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Abstract 20 

Renal transplantation is the method of choice for patients with end stage kidney failure. But 21 
transplanted allograft could be affected by viral and bacterial infections and immune rejections. 22 
The standard test for the diagnosis of acute pathologies in kidney transplants is the renal biopsy. 23 
However, noninvasive tests would be desirable. Various methods using different techniques have 24 
been developed by the transplantation community. But these methods expect improvements. We 25 
present here a cost-effective method based on estimating donor-specific DNA fraction in recipient 26 
urine based on sequencing of recipient urine DNA only. We hypothesized that in the no-pathology 27 
stage, the largest tissue types present in recipient urine are donor kidney cells and in case of 28 
rejection, a larger number of recipient immune cells would be observed. Extensive in-silico 29 
simulation was used to tune the sequencing parameters: number of variants and depth of coverage. 30 
Sequencing of DNA mixture from 2 healthy individuals showed the method high prediction 31 
accuracy (maximum error < 0.04). We then demonstrated the insignificant impact of familial 32 
relationship and ethnicity using an in-house and public database. Lastly, we performed recipient 33 
deep urine DNA sequencing in 32 samples representing two pathology groups: acute rejection 34 
(AR, 12 samples) and acute tubular injury (ATI, 11 samples) and 9 samples with no pathology. 35 
We found a significant association between the donor-specific DNA fraction in the two pathology 36 
groups compared to no pathology (P = 0.0064 for AR and P = 0.026 for ATI). We conclude that 37 
deep DNA sequencing of recipient urine offers a noninvasive means of diagnosing and 38 
prognosticating acute pathologies in the human kidney allograft. 39 

  40 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted December 14, 2020. ; https://doi.org/10.1101/2020.12.13.20248118doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.13.20248118


 

3 
 

Introduction 41 

In 1933 surgeon Yurii Voronoy from Ukraine achieved the first human kidney transplantation [1]. 42 

Kidney transplantation is the final treatment option for patients with end-stage renal failure after 43 

dialysis. Today, renal transplantation plays an important role in clinical medicine and has become 44 

a relatively safe intervention. However, various pathologies can still affect the transplanted organ, 45 

including infections, disease recurrence and immune rejections. These rejections can be related to 46 

a range of donor- and recipient-specific factor risks [2,3]. Acute renal rejection affects 10 to 20% 47 

of transplants within three months after transplantation and chronic rejections occur in 4% of 48 

kidney transplants [3–5]. 49 

To diagnose allograft rejection, tissue biopsies are considered as the gold-standard method for 50 

detecting acute and chronic immune injury, as well as other pathologies associated that may 51 

eventually lead to allograft loss. However, biopsies are invasive, costly, in rare cases they can lead 52 

to organ loss, while the readout can potentially be erroneous if a non-affected part of the kidney is 53 

sampled by chance. Therefore, proceeding with biopsies in patients of low immunological risk is 54 

sometimes criticized [6]. There is hence a strong need for non-invasive assays to detect injury in 55 

transplanted kidneys. Several studies to develop suitable biomarkers for allograft rejection have 56 

been conducted. These studies include the quantification of specific messenger RNAs in urine [7], 57 

large-scale transcriptomics analyses of peripheral blood [8], proteomics analyses of biopsies [9] 58 

and urine [10,11], and metabolomics [12] and RNA sequencing [13] of urine pellet or supernatant. 59 

Nevertheless, all non-invasive methods developed to date still have important caveats and require 60 

further improvement. 61 

The presence of donor-specific DNA in blood was first reported in women who had a kidney and 62 

a liver transplant [14]. The measurement of cell-free donor-specific DNA in blood for a differential 63 

diagnosis of kidney injury has been suggested recently [15–17]. These studies focused on females 64 

who received a kidney from male donors by identifying the presence of DNA coding for the testis 65 

specific protein Y- linked 1 (TSPY1) or the sex-determining region of the Y chromosome using 66 

quantitative polymerase chain reaction. With the improvement of next generation sequencing 67 

technologies, whole genome sequencing (WGS) [18,19] and targeted sequencing [20] were used 68 

for measuring donor-specific DNA for solid organ transplant rejection. However, these studies 69 

focused on heart transplants and measured cell-free donor-specific DNA in blood plasma. More 70 
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importantly, these methods require the sequencing of both donor and receptor DNA which is more 71 

costly. 72 

An algorithm for measuring donor-specific DNA in plasma of organ transplants without requiring 73 

donor or recipient genotyping was implemented by Gordon et al [21]. But this algorithm made the 74 

assumption that donor fraction is < 14%. More recently, Grskovic et al. used sequencing of 266 75 

single nucleotide variants (SNVs) that discriminate best between two unrelated individuals to 76 

count reference and alternative allele frequency for estimating the donor-derived cell-free DNA 77 

fraction [22]. This method showed a high correlation between cell-free donor specific DNA levels 78 

in recipient blood and active rejection of the kidney allografts [23]. However, this method does 79 

not account for potential sequencing errors and requires a priori knowledge of the familial 80 

relationship between donor and recipient. Finally, a statistical method combining SNV array 81 

genotyping of donor and recipient before transplantation with recipient DNA sequencing was used 82 

to estimate recipient-derived DNA fraction in heart and lung transplants [24]. Nonetheless, this 83 

method requires SNV genotyping of donor and recipient DNA before transplantation. Most 84 

importantly, all of the previous study focused on DNA extract from blood. 85 

The presence of donor-specific DNA in urine of kidney allograft recipients has been reported [25]. 86 

