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After vaccinating health care workers and vulner-
able groups against COVID-19, authorities will
need to decide how to vaccinate everyone else.
Prioritising individuals with more contacts can be
disproportionately effective, in theory, but identi-
fying these individuals is difficult. Here we show
that the technology underlying Bluetooth expo-
sure notification applications, such as used for dig-
ital contact tracing, can be leveraged to prioritise
vaccination based on individual contact data. Our
approach is based on the insight that these apps
also act as local sensing devices measuring each
user’s total exposure time to other users, thereby
enabling the implementation of a previously im-
possible strategy that prioritises potential super-
spreaders. Furthermore, by generalising percola-
tion theory and introducing a novel measure of
vaccination efficiency, we demonstrate that this
“hot-spotting” strategy can achieve herd immu-
nity with up to half as many vaccines as a non-
targeted strategy, and is attractive even for rela-
tively low rates of app usage.

Since the first recorded cases in late 2019, COVID-
19 has spread like wildfire across the globe. In order
to contain the spread of the disease, an array of non-
pharmaceutical interventions have been deployed, includ-
ing hygienic measures, isolation of infected individuals,
quarantine of their exposed individuals, social distancing,
and even large scale closures of businesses and institutions
[41]. This stimulated efforts to develop COVID-19 vac-
cines in record time [24]. In late 2020, the first phase
of COVID-19 vaccination began with a small number
of health-care workers and elderly individuals receiving
the Pfizer/BioNTech vaccine. These groups were recom-
mended for vaccine prioritisation [4, 3] based on the high

rate of mortality and other severe outcomes experienced
by elderly individuals [13] and the principle of reciprocity,
which states that those who accepted the greatest risks to
mitigate the effects of the pandemic, should be vaccinated
first [36].

Once the most vulnerable individuals have been vac-
cinated, public health authorities will need to decide how
to vaccinate the rest of the population[27, 21, 12]. In
2021, data on whether available COVID-19 vaccines pre-
vent both transmissibility and disease in vaccinated in-
dividuals will become increasingly available [18]. Hence,
public health authorities may want to consider pivoting
to a strategy that interrupts transmission of SARS-CoV-
2 most effectively. And in all likelihood, the supply of
vaccines and/or the capacity to administer them will con-
tinue to be limited in early 2021[24], necessitating addi-
tional prioritisation decisions.

In this work we study how to prioritise COVID-19
vaccines in the second phase, where vaccination of vul-
nerable groups has been achieved. We assume a goal of
achieving herd immunity through interrupting transmis-
sion as efficiently as possible, and we explore a scenario
where COVID-19 vaccines can prevent transmissibility as
well as disease, as applies to many other existing vaccines
against respiratory pathogens [10].

Prioritisation of vaccines is often based on age or other
demographic factors, and we know that contact patterns
differ between demographic groups. However, as demon-
strated in empirical studies of contact patterns [30], het-
erogeneity within demographic groups is much greater
than the differences between them. Because individuals
with more contacts have the potential to fuel the spread
more than others, prioritising individuals for vaccination
according to the risk they pose to further spread has been
found to be highly effective in previous theoretical mod-
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els [35, 19, 16, 14]. However, such exposure prioritisa-
tion strategies are difficult to implement in practice since
public health authorities only have information on broad
demographic or regional factors upon which to act.

It is exactly in this regard that Bluetooth exposure
notification apps have opened up a new avenue for public
health interventions. The core functionality of these apps
is the creation of an encounter log between app users.
This encounter log is useful for more than just exposure
notification: It also quantifies the user’s exposure to oth-
ers. Said another way, these apps are also sensors which
measure the duration of exposure: an epidemiologically
significant quantity.

Though other digital contact tracing technologies ex-
ist, Bluetooth-based solutions have been chosen when the
protection of user’s personally identifiable information was
a core concern. The data in the encounter log can only be
used by public health authorities in a manner which does
not require the centralized collection of user data. In fact,
in our proposal each user’s device makes a decision purely
locally, based on the number of encounters reported, as to
whether or not they will be prioritised for vaccination. By
preferentially vaccinating individuals with greater total
exposure to others our proposed strategy is significantly
more efficient than traditional prioritisation strategies.

