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Abstract
A novel coronavirus emerged in December of 2019 (COVID-19), causing a pandemic that continues to inflict
unprecedented public health and economic burden in all nooks and corners of the world. Although the control
of COVID-19 has largely focused on the use of basic public health measures (primarily based on using non-
pharmaceutical interventions, such as quarantine, isolation, social-distancing, face mask usage and community
lockdowns), a number of exceptionally-promising vaccines are about to be approved for use in humans by the
U.S. Food and Drugs Administration. We present a new mathematical model for assessing the population-level
impact of the candidate vaccines, particularly for the case where the vaccination program is complemented with
a social-distancing control measure at a certain compliance level. The model stratifies the total population into
two subgroups, based on whether or not they habitually wear face mask in public. The resulting multigroup
model, which takes the form of a compartmental, deterministic system of nonlinear differential equations, is
parametrized using COVID-19 cumulative mortality data. Conditions for the asymptotic stability of the as-
sociated disease-free equilibrium, as well as expression for the vaccine-derived herd immunity threshold, are
derived. This study shows that the prospect of COVID-19 elimination using any of the three candidate vac-
cines is quite promising, and that such elimination is more feasible if the vaccination program is combined with
social-distancing control measures (implemented at moderate to high level of compliance).
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1 Introduction

The novel coronavirus (COVID-19) pandemic, which started as a pneumonia of an unknown etiology late in De-
cember 2019 in the city of Wuhan, is the most devastating public health challenge mankind has faced since the
1918/1919 pandemic of influenza. The COVID-19 pandemic, which rapidly spread to essentially every nook and
corner of the planet, continues to inflict devastating public health and economic challenges globally. As of Decem-
ber 5, 2020, the pandemic accounts for 67, 021, 834 confirmed cases and 1, 537, 165 cumulative mortality globally.
Similarly, the United States, which recorded its first COVID-19 case on January 20, 2020, recorded 14, 991, 531
confirmed cases and 287, 857 deaths (as of December 5, 2020) [1].

COVID-19, a member of the Coronavirus family of RNA viruses that cause diseases in mammals and birds,
is primarily transmitted from human-to-human through direct contact with contaminated objects or surfaces and
through inhalation of respiratory droplets from both symptomatic and asymptomatically-infectious humans (albeit
there is limited evidence that COVID-19 can be transmitted via exhalation through normal breathing and aerosol [2].
The incubation period of the disease is estimated to lie between 2 to 14 days (with a mean of 5.1 days), and majority
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of individuals infected with the disease show mild or no clinical symptoms [3]. The symptoms typically include
coughing, fever and shortness of breadth (for mild cases) and pneumonia for severe cases [3]. The people most at
risk of dying from, or suffering severe illness with, COVID-19 are those with co-morbidities (such as individuals
with diabetes, obesity, kidney disease, cardiovascular disease, chronic respiratory disease etc.). Younger people,
front line healthcare workers and employees who maintain close contacts (within 6 feet) with customers and other
co-workers (such as meat factory workers, retail store workers etc.) are also at risk.

Although there are three exceptionally-promising candidate vaccines (by Pfizer, Inc., Moderna, Inc. and As-
traZeneca, Inc.) and antivirals undergoing various stages of development (Pfizer has filed for FDA Emergency
Use Authorization on November 20, 2020) [4], there is currently no safe and effective vaccine or antiviral that
has been approved for widespread use in humans, albeit the approval of the aforementioned candidate vaccines
is imminently expected by the end of 2020. Further, owing to its limited supply, the approved anti-COVID drug
remdesivir is limited for use to treat individuals in hospital who display severe symptoms of COVID-19. Hence,
due to the absence of safe and effective vaccines and antiviral for widespread use in humans, efforts to control and
mitigate the burden of COVID-19 remain focused on non-pharmaceutical interventions (NPIs), such as quarantine,
self-isolation, social (physical) distancing, the use of face masks in public, hand washing (with approved sanitizers),
community lockdowns, testing and contact tracing. Of these NPIs, the use of face masks in public is considered to
be the main mechanism for effectively curtailing COVID-19 [3, 5–7].