We have recently conducted a study based on RNA sequencing of tissue biopsies from kidney 87 

allograft transplants and found a correlation between the ratio of heterozygous to homozygous 88 

SNVs with the rejection phenotype [26].  Moreover, we have shown in another study that DNA 89 

methylation could be used to accurately estimate the tissue type composition in recipient urine 90 

samples. We found that the largest tissue types present in recipient urine were kidney cells and 91 

neutrophils and that donor-specific DNA fraction correlates with the kidney derived cell fraction 92 

[27]. However, we restricted the analysis on kidney recipients with urinary tract infection and BK-93 

virus nephropathy only. Most recently, we have identified different gene signatures and pathways 94 

associated with two different type of kidney rejection using RNA-seq on transplant urine: acute T 95 

cell–mediated rejection and antibody-mediated rejection [13]. Deconvolution analysis showed a 96 

higher enrichment of immune cells in rejection stage comparing to no-rejection.  97 

Based on the idea that the fraction of donor-specific DNA can be determined using DNA 98 

sequencing, we here hypothesize that the recipient-specific DNA fraction in urine correlates with 99 

the level of active rejection in the kidney allograft, assuming that recipient-specific DNA 100 

originates mostly from tissue-invading immune cells while donor-specific DNA stems from the 101 
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allograft [28]. Inspired by methods to estimate DNA contamination in sequencing projects [29,30], 102 

we present a cost-effective method to determine the fraction of donor-specific DNA (denoted α 103 

hereafter) in urine by sequencing targeted regions. We estimate the dependence of the precision of 104 

this measure on sequencing depth and length of the targeted region. Most importantly, no prior 105 

knowledge of donor and recipient relation is required. To the best of our knowledge, this is the 106 

first method for estimating donor-specific DNA fraction in DNA mixture extracted from recipient 107 

urine. Our method provides an easy way to determine the donor-specific DNA fraction regardless 108 

of donor and recipient gender. We evaluate its applicability for the detection of kidney transplant 109 

rejection. Future applications could be routine tests of urine samples as a reference to adjust and 110 

optimize the dosage of immune suppressants in kidney transplant patients. 111 

Results 112 

In silico simulation of donor-recipient DNA mixtures 113 

To determine the optimal sequencing parameters, we use numerical simulations. The simulation 114 

process is based on generating two different SNV-sets, merge the two sets with a predefined 115 

proportion of each set; α from set 1 and (1-α) from set 2, and then apply a likelihood function 116 

(Methods) to estimate this proportion (observed α). Two major parameters affect the estimation of 117 

the observed α: the number of sequenced SNVs (N) and the depth of sequencing coverage (M). 118 

For a range of parameters N={10, 50, 100, 500, 1,000} and M={10, 50, 100, 500, 1,000, 5,000, 119 

10,000} and varying α from 0 to 0.5 in steps of 0.01, we repeated the simulation process for each 120 

N x M x α combination 1,000 times to obtain an empirical distribution of observed α (Fig S1). 121 

We computed the maximum error (ε) for each combination N x M over all tested α. ε ranges 122 

between 0 (best case where observed α = tested α) and 0.5 (worst case where tested α = 0.5 and 123 

observed α = 0 or tested α = 0 and observed α = 0.5) (Fig 1). As expected, our simulations show 124 

that increasing both N and M improves the observed α estimation accuracy. Moreover, the 125 

estimation of the observed α is unstable when using a small number of SNVs (N < 100) or low 126 

coverage (M < 500). The prediction accuracy stabilizes above N > 500 and M >1,000. 127 
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128 
Fig 1. Maximum error for detecting the DNA fraction α in a simulated DNA sequencing 129 
experiment varying sequencing depth and number of SNVs. Maximum absolute (A) and 130 
relative (B) errors are represented. A total of 35 scenarios combining five different numbers of 131 
SNVs N= {10, 50, 100, 500, 1,000} and seven depth of coverage M= {10, 50, 100, 500, 1,000, 132 
5,000, 10,000} were simulated (Fig S1). Represented here are maximum error observed in 1,000 133 
simulations for every tested α ranging from 0 to 0.5 in steps of 0.01. 134 
 135 

Experimental estimation of α using a controlled mixture of urine from two individuals 136 

To assess the accuracy of detecting observed α in a mixture of two real human urine samples, we 137 

performed a targeted sequencing of urine DNA from two healthy individuals originated from 138 

different populations; S1 a 35 years old healthy European woman and S2 a 34 years old healthy 139 

Arab woman. A total of 1,850 exonic regions from a panel targeting 93 genes known to be 140 

associated with risk of breast cancer were sequenced. These sequenced genomic regions cover 141 