The success of digital contact tracing technologies has
been hampered by inadequate uptake rates [23, 11]. Our
proposal doesn’t suffer from this issue. We show that the
efficiency depends only on the fraction of the app-using
population which receive the vaccine, with the greatest
relative reduction occurring with the vaccination of roughly
20-40% of app users.

Our modelling approach is based on percolation the-
ory: a collection of analytical techniques, coming from
statistical physics [39], which has been successfully ap-
plied to material sciences [37] and to the spread of forest
fires [25, 26] and infectious diseases [17]. Here we extend
the theory in two directions: Firstly, we introduce a novel
measure to compare vaccine prioritisation strategies; and
secondly, we incorporate heterogeneity in the risk of infec-
tion (total exposure time) between contacts. These tools
allow us to show that the improved efficiency gained by
piggy-backing vaccine prioritisation strategies on top of
exposure notification apps is a robust phenomenon, as it
derives its power from the very heterogeneities in contact
patterns that shape the spread of COVID-19.

Bluetooth Exposure Notification

In March 2020, COVID Watch released a white paper
detailing an anonymous Bluetooth-based system that ex-
ploits the ubiquity of Android and iOS smartphones to
support contact tracing [20]. The idea has seen widespread

adoption, with nearly every developed country having in-
corporated it into their digital contact tracing solutions.
Both the Google/Apple and BlueTrace frameworks are
also based on this technology, the former of which is avail-
able throughout North America and the European Union
and the latter in Singapore and Australia.

Protecting users’ privacy was a fundamental princi-
ple underlying the design process. Every 10-20 minutes
anonymous tokens are exchanged between app users who
are in close proximity to one another. Each user’s de-
vice stores these tokens in an encounter log. The data
stored by the app is able to determine neither the num-
ber of contacts nor the duration of any individual con-
tact. Instead, the number of tokens logged over a given
timeframe is a measure of the user’s total exposure time
to others: the sum, over each contact, of the duration of
that contact. To model this feature of Bluetooth exposure
notification systems and how it impacts vaccination pri-
oritisation strategies, we present new theory in the next
section that incorporates both the number and duration
of contacts. This theory predicts that the total expo-
sure time of contacts has a direct causal influence on the
spread of infectious disease.

Country Downloads per 100 people
Canada [2] 20

Germany [8] 29
Italy [6] 17

New Zealand [1] 49
Scotland [5] 27
Singapore [7] 56

Table 1: Exposure notification app download rates in selected
countries based on official sources.

Percolation on Weighted Networks

Many infectious diseases spread through close contact,
and contact patterns in human populations display a high
degree of heterogeneity [9, 22]. One successful approach
to understanding the impact of heterogeneity is to model
the spread of infectious disease as a percolation process
on the network of contacts [29, 28, 38]. In the application
of percolation theory to infectious diseases, the sum total
of human contacts forms a network across the entire pop-
ulation. The vertices of this network are the individuals
in the modelled population. An edge joins two individuals
if they come into potentially infectious contact with one
another in a typical time window matching the infectious
period of the disease. The transmissibility of the infec-
tious disease is described by the transmission probability,
denoted T .
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In a series of foundational works [32, 33], Newman de-
veloped analytical techniques based on probability gener-
ating functions. Through these techniques one can derive
formulas for key epidemiological quantities in terms of
summary statistics of the degree distribution of the con-
tact network, that is, the distribution of the number of
contacts made by individuals in the modelled population.
In particular, Newman proved that the basic reproduction
number, R0, depends on the transmission probability T ,
the average degree, and the variance of the degree distri-
bution. As a corollary of these results, in particular the
presence of the variance, we learn a fundamental insight:
heterogeneity in contact patterns influences the spread of
infectious disease.

The extent to which contact patterns differ between
individuals goes beyond the number of contacts they have.
Another key variable is the duration of each contact, as
over the infectious period of the disease a typical indi-
vidual will accumulate a large time in contact with a few
regular contacts, and a much smaller amount of time with
each of a potentially larger number of irregular contacts.
Studies have shown that longer contact duration increases
the transmission probability of COVID-19 [34]. Both the
epidemiological significance of contact duration and the
functionality of Bluetooth exposure notification systems
imply the need to incorporate contact duration into the
percolation framework.