The Pfizer and Moderna vaccines, each of estimated protective efficacy of about 95% [4, 8, 9], are genetic
vaccines that are developed based on stimulating a mechanism that encourages the body to produce antibodies that
fights the SARS-CoV-2. Specifically, the vaccines use a synthetic messenger RNA (mRNA) that carries instructions
for making virus spike protein to gain entry into cells when injected into muscle tissue in the upper arm. This
triggers the immune system to recognize the spike protein and develop antibodies against it (so that when a human
is infected with SARS-CoV-2, his/her body is able to successfully fight it) [4, 10]. Two doses are required for both
the Pfizer and Moderna vaccine candidates (one to prime the immune system, and the second to boost it). For the
Pfizer vaccine, the second dose will be administered 19-42 days after the first dose. The second dose of the Moderna
vaccine is administered three to four weeks after the first dose. Both vaccines need to be stored at appropriate
refrigeration temperatures [11]. The AstraZeneca vaccine, on the other hand, has estimated protective efficacy of
70% [4, 8, 9]. It uses a replication-deficient chimpanzee viral vector that causes infections in chimpanzees and
contains the genetic material of the SARS-CoV-2 virus spike protein [9]. When injected into the human, the spike
protein triggers the immune system to attack the SARS-CoV-2 virus that infects the body [9]. AstraZeneca vaccine
also requires two doses (one month apart) to achieve immunity, and, unlike the Pfizer and Moderna vaccines, does
not have to be stored in super-cold temperatures (it can be stored at normal refrigerated temperature of (2-8◦C) for
at least six months) [9]. Hence, owing to the imminence for the approval of the aforementioned three candidate
COVID-19 vaccines by the FDA, coupled with the primary role of face masks usage, it is instructive to design new
mathematical models that will allow for the realistic assessment of the combined impact of the expected COVID-19
vaccines and face masks usage in a community.

Numerous mathematical models, of various types, have been developed and used to provide insight into the
transmission dynamics and control of COVID-19. The modeling types used include statistical [12], compartmen-
tal/deterministic (e.g., [3, 5–7, 13]), stochastic (e.g., [14, 15]), network (e.g., [16]) and agent-based (e.g., [17]).
The purpose of the current study is to use mathematical modeling approaches, coupled with mathematical and sta-
tistical data analytics, to assess the combined impact of the expected COVID-19 vaccines and face masks usage.
A notable feature of the model to be developed is its multigroup nature. Specifically, the total population will be
subdivided into two groups, namely those who habitually wear face mask in public and those who do not. Data
for COVID-19 pandemic in the U.S. will be used to parametrize the model. The central goal of the study is to
determine the minimum vaccine coverage level needed to effectively curtail (or eliminate) community transmission
of COVID-19 in the U.S., and to quantify the reduction in the required vaccine coverage if the vaccination program
is supplemented with face masks usage (under various face masks efficacy and compliance parameter space). The
paper is organized as follows. The novel multigroup model is formulated in Section 2. The parameters of the
model are also estimated, based on fitting the model with U.S. COVID-19 data. The model is rigorously analysed,
with respect to the asymptotic stability of the disease-free equilibrium of the model, in Section 3. A condition for

2

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 10, 2021. ; https://doi.org/10.1101/2020.12.11.20247916doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.11.20247916


achieving community-wide vaccine-derived herd immunity is also derived. Numerical simulations of the model are
reported in Section 4. Discussions and concluding remarks are presented in Section 5.

2 Formulation of Mathematical Model

In order to account for heterogeneity in face masks usage in the community, the total population of individuals in
the community at time t, denoted by N(t), is split into the total sub-populations of individuals who do not habitu-
ally wear face mask in public (labeled “non-mask users”), denoted by N1(t), and the total sub-populations of those
who habitually wear face mask in public (labeled “mask users”), represented by N2(t). That is, N(t) = N1(t) +
N2(t). Furthermore, the sub-population N1(t) is sub-divided into the mutually-exclusive compartments of un-
vaccinated susceptible (S1u(t)), vaccinated susceptible (S1v(t)), exposed (E1(t)), pre-symptomatically-infectious
(P1(t)), symptomatically-infectious (I1(t)), asymptomatically-infectious (A1(t)), hospitalized (H1(t)) and recov-
ered (R1(t)) individuals, so that

N1(t) = S1u(t) + S1v(t) + E1(t) + P1(t) + I1(t) +A1(t) +H1(t) +R1(t).

Similarly, the total sub-population of the mask users, N2(t), is stratified into the compartments for unvaccinated
susceptible (S2u(t)), vaccinated susceptible (S2v(t)), exposed (E2(t)), pre-symptomatically-infectious (P2(t)),
symptomatically-infectious (I2(t)), asymptomatically-infectious (A2(t)), hospitalized (H2(t)) and recovered (R2(t))
individuals. Hence,

N2(t) = S2u(t) + S2v(t) + E2(t) + P2(t) + I2(t) +A2(t) +H2(t) +R2(t).