370,942 base pairs across 22 chromosomes (Table S1). A total of 51,893 bi-allelic SNVs falling 142 

in these genomic regions were present in the Exome Aggregation Consortium (ExAC)  [31]. As 143 

the method works on bi-allelic SNV with different genotypes between donor and recipient, we 144 

computed for each SNV the probability of having different genotypes for two individuals (Table 145 

S1). Only 437 SNVs have a probability of having different genotypes for two individuals higher 146 

than 10%. 147 
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As a measure of quality control, we first checked the balance of reference and alternative alleles 148 

in heterozygous calls. The alternative allele frequency is expected to be around 50% in 149 

heterozygous genotypes. However, we observed the presence of SNVs with skewed alternative 150 

allele frequencies (Fig S2). We noticed the recurrence of such unbalance in every replicate of both 151 

samples (Fig S3 for examples). We investigated whether the amplification-based strategies for 152 

DNA target enrichment affect the allele dropout causing the skewed alternative allele distribution. 153 

We found that the SNVs with a skewed distribution all fall into the primer sequence regions. We 154 

therefore filtered out SNVs falling into these regions and kept the 1,000 most common SNVs in 155 

the general population. These 1,000 SNVs will be used as a SNVs panel for detecting DNA fraction 156 

in a combination of two DNA sources (observed α) in the rest of the study. The alternative allele 157 

frequency was balanced in these 1,000 SNVs (Fig S4). Moreover, the maximum error of estimating 158 

the observed α based on these 1,000 SNVs in all replicates was < 0.0034 (mean error = 0.0028 ± 159 

0.00037).  160 

We then mixed 90 % DNA from S1 and 10% DNA from S2 in three replicates. For each replicate, 161 

targeted DNA sequencing was performed and the observed α was estimated. The preparation of 162 

the mixture was based on total DNA content in the samples. However, the presence of bacterial 163 

DNA in urine samples can strongly skew the estimation of human DNA concentration 164 

measurement [32]. We assessed the actual DNA concentration of S1 and S2 in urine by considering 165 

the mean observed α over the three replicates to 0.053. This indicates that S1 DNA concentration 166 

is ~19 times lower than S2 DNA concentration. Considering the estimated S1 and S2 DNA 167 

concentration, the maximum error of the observed α was < 3.5% in the three replicates (Fig 2). 168 

We extended the analysis to two levels of DNA mixture scenarios: (i) 70% DNA from S1 and 30% 169 

DNA from S2, (ii) 50% DNA from S1 and 50% DNA from S2. Each scenario was replicated three 170 

times and targeted DNA sequencing was performed for each replicate. The observed α was similar 171 

in the three replicates of all three scenarios (scenario i: mean observed α = 0.11 ± 0.036, scenario 172 

ii: mean observed α = 0.032 ± 0.00048). Considering the estimated S1 and S2 DNA concentration, 173 

the maximum error of the observed α was < 3.8% in all replicates of both scenarios (0.037 in 174 

scenario (i) and 0.018 in scenario (ii)) (Fig 2). 175 

 176 
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 177 
Fig 2. Estimation of DNA fraction (Alpha) in a combination of two healthy DNA sources. 178 

Five scenarios of DNA mixtures and three replicates for each scenario were performed. From left 179 

to right: 100% from individual S1 and 0 % from individual S2, 0% from individual S1 and 100% 180 

from individual 2, 50% from individual 1 and 50% from individual 2, 70% from individual S1 and 181 

30% from individual S2, 90% from individual S1 and 10% from individual S2. The estimated 182 

fractions (estimated α) are represented by black dots. The expected fractions when DNA 183 

concentration in individual Sl was 19 times lower than DNA concentration in individual S2 are 184 

represented by red dots. The expected fractions before correction for DNA concentration are 185 

represented by blue dots. 186 

Simulation of the effect of family relationship and ethnicity on the estimation of α 187 

The most challenging scenario is that of one sibling donating a kidney to another, as they share 188 

50% of their genome. The extreme case of mono-zygotic twins, where both genomes are identical, 189 

can of course not be addressed with our method. To numerically explore this "worst case" scenario, 190 

we used whole genome sequencing data from 91 siblings [33] and then generated 100 191 

combinations of every two siblings. Self-reported relationship was confirmed using identity by 192 

state (Fig S5). For each pair of siblings, we simulated donor and recipient DNA sequences by 193 
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varying α from 0 to 0.5 in steps of 0.01 and resampling the mean coverage at 5,000 reads. The 194 

maximum absolute error was observed when the expected α = 0.07: observed α = 0.034 (Fig 3). 195 

 196 

Simulation of the effect of population origin on the estimation of α 197 

As per comparison to siblings, we assessed the effect of donor and recipient ethnicity on our 198 

method. We applied our method on simulated pairs of individuals belonging to the same and to 199 

different populations of the 1,000 genomes project [34]: Africans, Americans, east Asians, 200 