We have generalized Newman’s analytic framework to
understand percolation on weighted networks (see Meth-
ods). In our model, each edge, which represents a contact
between individuals, is further equipped with a weight
representing the duration. The transmission probability
is assumed to depend on the duration of contact. This
leads to replacing T with a distinct Tw for each weight.

We derive a formula showing that total exposure time
of individuals is a driving factor in the spread of disease.
As we discussed above, Bluetooth exposure notification
apps measure each user’s total exposure time to other
users of the app. Our model therefore predicts that to-
tal exposure time is an epidemiologically relevant quan-
tity with a direct causal relationship to the reproduction
number. Therefore, vaccine prioritisation via exposure
notification apps is both plausible and potentially effec-
tive. To further examine the role of total exposure time in
epidemic dynamics, in the next section we develop a quan-
titative framework for comparing prioritisation strategies.

Because of heterogeneities in contact patterns, vacci-
nation of different individuals will have a varying impact
on the rate of spread. In this regard, heterogeneity is a
resource: preferential vaccination of those with greater
total exposure time should lead to a greater reduction of
disease spread from the same number of vaccine doses.

In order to compare different strategies we must fur-
ther expand the percolation toolkit to incorporate vac-

cination. We model vaccination as a stochastic process
which removes vertices from the original contact network.
We assume that the strategies under consideration priori-
tise individuals according to the number and duration of
their contacts, which is the case for strategies leveraging
Bluetooth exposure notification apps. In the attached
methods we derive formulas for the reproduction number
on the residual network of susceptible individuals for a
general vaccination strategy of this type.

Assessing Vaccination Efficiency

To compare two vaccine prioritisation strategies it is not
enough to consider the post-vaccination reproduction num-
ber without taking into account the number of individuals
vaccinated by each strategy. This is especially true if one
is concerned with how best to use a limited vaccine sup-
ply. To that end we introduce a novel measure to compare
vaccine prioritisation strategies. We define the efficiency
of a vaccination strategy to be:

Ev=1 −Rv/R0

V
,

where Rv is the post-vaccination reproduction number
and V is the fraction of the population that receives the
vaccine. In other words, the efficiency of a strategy is the
percentage decrease achieved in the reproduction number
per percentage of the population vaccinated. It is im-
portant to note that since vaccination is modelled as a
stochastic process, both Rv and V , and hence the effi-
ciency, will vary across different realizations of the vacci-
nation process.

The baseline strategy against which we compare pri-
oritisation strategies is the uniform strategy, under which
vaccines are distributed uniformly across the population
to achieve a target vaccine coverage without taking into
account any form of contact heterogeneity. The efficiency
of the uniform strategy equals 1 since the expected repro-
duction number decreases linearly with the vaccine cov-
erage from its original value. Strategies for which the ex-
pected efficiency is less than 1 are regarded as inefficient,
since the same number of vaccines could have achieved a
greater impact if they were allocated uniformly. On the
other hand, strategies with efficiency greater than 1 are
promising candidates for a significant impact. In the next
section we introduce our exposure prioritisation strategy
based on Bluetooth exposure notification apps whose ef-
ficiency is much greater than 1. We will refer to this
vaccination strategy as “hot-spotting”, in reference to a
fire-fighting practice that focuses on areas with intense
fires [31].
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Figure 1: The efficiency for the hot-spotting strategy for
R0 = 1.5 with various app usage rates are compared with the
uniform vaccination in relation to vaccine coverage. The dots
represent the mean efficiency obtained from 10,000 simula-
tions for each dot. The shaded regions show the intervals that
capture 90% of all simulation results. The dashed lines in the
bottom figures show the expected efficiency obtained from the
formula in Methods.

The Hot-spotting Strategy

Here we propose a “hot-spotting” vaccination strategy
that prioritises app-using individuals for vaccination ac-
cording to their total exposure time. The strategy oper-
ates without the central collection of any user data, as
the prioritisation of each user is decided locally by their
device.