The equations for the rate of change of the sub-populations of non-mask users is given by the following determin-
istic system of nonlinear differential equations (where a dot represents differentiation with respect to time t):

Ṡ1u = Π + ωvS1v + α21S2u − λ1S1u − (α12 + ξv + µ)S1u,

Ṡ1v = ξvS1u + α21S2v − (1− εv)λ1S1v − (α12 + ωv + µ)S1v,

Ė1 = λ1S1u + (1− εv)λ1S1v + α21E2 − (α12 + σ1 + µ)E1,

Ṗ1 = σ1E1 + α21P2 − (α12 + σP + µ)P1,

İ1 = rσPP1 + α21I2 − (α12 + φ1I + γ1I + µ+ δ1I)I1,

Ȧ1 = (1− r)σPP1 + α21A2 − (α12 + γ1A + µ)A1,

Ḣ1 = φ1II1 + α21H2 − (α12 + γ1H + µ+ δ1H)H1,

Ṙ1 = γ1II1 + γ1AA1 + γ1HH1 + α21R2 − (α12 + µ)R1,

(2.1)

where, λ1 is the force of infection, defined by:

λ1 = (1− cs)
[

(βP1P1 + βI1I1 + βA1A1 + βH1H1)

N1
+ (1− εo)

(βP2P2 + βI2I2 + βA2A2 + βH2H2)

N2

]
,

with βi {i = P1, I1, A1, H1, P2, I2, A2 and H2} the effective contact rate for individuals in the respective
P1, I1, A1, H1, P2, I2, A2 and H2 classes. The parameters 0 < εo < 1 and 0 < εi < 1 represent the outward
and inward protective efficacy, respectively, of face masks to prevent the transmission of infection to a susceptible
individual (εo) as well as prevent the acquisition of infection (εi) from an infectious individual, while 0 ≤ cs < 1
is a parameter that accounts social-distancing compliance.

In (2.1), the parameter Π is the recruitment (birth or immigration) rate of individuals into the population, α21 is
the rate of change of behavior for non-habitual face masks users to become habitual users (i.e., α12 is the transition
rate from group 2 to group 1). Furthermore, α12 is the rate at which habitual face masks users choose to be non-
habitual wearers. The parameter ξv represents the vaccination rate, and the vaccine is assumed to induce protective
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efficacy 0 < εv < 1 in all vaccinated individuals and wane at a rate ωv. Natural deaths occurs in all epidemiological
classes at a rate µ. Individuals in the E1 class progress to the pre-symptomatic stage at a rate σ1, and those in the
pre-symptomatic class (P1) transition out of this class at a rate σP (a proportion, q, of which become symptomatic,
and move to the I class at a rate qσP , and the remaining proportion, 1−q, move to the asymptomatically-infectious
class at a rate (1− q)σP ). Symptomatic infectious individuals are hospitalized at a rate φ1I . They recover at a rate
γ1I and die due to the disease at a rate δ1I . Hospitalized individuals die of the disease at the rate δ1H .

Similarly, the equations for the rate of change of the sub-populations of mask users is given by:

Ṡ2u = ωvS2v + α12S1u − λ2S2u − (α21 + ξv + µ)S2u,

Ṡ2v = ξvS2u + α12S1v − (1− εv)λ2S2v − (α21 + ωv + µ)S2v,

Ė2 = λ2S2u + (1− εv)λ2S2v + α12E1 − (α21 + σ2 + µ)E2,

Ṗ2 = σ2E2 + α12P1 − (α21 + σP + µ)P2,

İ2 = qσPP2 + α12I1 − (α21 + φ2I + γ2I + µ+ δ2I)I2,

Ȧ2 = (1− q)σPP2 + α12A1 − (α21 + γ2A + µ)A2,

Ḣ2 = φ2II2 + α12H1 − (α21 + γ2H + µ+ δ2H)H2,

Ṙ2 = γ2II2 + γ2AA2 + γ2HH2 + α12R1 − (α21 + µ)R2,

(2.2)

where,

λ2 = (1− cs)(1− εi)
[

(βP1P1 + βI1I1 + βA1A1 + βH1H1)

N1
+ (1− εo)

(βP2P2 + βI2I2 + βA2A2 + βH2H2)

N2

]
.

Thus, Equations (2.1) and (2.2) represent the multi-group model for assessing the population impact of face masks
usage and vaccination on the transmission dynamics and control of COVID-19 in a community. The flow diagram
of the model {(2.1), (2.2)} is depicted in Figure 1 (the state variables and parameters of the model are described in
Tables 5 and 6, respectively).
Some of the main assumptions made in the formulation of the multi-group model {(2.1), (2.2)} include the follow-
ing:

1. Homogeneous mixing (i.e., we assumed a well-mixed population, where every member of the community is
equally likely to mix with every other member of the community).