Europeans and south Asians. The absolute error was < 0.04 in all scenarios (Fig 3). As expected, 201 

the absolute error was lower when the two DNA sources belong to different populations (mean 202 

maximum absolute error = 0.018 ± 0.005) than when they belong to the same population (mean 203 

maximum absolute error = 0.022 ± 0.007). Additionally, the maximum relative error was 204 

comparable in all scenarios together (mean maximum relative error = 0.836 ± 0.137) compared to 205 

when the two DNA sources belong to the same (mean maximum relative error = 0.764 ± 0.207) or 206 

different populations (mean maximum relative error = 0.856 ± 0.077). These results confirm the 207 

power of the method for detecting the DNA fraction in a combination of two DNA sources 208 

independently of the familial relationship or their ethnicity. 209 

 210 
Fig 3. Effect on family relationship and ethnicity on detecting DNA fraction in a combination 211 
of two DNA sources. Each dot represents in A) the maximum absolute error and in B) the 212 
maximum relative error for each expected (α) from 0 to 0.5 in steps of 0.01 over 100 pairs of 213 
siblings (red), 100 pairs of individuals belonging to the same population (green) and 100 pairs of 214 
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individuals belonging to different populations (blue). Afr = Africans. Amr = Americans. Eas = 215 
East Asians. Eur = Europeans. Sas = South Asians. 216 
 217 

Application to urine samples from clinical kidney allograft patients 218 

To test our method in a real-case scenario, we used DNA extracted from 32 urine samples of 26 219 

kidney allograft recipients collected at the time a diagnostic biopsy was performed and divided the 220 

sample into three groups based on their Banff classification: “Acute Tubular Injury” (ATI, N = 221 

12), “Acute Rejection” (AR, N = 11) and “No Observed Pathology” (N = 9) (Table 1). DNA was 222 

extracted from urine and deep targeted sequencing was performed for the 32 samples. Reflecting 223 

the effect of depth of coverage on the accuracy of detecting observed α in simulated data, we set 224 

the mean depth of coverage to ~ 14,000 reads. After read alignment we applied our method to 225 

estimate the donor to total DNA fraction (Fig 4).  226 

The difference of observed α between the diagnosis phenotypes was statistically significant (P = 227 

0.035, Kruskal-Wallis test). We observed a significant difference when comparing the two 228 

transplant kidney pathologies ATI and AR to the No Pathology group (P = 0.0064 and P = 0.026, 229 

Dunn’s test for ATI vs no pathology and AR vs no pathology, respectively). However, no 230 

significant difference was observed in observed α when comparing the two pathologies ATI to AR 231 

(P = 0.31, Dunn’s test). 232 

 233 
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Table 1. Characteristics of Kidney Transplant Recipients     

Recipient Characteristics Patient Total  
(N=26) 

Patients  
with AR  
(N=8) 

Patients 
with ATI 
(N=10) 

Patients with  
No Pathology 

(N=8) 

Number of Biopsy Associated  
Urine Specimens 

32 12 11 9 

Age, years      
Mean (SD) 45.5 (14) 46.1 (19) 43.8 (14) 47.1 (8) 
Median 43 43 40 49 
Min, Max 25, 80 25, 80 29, 74 34, 59 

       
Gender, N (%)      

Male 40 (100%) 40 (100%) 40 (100%) 40 (100%) 
       
Race, N (%)      

White 8 (31%) 3 (38%) 3 (30%) 2 (25%) 
Black 11 (42%) 4 (50%) 3 (30%) 4 (50%) 
Hispanic 3 (11%) 1 (12%) 0 (0%) 2 (25%) 
Asian 2 (8%) 0 (0%) 2 (20%) 0(0%) 
Mixed 2 (8%) 0 (0%) 2 (20%) 0 (0%) 

        
Cause of ESRD, N (%)      

Diabetes 4 (15%) 1 (13%) 1 (10%) 2 (25%) 
Hypertension 11 (42%) 3 (37%) 5 (50%) 3 (50%) 
Glomerulonephritis 6 (23%) 3 (37%) 1 (10%) 2 (25%) 
Polycystic Kidney Disease 3 (12%) 0 (0%) 2 (20%) 1 (11%) 
Other 2 (8%) 1 (13%) 1 (10%)  0 (0%) 
       

Prior Transplant History, N (%) 2 (8%) 1 (13%) 1 (10%) 0 (0%) 
       

Donor Source, N (%)      
Living  17 (65%) 4 (50%) 7 (70%) 6 (75%) 
Deceased 9 (35%) 4 (50%) 3 (30%) 2 (25%) 
       

Induction Therapy, N (%)       
Antithymocyte globulin 23 (88%) 5 (62%) 10 (100%) 8 (100%) 
IL-2 Receptor Antibody 3 (12%) 3 (38%) 0 (0%) 0 (0%) 

        
Steroid Maintenance Therapy, N (%) 10 (38%) 4 (50%) 2 (20%) 4 (50%) 
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 234 