The strategy depends on a parameter β encoding the
probability of success in a weighted coin-flip. Each user
performs a coin flip for each encounter stored in their en-
counter log over a fixed time period. Vaccines are priori-
tised to those who receive at least one success. Since the
probability of obtaining at least one success on n weighted
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Figure 2: The post-vaccination reproduction numbers for
the hot-spotting strategy for R0 = 1.5 with various app usage
rates are compared with the uniform vaccination in relation
to vaccine coverage. The dots represent the mean efficiency
obtained from 10,000 simulations for each dot. The shaded
regions show the intervals that capture 90% of all simulation
results. The dashed lines in the bottom figures show the ex-
pected post-vaccination reproduction numbers obtained from
the formula in Methods.

coin flips is 1 − (1 − β)n, we see that users with a greater
total exposure time have a greater probability of being
prioritised for vaccination. Note that the extent to which
high total exposure time individuals are prioritised can
be increased by requiring a greater number of successes.

We simulate this strategy on a simulated network de-
rived from a diary-based population contact survey (see
Methods) [30]. In our model, individuals using the app
form a subnetwork of the weighted network describing
the population’s contact patterns. The number of entries
in a user’s encounter log is their weighted degree in the
app-user subnetwork. The results of the prioritisation
strategy depend on the rate of app usage in the popula-
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tion, denoted U . In particular, the vaccine coverage V
(proportion of individuals vaccinated) is bounded by the
usage rate U .

In Figure 1 we show the simulation results for the effi-
ciency as a function of vaccine coverage assuming a basic
reproduction number of R0 = 1.5. The choice of basic re-
production number has little impact on the efficiency, as
we show in the Supplementary Information by consider-
ing R0 = 2.2 as well. For very low vaccine coverage the
expected efficiency is near 4 for all U values, in agree-
ment with our theoretically derived value of 3.8. There
is also a large variance in efficiencies due to small num-
ber statistics. As one expects from a strategy prioritising
high exposure individuals, the efficiency decreases as vac-
cine coverage increases. This is because high exposure
individuals are likely to be vaccinated first. Nonetheless,
across the full range of vaccine coverage rates our pro-
posed strategy is one to four times more efficient than
the uniform vaccination strategy.

We observe that the expected efficiency curves for dif-
fering usage rates are simply the same curve rescaled.
This implies that the important quantity to consider for
assessing the efficiency is not the overall vaccine cover-
age V but rather the fraction of the app-using population
which are vaccinated.

Figure 2 shows the simulation results for the post-
vaccination reproduction number, assuming again an ini-
tial R0 = 1.5. The convexity of the curves is a witness to
the superior efficiency of our proposed strategy. We see
that as the fraction of the app-using population which
are vaccinated increases the slope decreases, in alignment
with the decreasing efficiency. The greatest relative im-
pact is achieved by vaccinating 20-40% of the app users.

Finally, when app usage rates are high enough, hot-
spotting achieves herd immunity with fewer than half as
many doses. In Figure 3 we show that the significantly
lower herd immunity thresholds persist across a range of
R0 values, and applies even when only 40% of the popu-
lation uses the app.

Concluding Remarks

Implementing our proposal in practice is surprisingly easy
on the technical front, although it requires the participa-
tion of key players. The exposure prioritisation scheme it-
self is straightforward and requires no modifications of the
core Bluetooth exposure notification framework. Since
the Google/Apple system is implemented at the operating
system level it is Google and Apple who must incorporate
this new functionality. Public health authorities who wish
to use hot-spotting must also ensure that their vaccine al-
location systems are coordinated with the functionality of
the app. Our proposal is, moreover, not strictly limited to

10% 20% 30% 40% 50% 60%5% 15% 25% 35% 45% 55%
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Figure 3: The necessary vaccine coverage to bring the re-
production number from its initial value R0 = 1.5 (black) or
R0 = 2.2 (red) to the herd immunity threshold Rv

= 1 is
demonstrated for the uniform and hot-spotting strategy for
various app usage rates. The dots represent the mean value
from our simulations, whereas the intervals show the range
that captures 1σ (68.27%) of all simulation results.

If R0 = 2.2 and U = 40%, vaccinating only the app users would
not be enough to reach herd immunity.

digital contact tracing solutions based on Bluetooth. The
hot-spotting strategy can be added on to any technology
which creates an encounter log for each user.

