve as an early, non-invasive physiologic marker for the likelihood of developing
- 50 moderate to severe disease and help clinicians triage patients and initiate earlier interventions.

It is made available under a CC-BY-NC-ND 4.0 International license .

51 Introduction

52	Coronavirus-induced-disease-2019 (COVID-19) has caused a pandemic with 56,178,674
53	cases and 1,348,348 deaths worldwide. ¹ In our experience, we noted many inpatients with
54	COVID-19 first exhibit hypoxia with exertion, then subsequently develop moderate to severe
55	disease requiring nasal cannula or more advanced oxygen therapies. Early COVID-19 induces
56	occult lung damage, noted by peripheral ground-glass opacities on imaging. ² We suspect patients
57	at this stage exhibit ambulatory but not resting hypoxia. Several studies have characterized risk
58	factors for severe COVID-19 based on patient-specific comorbidities and laboratory data. To our
59	knowledge, no study has evaluated ambulatory hypoxia as a risk factor for development of
60	moderate to severe disease. Therefore, we aimed to evaluate if ambulatory hypoxia is associated
61	with COVID-19 progression.

62 Methods

We performed a retrospective observational study of adults (age >18 years) hospitalized 63 with COVID-19 who had ambulatory oxygen measurements (without first developing resting 64 hypoxia) at Northwestern Medicine (NM) between March 1, 2020 and October 30, 2020. NM is 65 an integrated academic medical system in the Chicagoland area with 10 affiliated hospitals. We 66 compared the associations between patients with and without ambulatory hypoxia and the use of 67 nasal cannula (NC) or advanced oxygenation therapy [defined as high flow nasal cannula 68 69 (HFNC), bi-level positive airway pressure (BiPAP), mechanical ventilation (vent) or 70 extracorporeal membrane oxygenation (ECMO)]. We evaluated the time from the measurement 71 of ambulatory hypoxia to initiation of NC and advanced oxygenation therapies. This study was approved by the Northwestern University Institutional Review Board. 72

It is made available under a CC-BY-NC-ND 4.0 International license .

73 Procedure

We queried the Northwestern University Enterprise Data Warehouse (EDW) for all adult 74 75 patients hospitalized with COVID-19 (ICD-10 code) who had ambulatory oxygen levels 76 measured. The EDW is a complete database of clinical data extracted from the electronic medical records at NM. Hospital protocols within NM recommend that all patients with COVID-77 78 19 have once daily ambulatory oximetry screening, if able to participate. Any ambulatory oxygen saturation below 90% was considered hypoxia. Oxygen therapy outcomes included need 79 for NC, HFNC, BiPAP, vent, and ECMO. Date and time of ambulatory hypoxia and initiation of 80 81 all oxygen therapy outcomes were recorded. We *excluded* patients in whom oxygen therapy 82 outcomes occurred before ambulatory pulse oximetry measurement as well as those who were still hospitalized at the end of the study period. 83

Patient demographic and clinical data on admission including age, sex, race and ethnicity, 84 body mass index (BMI), D-dimer, ferritin, and c-reactive protein (CRP) were recorded. The 85 EDW query also included all ICD-10 codes for pre-existing chronic conditions. The Charlson 86 comorbidity index for each patient was calculated based on admission ICD-10 codes to account 87 88 for severity of illness at admission. For patients with multiple admissions, only data and outcomes during a chronologically first 'index' encounter were evaluated. Age, BMI, Charlson, 89 D-dimer, CRP, and ferritin values were categorized for ease of interpretation. Time between 90 91 ambulatory hypoxia and use of NC or advanced oxygen therapies was measured using the first occurrence of the oxygen therapy outcome. 92

93 Analysis

It is made available under a CC-BY-NC-ND 4.0 International license .

94	Chi-square tests were used to evaluate bivariate associations between demographic and
95	clinical variables and the proportion of patients with ambulatory hypoxia and subsequent use of
96	nasal cannula or advanced oxygenation therapy. We used multiple logistic regression of the
97	likelihood of nasal cannula to test the significance of ambulatory hypoxia because NC occurred
98	in 13% of patients. We used multiple Poisson regression of the likelihood of advanced oxygen
99	therapy to test the significance of ambulatory hypoxia because advanced oxygenation occurred in
100	6% of patients. ³⁴ We controlled for patients' demographic and clinical characteristics including
101	age, sex, race and ethnicity, BMI, and Charlson score, plus laboratory values that were
102	significant at p<0.1 in bivariate associations. We performed sensitivity analyses substituting
103	specific ICD-10 diagnoses including atrial fibrillation, coronary artery disease, congestive heart
104	failure, diabetes mellitus, connective tissue disease, chronic obstructive pulmonary disease,
105	hepatic failure with encephalopathy, human immunodeficiency virus, hypertension, leukemia or
106	lymphoma, other immunodeficiencies, peripheral arterial disease, renal disease, solid tumor, and
107	transplant in place of the Charlson score. R (3.6.1, Vienna, Austria) was used for analysis.
108	Results
109	Our study included 531 patients with ambulatory oximetry measurements. Of these, 132
110	patients (24.9%) had ambulatory hypoxia. NC was required by 28.8% of patients with
111	ambulatory hypoxia, compared to 8.0% of patients without it ($p=2.4x10^{-9}$). Advanced
112	oxygenation therapy was required by 18.9% of patients with ambulatory hypoxia, compared to
113	2.3% without it ($p=4.6x10^{-11}$). Demographic and clinical variables are listed in Table 1.
114	Multiple logistic and Poisson regression results confirmed that the presence of
115	ambulatory hypoxia was strongly associated with the likelihood of using NC (OR 4.8, 95% CI