 235 

 236 

Fig 4. Donor to total DNA fraction in 32 real kidney allograft recipient urines. Box plots and 237 
individual data points of the estimated fraction (observed α) are estimated from deep urine DNA 238 
targeted sequencing. AR: Acute Rejection. ATI: Acute Tubular Injury. A statistically difference 239 
was observed between all the diagnosis phenotypes (P = 0.035, Kruskal-Wallis test). By Dunn’s 240 
test, difference in observed α between the two pathologies and no pathology group was statistically 241 
significant: ATI vs no-pathology: P = 0.0064 and AR vs no-pathology: P = 0.026. Pathologies 242 
pairwise comparison was not statistically significant (P > .05). 243 
 244 

Inference of donor and recipient ethnic origin 245 

In the absence of donor and recipient genomes, it is impossible to determine whether the observed 246 

α represents the donor or the recipient fraction of the total DNA. However, in cases were recipient 247 

and donor gender or ethnicity differ, this issue can be addressed. The urine DNA sequencing we 248 

performed here did not target genomic regions of the Y chromosome. Thus, detecting recipient 249 

Post-Transplant Month, mean (SD) 8.26 (12.32) 9.79 (11.05) 1.56 (1.64) 15.10 (17.20) 
       
Biopsy Creatinine 3.1 (2.4) 2.9 (1.9) 4.4 (2.9) 1.6 (0.25) 
       
One Year Post Biopsy Creatinine 2.2 (1.7) 2.9 (2.9) 2.0 (0.6) 1.8 (0.7) 
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and donor gender cannot be carried out using the actual data, but could be easily amended in future 250 

sequencing panels. 251 

To predict donor and recipient ethnicity, an estimation of both recipient and donor 252 

genotypes is needed. For each of 1,000 SNVs, we computed the fraction of the alternative to total 253 

alleles. We then used the observed α to compute the nine expected fractions of the alternative allele 254 

(Table 2). We then used a cost function to estimate donor and recipient genotypes that minimizes 255 

the difference between the nine expected fractions and the observed fraction of the alternative to 256 

total alleles. Based on these estimated genotypes, we applied a supervised classification method to 257 

predict the recipient and the donor ethnicity as following: as donor-specific DNA fraction has been 258 

shown to be higher in the no-pathology group [28], we supposed the observed α to represent the 259 

donor-to-total DNA fraction and computed the probability of donor and recipient for belonging to 260 

one of the three populations: African, East Asian and European (see Methods). Both donor and 261 

recipient are assigned to the population showing the highest probability and then compared to the 262 

self-reported ethnicity. Seven recipients and eight donors were excluded from the prediction 263 

because they belong to a mixed self-reported population or the observed α was ~ 0 so the prediction 264 

of donor genotypes was impossible. The prediction was inconclusive (Probability of prediction < 265 

70%) for 5 recipients and 8 donors. In 16 over 20 recipients (80%) and 15 over 16 donors (94%), 266 

the probability of prediction was higher than 70%. However, only one AR sample and one ATI 267 

sample have donor and recipient ethnicity mismatch for whom the prediction was conclusive. In 268 

these two samples (European donor and African recipient for both samples), the prediction was in 269 

agreement with the self-reported ethnicity. Hence, due to the small number of self-reported 270 

ethnicity mismatches, it is impossible to confirm whether the observed α represents the donor or 271 

the recipient DNA fraction (as observed α < 0.5 by definition). 272 

 273 

Table 2. Expected fraction of the alternative to total alleles (reference + alternative) as a 274 
function of observed α. 275 

giR giD expi 
0 0 0 
0 1 α/2 
0 2 α 
1 0 1 − 𝛼

2%  
1 1 1/2 
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1 2 1 + 𝛼
2%  

2 0 1 - α 
2 1 2 − 𝛼

2%  
2 2 1 

 276 

Discussion 277 

Different omics technologies, including mRNA measurement by PCR [7], metabolomics [12] and 278 

RNA-sequencing [13] have been applied by our group and others to identify non-invasive 279 

biomarkers for kidney allograft rejection. Here, we present a new approach based on targeted deep- 280 

sequencing of DNA obtained from urine samples. We extended methods originally used for the 281 

assessment of DNA contamination to estimate the fraction of recipient DNA in a two-sources 282 

mixed DNA sample [29,30]. We used in silico simulations to obtain a suitable parameter range for 283 

the method to be sufficiently accurate in estimating the fraction of a two-sources DNA mixture. 284 

We then experimentally evaluated the accuracy of the estimation method using controlled mixtures 285 

of two DNA sources. Allele drop-out occurs in amplification-based target enrichment when a 286 

variant is located in a primer region and prevents primer hybridization, leading to failed 287 

amplification and allele bias [35]. Our method overcomes these unexpected artefacts due to DNA 288 

sequencing. Other algorithm for estimating the donor-specific DNA fraction requires the donor 289 

and recipient relationship information [22]. Here, we found that ethnicity and familial relationship 290 

between donor and recipient appear to have a lower impact as compared to previously presented 291 

methods 292 

We tested our method on clinical samples from patients with and without kidney rejection 293 

events. We compared the α value obtained from urine DNA sequencing reads of kidney allograft 294 

recipients with kidney injury associated with AR and ATI. The alpha value was significantly 295 

different in patients with AR and ATI compared to those without kidney pathology. The 296 

calculation of alpha is based on the assumption that the DNA isolated form the urine is derived 297 

from the transplanted kidney where both the recipient and the donor DNA are present: Recipient 298 