As for any vaccine prioritisation strategy, hot-spotting
comes with ethical concerns, including questions of access,
equity, and vaccine program objectives. In addition, if
not carefully integrated as part of a holistic approach to
public health measures, a naive implementation of this
approach could lead to perverse incentives for people to
increase their exposure or circumvent the system. We
are proposing hot-spotting as part of a broader approach
that addresses equity and is implemented in a way that
pre-empts harmful behavioural responses [40].

An important limitation of our approach is the un-
derlying data used to construct the model network, which
was collected before the pandemic [30]. Moreover, in both
our theoretical work and our simulations we have assumed
that there is no distinction between a potentially infec-
tious contact and the contacts detected by Bluetooth ex-
posure notification apps. Finally, our modelling does not
predict the time evolution of the epidemic in response to
vaccination.

These simplifying assumptions could be relaxed in fu-
ture work with more detailed agent-based simulations that
test the generality of the new theory we have introduced.
However, we note that a diverse collection of previous lit-
erature already finds that prioritising individuals based
on their number of contacts can be highly effective [35,
19, 16, 14]. We have built upon this literature by (1)
proposing a measure Ev of the relative efficiency of differ-
ent strategies, (2) showing that existing COVID-19 digital
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contact tracing technology allows the measurement of epi-
demiologically important quantities without violating pri-
vacy, (3) proposing a new vaccination strategy based on
these measures that is technically feasible to implement,
and (4) introducing novel analytical techniques and simu-
lations that (5) demonstrate how hot-spotting is dramati-
cally more efficient than uniform allocation. We conclude
that hot-spotting could enable public health authorities
to greatly reduce the social and economic costs of COVID-
19 until vaccine supply catches up with demand.
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Methods

We model the spread of infectious disease in a popula-
tion as a percolation process on the network of contacts.
Each vertex in this network represents an individual per-
son and each edge links two people who come into contact.
Our particular approach is a generalization of Newman’s
probability generating function framework [33] to weighted
networks.

Percolation Theory

The key mathematical object in the original formalism is
the probability generating function of the degree1 distri-
bution,

G0(x) =
∞
∑
k=0

pkx
k ,

where pk is the fraction of vertices in the network hav-
ing degree k. This function is useful for writing analytic
expressions for moments of the distribution; for example,
the average degree is given by µ = G′0(1).

An infectious disease spreads in the network through
occupied edges. In the original model, each edge has a
uniform probability T for being occupied. The basic re-
production number2 R0 corresponds to the expected num-
ber of other occupied edges attached to a vertex at the end
of a random occupied edge. This number is given by

R0 = T
G′′0(1)
G′0(1)

.

In terms of the mean µ and the standard deviation σ of
the degree distribution, this equation is equivalent to

R0 = T [µ(1 + σ
2

µ2
) − 1] .

Weighted Percolation

In order to model vaccine prioritisation strategies based
on exposure notification apps it is necessary to incorpo-
rate contact duration into the percolation model. To do
this we consider the contact network to be weighted: each
edge is further equipped with a weight w. The transmis-
sion probability along an edge for the percolation process
is assumed to depend on that edge’s weight, so that the
single parameter T is replaced with a distinct Tw for each
weight w.

For our purposes in this paper the weight represents
the number of time-steps over which the contact took

1The degree of a vertex is the number of edges attached to it.
2In heterogeneous populations, R0 is defined as “the expected

number of secondary cases produced, in a completely susceptible
population, by a typical infected individual during its entire period
of infectiousness” [15].

place. However, the weights could represent any factor
which influences the transmission probability along an
edge, such as the nature of the contact, the setting, or
the presence or absence of PPE. Unless stated otherwise,
our analytical results hold for this general interpretation
of weights. Given that this is quite a flexible formalism
it can be applied to a broad range of modelling tasks.

For weights representing contact duration there is a
natural candidate for the transmission probabilities Tw.
If one assumes that in each time-step there is an inde-
pendent probability T1 of transmission, the transmission
probability after w time-steps is

Tw = 1 − (1 − T1)w .

Once again, Tw is the probability for a weight-w edge
to be occupied. The infection spreads through occupied
edges.