2. Exponentially-distributed waiting time in each epidemiological compartment.

3. The anti-COVID vaccine is imperfect. That is, the vaccine offers partial protective immunity (with efficacy
0 < εv < 1), which wanes over time (at a rate ωv). Further, it is assumed that the vaccine does not offer any
therapeutic benefit (such as slowing progression to active disease or increasing recovery rate in breakthrough
infections). It is also assumed that individuals in the vaccinated class received all the required doses of the
vaccine, and that the vaccine has been stored under the prescribed temperature conditions.

4. Although there is currently no definitive data on the level (partial or complete) and duration of COVID-19
immunity due to recovery from infection, we assume that natural recovery from infection confers permanent
immunity against reinfection. Further, successfully-immunized individuals (i.e., individuals who acquired
vaccine-derived immunity) remain in the vaccinated class (rather than moved to the recovered class).

5. Endemicity assumption: although epidemic models (with no demographics) are typically used for studying
the dynamics of new epidemics, such as COVID-19, we assume that, for the purpose of vaccination program,
COVID-19 has attained endemic status. This is to account for the fact that the vaccine will be administered
to every member of the community (including newborns) for an extended period of time (perhaps years).
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Figure 1: Flow diagram of the model {(2.1), (2.2)}.

The implication of this assumption is that human demography (as represented by the recruitment parameter,
Π, and the natural death parameter, µ) must be incorporated into the model.

The multi-group model {(2.1), (2.2)} is an extension of the two-group mask-use model in [5] by, inter alia:

(i) allowing for back-and-forth transitions between the two groups (mask-users and non-mask-users), to account
for human behavioral changes vis a vis decision to either be (or not to be) a face mask user in public;

(ii) incorporating an imperfect vaccine, which offers protective efficacy (0 < εv < 1) against acquisition of
COVID-19 infection, which may wane over time (at a rate ωv);

(iii) allowing for disease transmission by pre-symptomatic and asymptomatically-infectious individuals.

2.1 Data Fitting and Parameter Estimation

In this section, cumulative mortality data for the US (from January 22, 2020 to November 16, 2020) will be used
to fit the model (2.1)-(2.2) in the absence of vaccination and estimate some of its key parameters. In particular,
the parameters to be estimated from the data are the community transmission rate for individuals who do not
wear face masks in public (β1), the transmission rate for individuals who habitually wear face masks in public
(β2), the inward efficacy of masks in preventing disease acquisition by susceptible individuals who habitually
wear face masks (εi), the outward efficacy of masks to prevent the spread of disease by infected individuals who
habitually wear face masks (εo), the proportion of individuals in the community who comply to social-distancing
measures while in public (cs), the rate at which people who do not wear masks adopt a mask-wearing habit (α12),
the rate at which those who habitually wear face masks stop wearing masks in public (α21), and the mortality
rates of symptomatic infectious and hospitalized individuals (δi and δh, respectively). It should be mentioned
that modification parameters ηP , ηI , ηA, and ηH relating to disease transmission by pre-symptomatic infectious,
symptomatic infectious, asymptomatic infectious and hospitalized individuals, respectively, are introduced in the
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forces of infection λ1 and λ2, so that βj = ηjβk (j ∈ {Pk, Ik, Ak, Hk}, k ∈ {1, 2}). The model fitting was carried
out using MATLAB R2020b and the process involved minimizing the sum of the square differences between each
observed cumulative mortality data point and the corresponding mortality point obtained from the model (2.1)-
(2.2) in the absence of vaccination [3, 18, 19]. The choice of mortality over case data is motivated by the fact that
mortality data for COVID-19 is more reliable than case data (see [6] for details). The estimated values of the fitted
parameters are tabulated in Table 1(a). The fitting of the model to the observed cumulative and daily mortality
data is depicted in Figure 2 (a). Furthermore, Figure 2 (b) compares the simulations of the model using the fitted
(estimated) and fixed parameters (given in Tables 1 (a) and (b)-(c)) with the observed daily COVID-19 mortality
for the US, showing a good fit.
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Figure 2: (a) Observed cumulative mortality data for the US (red dots) and predicted cumulative mortality
for the US from the model (2.1)-(2.2) (with no vaccination) for the period from January 22 to November
16, 2020. (b) Simulations of the model (2.1)-(2.2) using the fixed parameters in Table 1(b)-(c) and the es-
timated parameters from the cumulative COVID-19 mortality data for the US presented in Table 1(a). We
started the simulations of the pandemic near the disease-free equilibrium for the US. In particular, we used the
following initial conditions (with mask usage compliance initially set at 1% of the total current US popula-
tion): (S0

1 , E
0
1 , P

0
1 , I

0
1 , A

0
1, H

0
1 , R

0
1, S

0
2 , E

0
2 , P

0
2 , I

0
2 , A

0
2, H

0
2 , R

0
2) = (0.99 × 336218660 − 1, 0, 0, 1, 0, 0, 0, 0.01 ×

336218660, 0, 0, 0, 0, 0, 0).