DNA from the infiltrating immune cells and the donor DNA from the kidney parenchymal cells. 299 

Indeed, we have recently shown in kidney recipients with donor-recipient gender mismatch by 300 

counting Y chromosome-derived cell free DNA that donor-specific DNA fraction was lower in 301 

recipient with UTI as comparing to the no UTI and higher in recipients with BKVN comparing to 302 
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the no BKVN [28]. Thus, our approach might be considered as a potential new diagnostic signature 303 

measured in urine specimens. 304 

We were not able to assert whether the recipient urine DNA is mostly donor‘s or 305 

recipient’s. Studies have shown that both AR and ATI are associated with allograft damage 306 

indicating that there will be some donor DNA in the urine. But AR is also associated with recipient 307 

immune cell infiltration while ATI is not [36]. Thus, the fraction of recipient to donor cells in the 308 

urine should be higher for AR compared to ATI and perhaps should be just the opposite with AR 309 

showing a fraction of donor to recipient of much lower than 0.5 and ATI showing a fraction of 310 

donor to recipient of much greater than 0.5. To address this, a future complementary analysis on a 311 

bigger sample having donor and recipient ethnicity and/or gender mismatches will be worthwhile. 312 

Methods 313 

Algorithm 314 

The algorithm is inspired by the contamination estimation in DNA sequencing method [29,30]. 315 

We hypothesize that recipient urine contains a mix of recipient and donor DNA. Let N be the 316 

number of bi-allelic SNVs sequenced from recipient urine DNA and each SNV i is covered by Mi 317 

reads. Let giR and giD be the genotype of recipient and donor at the SNV i, respectively. Both giR 318 

and giD are unknown. Limiting the analysis on bi-allelic SNVs only leads to three possible 319 

genotypes for recipient and donor at each SNV i: giR  (giD )= {0, 1, 2} where 0 = homozygous wild 320 

type, 1 = heterozygous and 2 = homozygous for the alternative allele. The likelihood of the donor-321 

specific DNA fraction (α) will be: 322 

𝐿(𝛼) =+,,-	+,/(1 − 	𝛼)𝑃1𝑏34	|	𝑔37, 𝑒34:
;<=

><

4?@A<
BA<

C

D

3?@

323 

+ 	𝛼	𝑃1𝑏34	|	𝑔3E, 𝑒34:F 𝑃(𝑒34)G 	𝑃(𝑔37)	𝑃(𝑔3E) 324 

Where bij represents the read j covering the SNV i and eij represents the sequencing error of SNV 325 

i at the read j : P(eij = 1)  = 10-Qij/10 and P(eij = 0) = 1- P(eij = 1) and Qij represents the minimum 326 

between the base quality of the read j at the position of the variant i and the mapping quality of the 327 

read j. The probability of bij conditioned to the recipient (donor) genotype giR (giD) and the 328 

sequencing error eij is described in Table 3. Finally, we used the simulated annealing approach 329 
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together with a grid search to find α that maximizes the likelihood function [37]. The method was 330 

implemented in a Python script.  331 

 332 

Table 3. The probability of read bij carrying the reference (a), alternative (A) or a different 333 
allele (e) conditioned to the recipient (donor) genotype giR (giD) and the sequencing error eij.  334 

 giR (giD) = 0 giR (giD) = 1 giR (giD) = 2 

 eij = 0 eij = 1 eij = 0 eij = 1 eij = 0 eij = 1 

P(bij = a) 1 0 1/2 1/6 0 1/3 

P(bij = A) 0 1/3 1/2 1/6 1 0 

P(bij = e) 0 2/3 0 2/3 0 2/3 

 335 

As the likelihood function for estimating α requires a balance in alternative/reference allele 336 

distribution in heterozygous calls for both recipient giR and donor giD genotypes, very deep 337 

recipient urine DNA sequencing will provide this allele balance (Table 4). 338 

 339 

Table 4. The probability and the 99% interval confidence of a perfect allele balance in a 340 
heterozygous call as a function of depth of coverage M. A total of 10,000 simulations were 341 
performed for each proposed M. 342 
M P(alt/(ref+alt) = 0.5) 99% confidence interval 

10 0.24 [0.10, 0.90] 

50 0.11 [0.34, 0.66] 

100 0.08 [0.39, 0.62] 

500 0.18 [0.45, 0.55] 

1,000 0.27 [0.46, 0.54] 

5,000 0.53 [0.48, 0.52] 

10,000 0.69 [0.49, 0.51] 

 343 

Simulated SNVs based on general population structure 344 
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To assess the effect of number of SNVs (N) and mean depth of coverage (M) on the allele balance 345 

and thus the prediction accuracy of the likelihood function, we simulated 2 independent SNV-sets 346 

each set containing N common SNVs (minor allele frequency ≥ 5%) and is covered on average by 347 