In a weighted network we represent the configuration
of edges around each vertex by a generalized degree, de-
noted k. This is a vector having an entry for each of the
possible weights appearing in the network. For a vertex of
generalized degree k, the entry corresponding to weight
w, denoted kw, is the number of contacts having weight w.
There are two important quantities we can extract from
k: First, the degree of a vertex, that is, the number of
distinct contacts, is simply ∑w kw. Second, the weighted
degree of a vertex, that is, the sum of the weights on each
edge, is ∑w wkw. When w represents contact duration,
the weighted degree is the total exposure time of that
individual to others.

To generalize Newman’s results to the weighted set-
ting we introduce a multivariable generating function for
the distribution of generalized degrees. There is one vari-
able yw for each weight w appearing in the network, and
we write y for the vector of these variables. Let qk denote
the fraction of vertices in the network having generalized
degree k. Then the multivariable generating function of
the network is

Q(y) = ∑
k

qky
k , yk =∏

w

ykw
w .

The generating function G0(x) for the degree distri-
bution in a weighted network is related to this function
by G0(x) = Q(1x), where 1 is a vector with each entry
being 1.

In order to derive the basic reproduction number, we
need the distribution of occupied degree, i.e., the number
of occupied edges attached to a vertex. This distribution
is given by

G0(x;T ) = Q(1 − T + Tx) ,

where T is the vector composed of the transmission prob-
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abilities Tw. Furthermore, we introduce

G1(x;T ) = G
′
0(x;T )

G′0(1;T )

as the probability distribution of the number of other oc-
cupied edges attached to a vertex reached by following a
random occupied edge (cf. [33]). By definition, the ba-
sic reproduction number R0 is precisely the mean of this
final distribution, i.e. R0 = G′1(1;T ).

One can express R0 directly in terms of the generating
function Q(y). This is accomplished by introducing the
differential operator ∇T , defined as

∇TQ(y) = ∑
w

Tw
∂Q(y)
∂yw

.

Then, we find

R0 =
∇2

TQ(1)
∇TQ(1) .

Alternatively, this result can be rewritten in a form
which is more amenable to computation,

R0 =
Av [(∑i Tw(i))

2] −Av [∑i T
2
w(i)]

Av [∑i Tw(i)]
.

In this equation, the sums ∑i are taken over the contacts
of each vertex, with w(i) being the weight of that contact,
and the averages Av [⋯] are taken over all vertices in the
network. Note that this formula holds regardless of the
interpretation of the weights as contact duration.

Total Exposure Time

Let us now focus on the case when the weights represent
contact duration and Tw = 1 − (1 − T1)w. In this case,
the weighted degree of a vertex is the total exposure time
of that individual to others, measured in discrete time
steps. To better understand the impact of the total ex-
posure time on the reproduction number, consider the
approximation Tw ≈ wT1, which is valid when wT1 << 1
for all w. Under this approximation, we find the heuristic
formula

R0 ≈ T1
⎡⎢⎢⎢⎣
µ̂(1 + σ̂

2

µ̂2
) −

Av [∑iw(i)2]
µ̂

⎤⎥⎥⎥⎦
.

Here, µ̂ and σ̂ are the mean and the standard deviation
of the total exposure time. Our model therefore predicts
that the total exposure time has a direct influence on the
spread of disease.

Vaccination on Contact Networks

We model vaccination as a stochastic process wherein a
vertex of generalized degree k has a probability v(k) of

being vaccinated. Vaccination modifies the original con-
tact network by removing vaccinated vertices, as we as-
sume that a vaccinated individual can neither become
infected nor infect others.

We introduce the post-vaccination reproduction num-
ber Rv as the reproduction number in the non-vaccinated
sub-population after a vaccination process. Since vacci-
nation is modelled as a stochastic process, Rv is a random
variable.

The formulas for the basic reproduction number R0

can be adapted to give the expected post-vaccination re-
production number. This adaptation requires two changes:
Firstly, some vertices are removed themselves. Each ver-
tex of generalized degree k has a probability (1 − v(k)) of
remaining in the residual network. Secondly, some con-
tacts of the remaining vertices are removed. A weight-w
contact has the probability

ϕw = 1 − Av [kwv(k)]
Av [kw]

of remaining non-vaccinated. Hence, the expected post-
vaccination reproduction rate is given by

E [Rv] =
Av [(1 − v(k)) ((∑i T̃w(i))

2 −∑i T̃
2
w(i))]

Av [(1 − v(k))∑i T̃w(i)]
,

where T̃w = Twϕw, and the averages Av [⋯] on the right-
hand side run through all vertices in the network.