116 2.8-8.4) and advanced oxygenation (IRR 7.7, 95% CI 3.4-17.5); Table 2. Results were

It is made available under a CC-BY-NC-ND 4.0 International license .

unchanged in the sensitivity analysis. Ambulatory hypoxia preceded NC use by a median 12.5

hours [IQR 3.25, 29.25] and advanced oxygenation therapies by 54 hours [IQR 25, 82].

119 **Discussion**

Our study shows that the presence of ambulatory hypoxia is strongly associated with the subsequent development of moderate to severe COVID-19. In our patient population, ambulatory hypoxia occurred several hours before the need for NC and advanced oxygen therapies. This is important because it may enable clinicians to start therapeutic treatments such as remdesivir⁵ and/or dexamethasone⁶ earlier. It may also help health systems effectively identify patients most likely to require ICU-level care, which may improve hospital throughput especially when hospitals are near or at capacity.

127 Ambulatory oximetry has been used to help determine severity of cardiopulmonary diseases including heart failure,⁷ pulmonary hypertension,⁸ chronic obstructive pulmonary 128 disease,⁹ and interstitial lung disease.¹⁰ To our knowledge, the presence of ambulatory hypoxia 129 has never been shown to acutely predict cardiopulmonary disease progression. Recently, some 130 authors have advocated for ambulatory oximetry measurements to evaluate patients for discharge 131 readiness after resolution of COVID-19 symptoms,¹¹ a strategy already adopted in our hospital. 132 We present the first study showing that ambulatory hypoxia predicts worsening pulmonary 133 disease in patients with COVID-19. 134

Our study has several limitations. First our study was performed at one health network with a relatively small number of patients potentially limiting generalizability. However, the associations between ambulatory hypoxia and worsening oxygenation were statistically very strong. Second, we excluded patients who did not have ambulatory oximetry measurements.

It is made available under a CC-BY-NC-ND 4.0 International license .

Ambulatory oxygen measurement is part of the admission order protocols in our health system, 139 so patients without measurements likely represented a sicker cohort unable to ambulate or those 140 141 discharged quickly. Patients without measurement may also have been cared for by clinicians who did not order ambulatory oximetry, given lacking evidence. Third, we did not directly 142 measure the presence of resting hypoxia because it was often not documented in the medical 143 144 record before the use of oxygen therapy. The use of oxygen therapy was used as a surrogate for resting hypoxia. Finally, we excluded all patients who used oxygen therapy before ambulatory 145 146 oximetry measures. These patients likely underwent ambulatory oximetry to determine discharge 147 readiness. Alternatively, there may have been a small number of these patients who were given NC treatment for subjective comfort without resting hypoxia, who then developed ambulatory 148 hypoxia. 149

Future randomized studies should be performed to evaluate earlier interventions in patients with COVID-19 and ambulatory hypoxia without resting hypoxia. An important extension of our findings could be the use of ambulatory oximetry measurement in triaging both outpatients and inpatients with COVID-19. Ambulatory hypoxia may help determine whether admission and inpatient monitoring with continuous pulse oximetry is warranted.

155

156

It is made available under a CC-BY-NC-ND 4.0 International license .