M reads. We varied N and M in 35 scenarios where N={10, 50, 100, 500 and 1,000} and M={10, 348 

50, 100, 500, 1,000, 5,000 and 10,000}. We merged α reads from set1 and 1-α from set2 randomly 349 

generating a combined SNV-set and applied the likelihood function on the combined SNV-set to 350 

estimate the observed α. Because L(α) = L(1-α), we restrict 0 ≤ α ≤ 0.5 in steps of 0.01 generating 351 

51 scenarios. A thousand replicates for each scenario and for each α were performed to obtain an 352 

empirical distribution. 353 

Sequencing of urine DNA from a pair of healthy individuals 354 

We extracted DNA from urine of two healthy individuals; S1, a 30 years old European woman and 355 

S2 a 30 years old Arab woman using the QiagenÒ Allprep Mini Kit. extraction kit. The DNA 356 

concentration was similar for the two individuals: 35ng/μl. We mixed DNA from S1 and S2 to 357 

achieve 5 scenarios: i) 100% from S1, ii) 100% from S2, iii) 90% from S1 and 10% from S2, iv) 358 

70% from S1 and 30% from S2, v) 50% from S1 and 50% from S2 and each scenario was replicated 359 

three times. We performed deep targeted DNA sequencing on each replicate. GeneReadDNA Seq 360 

Targeted Pannels V2; Human Breast Cancer Panel (Qiagen, USA) was used to perform target 361 

enrichment by multiplex PCR. The breast cancer panel consists of four primer pools yielding 2,915 362 

amplicons. Briefly, 40ng of each gDNAs was amplified using PCR reagents with 4 primer pool 363 

mixes following the manufacturer’s protocol. After the completion of the 4 PCR reactions, the 4 364 

products were combined and the enriched DNA was purified using Agencourt AMPure XP beads 365 

(Beckman Coulter, USA). The concentration and the size of the purified amplicons were 366 

determined using Qubit 2.0 Fluerometer dsDNA BR assay kit (LifeTechnologies, USA) and 367 

Agilent BioAnalyzer 2100 High-Sensitivity DNA kit (Agilent Technologies, USA). A total 368 

amount of 80-160 ng of purified enriched DNA was used as template to generate NGS libraries. 369 

The NGS libraries were prepared using NEBNEXT Ultra II DNA Library Prep Kit (New England 370 

Biolabs, USA) and NEXTflex DNA Barcodes (Bio Scientific, USA). All library preparation steeps 371 

were performed according to the manufacturer’s protocol. The size and quality of the final libraries 372 

were analyzed using Agilent BioAnalyzer 2100 with 1000 DNA kit (Agilent Technologies, USA). 373 

The quantified libraries were then normalized, pooled, and spiked with 5% PhiX control library 374 
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(Illumina, USA). Finally, thepooled libraries were sequenced on a singles lane of Illumina Hiseq 375 

4000 (Illumina, USA) paired-end 150 bp run. 376 

Obtained reads were aligned to the human genome reference hg19 using bwa [38]. A total of 377 

51,893 bi-allelic SNVs from the Exac project are included in the targeted genomic regions. The 378 

method works only on SNVs with different genotype between donor and recipient. Under Hardy 379 

Weinberg assumption, we assessed the probability of having a different genotype for each SNV i 380 

as: 381 

𝑃(𝐺3E	 ≠ 𝐺37	) = , , 𝐹(𝐺3E	 = 𝐺E	) ∗ 𝐹(𝐺37	 = 𝐺7	)/	
M

NC	?	O

M

NB	?	O

𝐺E	 ≠ 𝐺7	 382 

𝐹/𝐺3
E(7)	 = 0	F = 	𝑝3

E(7)	M	 383 

𝐹/𝐺3
E(7)	 = 1	F = 	2 ∗ 𝑝3

E(7)	 ∗ 𝑞3
E(7)		 384 

𝐹/𝐺3
E(7)	 = 2	F = 	𝑞3

E(7)	M	 385 

 386 

 387 

Where 𝐺3E	and 𝐺37	represent the donor and recipient genotype, respectively. 𝑝3E	and 𝑝37	represent 388 

the donor and recipient reference allele frequency, respectively. 𝑞3E	and 𝑞37	represent the donor and 389 

recipient alternative allele frequency, respectively. 390 

To avoid allele dropout due to primer annealing region, we filtered out 24,237 SNVs falling at the 391 

primer sequencing regions [35]. From the 27,656 remaining SNVs, we selected the 1,000 most 392 

common and applied the likelihood function after filtering out the reads carrying the variant at the 393 

last 20 base pairs [39]. 394 

 395 

Simulated SNVs in pairs of individuals from the same and different ethnicity  396 

We used individuals from the 1,000 genomes project phase 3 representing five major populations: 397 

AFR, AMR, EAS, EUR and SAS [34]. We randomly selected two individuals and aimed to cover 398 

all possible situations; five cases where Individual1 and individual2 belong to the same population 399 

and ten cases where individual1 and individual2 belong to different populations. We extracted the 400 