Efficiency of Vaccine Prioritisation

In general, one expects that prioritising the vaccination
of individuals with greater exposure to others achieves a
greater reduction in Rv than vaccinating the same num-
ber of less-connected individuals. This translates to slow-
ing the infection more effectively and a reduction in the
number of infections. Vaccine prioritisation becomes par-
ticularly important when only a small supply of vaccines
is available. In that situation, adopting a strategy that
prioritises highly connected individuals for vaccination
can save the lives of more people.

To compare different prioritisation strategies we are
concerned with not only how much they reduce the spread
of disease, but also how many vaccines it takes for that
outcome. To that end, we introduce a novel measure of
prioritisation efficiency,

Ev = 1 −Rv/R0

V
,

where V is the fraction of the population which receives
the vaccine.

In a stochastic process of vaccination, V , Rv and Ev

are all random variables. In particular, the vaccine cov-
erage rate V has the expected value E [V ] = Av [v(k)]
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and the variance Var[V ] = 1
N

Av [v(k) (1 − v(k))], where
N is the size of the population. Therefore, for computing
the expectation value of the efficiency Ev in a large pop-
ulation, we may neglect the variance in V and treat it as
a fixed number at its mean value. Hence, we can write

E [Ev] = 1 − E [Rv] /R0

E [V ] .

For a uniform vaccination probability v without any
prioritisation, one would have E [Rv] = (1 − v)R0 and
E [Ev] = 1. Through a realistic vaccine prioritisation
strategy, it is possible to achieve a significantly higher
efficiency, while the exact numbers depend on the under-
lying network.

The Hot-spotting Strategy

We propose a hot-spotting strategy that can be imple-
mented simply on the existing Bluetooth based exposure
notification apps. This strategy is based on a Bernoulli
process for each exposure registered in the app with a
chance of β for success. The app users with at least one
success are given the priority for vaccination. Hence, if
an app user has a total exposure number n in the app,
they will have a chance of 1 − (1 − β)n for being selected
for prioritised vaccination in this strategy.

In order to estimate the impact and efficiency of our
hot-spotting strategy on the whole population, we must
take into account that not every person in the population
uses the app in question. To this end, we assume that
there is an app usage rate of U and that the app users
are homogeneously distributed in the population. We also
assume that there is no preferential attachment between
app users. Then, for a random individual with the contact
structure k, which is not necessarily registered in the app
network, the probability for them being an app user and
also being selected for prioritised vaccination is given by

v(k;β,U) = U (1 −∏
w

γkw
w ) ,

where
γw = 1 −U +U (1 − β)w .

Model Network

The well-known POLYMOD study surveyed over 7000 in-
dividuals across 8 European countries [30]. Respondents
kept a log of all contacts made on a single day noting,
among other features, how long the contact lasted and
how frequently that contact is made. In the language of
time-weighted networks, the inclusion of duration data
means that the survey responses sample from the gener-
alized degree distribution of the daily contact network.

To model COVID-19, the network should capture the
contacts made over the typical infectious period of the
disease. This varies significantly between patients, with
one study estimating a median of 8 days after the onset
of symptoms [42]. For simplicity we choose a period of
14 days, as it aligns well with the frequency responses in
the survey.

Using the daily contact data we must generate samples
from the generalized degree distribution of the fortnightly
contact network. We accomplish this by a bootstrapping
technique. More precisely, for each contact recorded, re-
spondents chose between 5 options concerning both the
duration and the frequency of that contact as shown in
Table 2. We can therefore represent each respondent’s
contacts on that day in a 5 × 5 matrix whose (i, j) entry
is the number of contacts recorded with frequency key
i and duration key j. For respondent n we denote this
matrix by Dn.

Keys Frequency Duration
(1) daily < 5 mins
(2) 1 − 2 times per week 5 − 15 mins
(3) 1 − 2 times per month 15 − 60 mins
(4) less than once a month 1 − 4 hrs
(5) first time > 4 hrs

Table 2: Possible responses on POLYMOD survey concern-
ing frequency and duration of contact.