References

159	1. Dong E, Du H, Gardner L. An interactive web-based dashboard to track COVID-19 in real time. <i>Lancet</i>
160	Infect Dis 2020;20(5):533-34. doi: 10.1016/S1473-3099(20)30120-1 [published Unline First:
162	2020/02/23] 2 Wang V Dong C Hu V at al Temporal Changes of CT Eindings in 90 Patients with COV/ID-19
163	2. Wang T, Dong C, Hu T, et al. Temporal changes of CT Findings in 50 Fatients with COVID-15 Pneumonia: A Longitudinal Study. <i>Radiology</i> 2020:296(2):E55-E64. doi:
164	10 11/18/radial 2020/2008/3 [nublished Online First: 2020/03/20]
165	3 Thang L VI KE What's the relative risk? A method of correcting the odds ratio in cohort studies of
166	common outcomes IAMA 1998-280(19)·1690-1 doi: 10.1001/jama 280.19.1690 [nublished
167	Online First: 1998/12/01]
168	4. Zou G. A modified poisson regression approach to prospective studies with binary data. Am J
169	<i>Epidemiol</i> 2004:159(7):702-6. doi: 10.1093/aie/kwh090 [published Online First: 2004/03/23]
170	5. Beigel JH, Tomashek KM, Dodd LE, et al. Remdesivir for the Treatment of Covid-19 - Final Report. N
171	Engl J Med 2020;383(19):1813-26. doi: 10.1056/NEJMoa2007764 [published Online First:
172	2020/05/24]
173	6. Group RC, Horby P, Lim WS, et al. Dexamethasone in Hospitalized Patients with Covid-19 - Preliminary
174	Report. N Engl J Med 2020 doi: 10.1056/NEJMoa2021436 [published Online First: 2020/07/18]
175	7. Gheorghiade M, Follath F, Ponikowski P, et al. Assessing and grading congestion in acute heart failure:
176	a scientific statement from the acute heart failure committee of the heart failure association of
177	the European Society of Cardiology and endorsed by the European Society of Intensive Care
178	Medicine. Eur J Heart Fail 2010;12(5):423-33. doi: 10.1093/eurjhf/hfq045 [published Online
179	First: 2010/04/01]
180	8. Rubin LJ. The 6-minute walk test in pulmonary arterial hypertension: how far is enough? Am J Respir
181	Crit Care Med 2012;186(5):396-7. doi: 10.1164/rccm.201206-1137ED [published Online First:
182	2012/09/04]
183	9. Stoller JK, Panos RJ, Krachman S, et al. Oxygen therapy for patients with COPD: current evidence and
184	the long-term oxygen treatment trial. <i>Chest</i> 2010;138(1):179-87. doi: 10.1378/chest.09-2555
185	[published Online First: 2010/07/08]
186	10. Khor YH, Goh NS, Glaspole I, et al. Exertional Desaturation and Prescription of Ambulatory Oxygen
187	Therapy in Interstitial Lung Disease. <i>Respir Care</i> 2019;64(3):299-306. doi:
188	10.418//respcare.06334 [published Online First: 2018/11/01]
189	11. Hussain I, Saman HI, Yousaf Z. Identification of Exertional Hypoxia and Its Implications in SARS-CoV-
190	2 Pheumonia. Am J Trop Med Hyg 2020;103(4):1742-43. doi: 10.4269/ajtmn.20-1012 [published
191	Online FIISt: 2020/08/28]
192	

It is made available under a CC-BY-NC-ND 4.0 International license .

Table 1: Percentage of Inpatients with COVID-19 with Each Demographics and Clinical

195 Variable Who Underwent Ambulatory Oximetry and Developed Need For Oxygen Therapies.

Characteristics	All Patients	Nasal	Advanced
		Cannula	Oxygenation
			Therapy
	(n=531)	(n=70)	(n=34)
	%	%*	%*
Ambulatory Hypoxia Present ^a	24.9	7.2	4.7
Age (years) ^b			
< 50	32.0	2.4	1.3
50-59	18.6	2.8	1.1
60-69	23.0	3.8	2.4
<u>≥</u> 70	26.4	4.1	1.5
Gender			
Male	50.1	6.2	4.0
Female	49.9	7.0	2.4
Race and Ethnicity			
Non-Hispanic White	33.9	5.8	2.1
Hispanic or Latino	34.7	4.0	1.5
Black or African American	21.7	2.1	1.9
Other Races and ethnicities	9.8	1.3	0.9
BMI (kg/m ²) ^c			
< 24.9	21.8	3.0	1.5
25.0 - 29.9	29.2	3.4	1.3
30.0 - 39.9	30.5	3.8	1.7
\geq 40	10.0	2.1	1.5
Unmeasured	8.5	0.9	0.4
Admission D-Dimer (ng/mL)			
0-999	53.1	7.0	3.6
≥ 1000	5.8	0.8	0.8
Unmeasured	41.1	5.5	2.1
Admission Ferritin ^d (ng/mL)			
0-499	44.8	4.9	2.4
500 - 999	13.2	1.9	0.8
≥ 1000	11.1	2.1	1.7
Unmeasured	30.9	4.3	1.5
Admission CRP ^c (mg/L)	İ.		
0-99	55.6	6.8	3.2
100 - 199	13.4	2.6	1.3
\geq 200	4.5	0.9	0.8

It is made available under a CC-BY-NC-ND 4.0 International license .