1,000 SNVs described previously from Individuals1 and Individual2 and then merged α reads from 401 

individual1 and 1-α from individual2 generating a combined SNV-set. We varied α from 0 to 0.5 402 
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in steps of 0.01 and fixed the mean depth of coverage at M = 5,000. We applied the likelihood 403 

function to assess α for each combined SNV-set generated. We repeated the individual selecting 404 

process 100 times to obtain an empirical distribution for each situation. 405 

 406 

Simulated SNVs in pairs of real siblings  407 

We performed WGS on Illumina HiSeq 2500 sequencer of 91 Qatari siblings from 27 nuclear 408 

families containing at least 2 siblings at up to 7 siblings [33]. Reads were aligned to the hg19 409 

reference genome using bwa [38]. Sequence alignment files were filtered and genotypes were 410 

called using the Genome Analysis Tool Kit best practices pipeline and variants were called using 411 

HaplotypeCaller [40,41]. We used Plink identity by state to confirm the familial relationship [42] 412 

(Fig S5). We extracted the 1,000 SNVs described previously from each sibling and merged each 413 

couple generating 100 combined SNV-sets. We applied the likelihood function to assess α for each 414 

combined SNV-set generated by varying α from 0 to 0.5 with a step of 0.01 while the mean depth 415 

of coverage was set at M = 5,000.  416 

Donor-specific DNA fraction in real kidney recipient urine DNA 417 

We studied 32 biopsy matched urine specimens collected from 26 kidney allograft recipients who 418 

were enrolled in the IRB approved study protocol entitled “Use of urine PCR to evaluate renal 419 

allograft status” at Weill Cornell Medicine-New York Presbyterian Hospital. Kidney allograft 420 

biopsies were classified as acute rejection (n= 12), acute tubular necrosis (n=11) and normal 421 

histology (n=9) using the Banff 2017 schema [43] (Table 1). DNA was extracted from urinary 422 

cells and deep targeted DNA sequencing was performed on all samples. Briefly, 50cc of fresh 423 

urine was centrifuged at 2,000g for 30 minutes at room temperature and the urine cell pellet was 424 

harvested after removing the supernatant. After washing the urine cell pellet with 1ml PBS, the 425 

cells were lysed using 350ul of Buffer RLT from QiagenÒ and DNA was isolated from the cell 426 

pellet using Allprep DNA/RNA/Protein Mini Kit from QiagenÒ. Total DNA was quantified using 427 

the NanoDropÔ Spectrophotometer. DNA sequencing was performed as previously described for 428 

the pair of healthy individuals. Obtained reads were aligned to the human genome reference hg19 429 

using bwa [38]. We filtered out low quality reads using an in-house python script. We applied the 430 

likelihood function on the 1,000 SNV-set to estimate the recipient-specific DNA fraction. 431 

Nonparametric Kruskal-Wallis test was applied to assess the correlation between observed α and 432 
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all the diagnosis phenotypes. Dunn’s function was applied to test the pairwise association. R 433 

software was used for statistical tests and generating graphs [44]. 434 

 435 
Ethnicity estimation for donor and recipient 436 

We combined the observed α in the kidney transplant patients with a cost function to predict the 437 

genotype of both recipient (giR) and donor (giD) at each SNV i. First, we computed the expected 438 

fraction of the alternative to the total allele (reference + alternative) expi to all 9 possible 439 

combinations of giR and giD (Table 2). The observed fraction of the alternative to total alleles (obsi) 440 

at the SNV i is defined by: 441 

obsi = DSTU;V	WX	V;YZ[	\YVV]3^A	_`;	Ya_;V^Y_3b;	Yaa;a;
cW_Ya	^STU;V	WX	V;YZ[	\Wb;V3^A	_`;	dDe	3

 442 

Then, we used the cost function to determine giR and giD that minimizes the difference between the 443 

9 expected (expi) and the observed (obsi) fraction of the alternative to total alleles: 444 

 445 

𝐿𝑜𝑠𝑠(𝛼, 𝑔37, 𝑔3E) = 𝑀𝑖𝑛W?@W?k(𝑒𝑥𝑝3W −	𝑜𝑏𝑠3)M 446 

 447 

Once giR and giD estimated, we performed a partial least square analysis (PLS) using 3 448 

subpopulations from the 1,000 genomes project African, east Asian and European populations 449 

using the mixOmics R package [45] and then predicted the ethnicity of donor and recipient in the 450 

real kidney transplant samples. The leave 2 out 1,000 fold cross validation showed the highest 451 

prediction accuracy = 81.6% reached when using the Yoruba in Ibadan in Nigeria, the Southern 452 

Han Chinese and the Toscani in Italia amongst the African, east Asian and European 453 

subpopulations (Fig S6). We excluded the American and the south Asian populations because 454 

using 1,000 SNVs only is too small to perform a reliable PLS on 5 populations where the highest 455 

cross validation prediction accuracy was too low on five populations: 54.8% (Fig S6). 456 

Additionally, none of the donors and recipients involved in the study belongs to the south Asian 457 

or the American populations. 458 

 459 

  460 
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