Our goal is to extrapolate fortnightly contact matri-
ces Fn from the daily contact matrices Dn. In our boot-
strapping procedure, it is important that we distinguish
between daily repeating contacts, which have frequency
key (1), and infrequent contacts, which have frequency
keys (2)-(5). We denote by In the matrix of infrequent
contacts for respondent n. The matrix In is obtained
from the same respondent’s Dn by setting the first row of
daily repeating contacts to 0.

The matrices Fn are created by sampling from the
daily contact matrices. Each sample is generated as fol-
lows:

1. Sample 14 respondents, n1, . . . , n14.

2. Set F ′n =Dn1 + In2 + . . . + In14 .

3. Produce Fn from F ′n by dividing each entry in the
second row by 3 and rounding it to the nearest in-
teger.

In words, we sample 14 daily contact logs from the sur-
vey. Then, we add together the 1-day duration-frequency
matrices for each of the samples, excluding the daily re-
peating contacts from all but the first sample. Then, as-
suming that a frequency-key-(2) contact is seen 3 times in
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a fortnight, we divide the second row by three to account
for repeated counting of the same contact.

Finally, we assign to each type of contact in the matrix
Fn a certain weight. Each unit of weight is approximately
10 minutes of contact time, which corresponds to the to-
ken exchange rate of the exposure notification apps. We
chose these weights to be given as in the following weight
matrix:

W =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 12 36 120 480
0 3 9 30 120
0 1 3 10 40
0 1 3 10 40
0 1 3 10 40

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Hence, we obtain a list of generalized degrees sampled
from a virtual weighted contact network, in which the set
of possible weights is {1,3,9,10,12,30,36,40,120,480}.

Simulation

The simulations presented in the main text are based
on 500 samples of fortnightly generalized degree distri-
butions generated through the bootstrapping procedure
described above. We interpret these 500 samples as an
observed cohort of 500 individuals within a much larger
population. As such, the recorded contacts are assumed
to lie outside the observed cohort.

For the chosen data of 500 samples, we fix the unit
transmission probability at T1 = 0.000375 to get the ba-
sic reproduction number R0 = 1.501. We select a set
of parameters β for the vaccination probability function
v(k;β,U) of the hot-spotting strategy (and a set of pa-
rameters v for the uniform strategy) to target a homoge-
neous distribution of the vaccinate rate V in the outcome
over its range of possible values. 10,000 simulations are
performed for each selected parameter. This accounts
to a total of 990,000 simulations for the strategies with
U = 100%. For the strategies with U = 20%, 40%, and
60%, we ran a total of 190,000, 390,000, and 590,000 sim-
ulations, respectively.

Each simulation consists of four steps:

1. The vaccination probabilities v(k;β,U) for each in-
dividual, and the probabilities ϕw for each weight
are calculated for the given parameters.

2. For each component kw of the generalized degree
of each individual, a binomial process is performed
with the probability ϕw. The outcome of this pro-
cess replaces kw as the residual contact number.

3. For each individual, a Bernoulli trial is performed
with the probability v(k;β,U). If the outcome is a
success, the individual is removed from the list with
all their contacts, otherwise they remain.

4. The base reproduction number is computed in the
residual list and saved as the post-vaccination re-
production number Rv. The vaccine coverage V is
deduced from the length of the residual list. The
efficiency Ev is calculated from Rv and V .
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Figure 4: The efficiency for the hot-spotting strategy for
R0 = 2.2 with various app usage rates are compared with the
uniform vaccination in relation to vaccine coverage. The dots
represent the mean efficiency obtained from 10,000 simula-
tions for each dot. The shaded regions show the intervals that
capture 90% of all simulation results. The dashed lines in the
bottom figures show the expected efficiency obtained from the
formula in Methods.
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Figure 5: The post-vaccination reproduction numbers for
the hot-spotting strategy for R0 = 2.2 with various app usage
rates are compared with the uniform vaccination in relation
to vaccine coverage. The dots represent the mean efficiency
obtained from 10,000 simulations for each dot. The shaded
regions show the intervals that capture 90% of all simulation
results. The dashed lines in the bottom figures show the ex-
pected post-vaccination reproduction numbers obtained from
the formula in Methods.
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