Unmeasured	26.6	2.8	1.1		
Charlson Score ^e					
0-2	43.5	3.4	2.1		
3-5	31.6	4.7	2.3		
≥ 6	24.9	5.1	2.1		
Atrial Fibrillation	10.0	1.9	0.8		
Coronary Artery Disease ^b	4.1	1.1	0.4		
Congestive Heart Failure	12.2	2.4	1.1		
Diabetes Mellitus	32.4	5.5	2.6		
Connective Tissue Disorders	2.8	0.4	0.2		
COPD	8.9	1.5	0.8		
Liver Failure ^{c,e}	1.1	0.6	0.4		
HIV	0.8	0.0	0.0		
Hypertension	58.8	8.3	4.3		
Leukemia or Lymphoma	9.0	1.7	0.9		
Other Immunodeficiencies	0.8	0.4	0.0		
Peripheral Artery Disease	3.6	0.8	0.0		
Renal Disease ^b	19.0	3.6	1.5		
Solid Tumor	4.0	0.4	0.4		
Transplant ^b	5.1	1.3	0.6		
$^{a}p < 0.0001$ for nasal cannula and advanced oxygenation therapy					
$^{b}p < 0.1$ for nasal cannula					
$^{c}p < 0.1$ for advanced oxygenation therapy					
$d_{\rm p} < 0.05$ for advanced exagonation thereas					

 ${}^{d}p < 0.05$ for advanced oxygenation therapy ${}^{e}p < 0.05$ for nasal cannula

*All percent values are row percents relative to all patients (n=531)

It is made available under a CC-BY-NC-ND 4.0 International license .

Table 2: Multiple Logistic and Poisson Regression Results for the Association of Ambulatory

Hypoxia with the likelihood of Nasal Cannula or Advanced Oxygenation use in 531 Inpatients

with COVID-19.

Characteristics	Nasal Can	nula	Advanced Oxygenation		
	OR (95% CI)	р	IRR (95% CI)	р	
Ambulatory Hypoxemia Present	4.8 (2.8 - 8.4)	3 x 10 ⁻⁸	7.7 (3.4 - 17.5)	8 x 10 ⁻⁷	
Age (years)					
< 50*	-	-	-	-	
50-59	1.5 (0.6 - 3.6)	0.40	1.0 (0.3 - 3.2)	0.97	
60-69	1.2 (0.4 - 3.1)	0.75	1.7 (0.5 - 6.2)	0.40	
\geq 70	0.6 (0.2 - 1.8)	0.35	0.9 (0.2 - 4.1)	0.88	
Gender					
Male	0.8 (0.5 - 1.4)	0.47	1.6 (0.7 - 3.6)	0.23	
Female*	-	-	-	-	
Race and Ethnicity					
Non-Hispanic White*	-	-	-	-	
Hispanic or Latino	0.8 (0.4 - 1.7)	0.62	0.9 (0.3 - 2.5)	0.85	
Black or African American	0.4 (0.2 - 0.9)	0.02	1.3 (0.5 - 3.4)	0.59	
Other Races and ethnicities	1.0 (0.4 - 2.6)	0.98	2.1 (0.6 - 6.7)	0.23	
BMI (kg/m2)					
< 25.0*	-	-	-	-	
25.0 - 29.9	1.0 (0.5 - 2.2)	0.95	0.7 (0.2 - 1.9)	0.48	
30.0 - 39.9	1.0 (0.5 - 2.3)	0.91	0.8 (0.3 - 2.2)	0.64	
\geq 40	2.3 (0.9 - 6.2)	0.10	2.6 (0.8 - 7.9)	0.10	
Unmeasured	1.1 (0.3 - 3.4)	0.87	0.7 (0.1 - 3.5)	0.65	
Admission CRP (mg/L)					
< 100*	-	-	-	-	
100 - 199	-	-	1.9 (0.8 - 4.5)	0.96	
\geq 200	-	-	1.7 (0.7 - 4.1)	0.81	
Unmeasured	-	-	1.1 (0.4 - 2.9)	0.68	
Admission Ferritin(ng/mL)					
< 500*	-	-	-	-	
500 - 999	-	-	1.5 (0.5 - 4.7)	0.94	
≥ 1000	-	-	0.9 (0.3 - 2.6)	0.28	
Unmeasured	-	-	1.1 (0.3 - 3.5)	0.77	
Charlson Score					
< 3*	-	-	-	-	

It is made available under a CC-BY-NC-ND 4.0 International license .

3-5	2.4 (1.1 - 5.5)	0.03	1.4 (0.5 - 3.9)	0.55
≥ 6	4.6 (1.8 - 12.3)	0.002	1.4 (0.4 - 5.1)	0.63
*Denotes reference category				