Table 1: Baseline parameter values for the model (2.1)-(2.2). (a) Estimated (fitted) parameter values for the model
in the absence of vaccination, using COVID-19 mortality data for the US for the period from January 22, 2020 to
November 16, 2020. (b)-(c) Baseline values of the remaining fixed parameters of the model (2.1)-(2.2) extracted
from the literature or estimated using information from the literature.

(a) Fitted parameters

Parameter Value
β1 0.6566/day
β2 0.5249/day
cs 0.3051

εo 0.6304

εi 0.9965

α12 0.0459/day
α21 0.0010/day
δi 0.0008/day
δh 0.0025/day

(b) Fixed parameters

Parameter Value Source
σ1 1/2.5/day [20, 21]
σ2 1/2.5/day [20, 21]
σp 1/2.5/day [20, 21]
r (q) 0.2(0.2) [22, 23]
φ1I 1/6/day [24]
φ2I 1/6/day [24]
γI 1/10/day [17, 25]
γA 1/5/day [24]
γH 1/8/day [17]

(c) Fixed parameters

Parameter Value Source
Π 1.2× 104/day Estimated
µ 1/(79× 365)/day Estimated
ηP 1.25 Assumed
ηI 1.0 Assumed
ηA 1.50 Assumed
ηH 0.25 Assumed
ωv 0/day Assumed
ξv 2.97× 10−4/day Assumed
εv 0.70 [8, 9]
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3 Mathematical Analysis

Since the model {(2.1), (2.2)} monitors the temporal dynamics of human populations, all state variables and pa-
rameters of the model are non-negative. Consider the following biologically-feasible region for the model:

Ω =

{
(S1u, S1v, S2u, S2v, E1, E2, P1, P2, I1, I2, A1, A2, H1, H2, R1, R2) ∈ R16

+ : N(t) ≤ Π

µ

}
. (3.1)

Theorem 3.1. The region Ω is positively-invariant with respect to the model {(2.1), (2.2)}.

Proof. Adding all the equations of the model {(2.1), (2.2)} gives

Ṅ = Π− µN − δ1II1 − δ1HH1 − δ2II2 − δ2HH2. (3.2)

Recall that all parameters of the model {(2.1), (2.2)} are non-negative. Thus, it follows, from (3.2), that

Ṅ ≤ Π− µN. (3.3)

Hence, if N > Π
µ , then Ṅ < 0. Furthermore, by applying a standard comparison theorem [26] on (3.3), we have:

N(t) ≤ N(0)e−µt +
Π

µ
(1− e−µt).

In particular, N(t) ≤ Π
µ if N(0) ≤ Π

µ . Thus, every solution of the model {(2.1), (2.2)} with initial conditions in Ω
remains in Ω for all time t > 0. In other words, the region Ω is positively-invariant and attracts all initial solutions
of the model {(2.1), (2.2)}. Hence, it is sufficient to consider the dynamics of the flow generated by {(2.1), (2.2)}
in Ω (where the model is epidemiologically- and mathematically well-posed) [27].

3.1 Asymptotic Stability of Disease-free Equilibrium

The model {(2.1), (2.2)} has a unique disease-free equilibrium (DFE), obtained by setting all the infected compart-
ments of the model to zero, (where S∗1u > 0, S∗1v > 0, S∗2u > 0 and S∗2v > 0; their expressions are too lengthy,
hence not presented here)

E0 : (S∗1u, S
∗
1v, S

∗
2u, S

∗
2v, E

∗
1 , E

∗
2 , P

∗
1 , P

∗
2 , I
∗
1 , I
∗
2 , A

∗
1, A

∗
2, H

∗
1 , H

∗
2 , R

∗
1, R

∗
2) =(

Π + ωvS
∗
1v + α21S

∗
2u

α12 + ξv + µ
,
ξvS

∗
1u + α21S

∗
2v

α12 + ωv + µ
,
ωvS

∗
2v + α12S

∗
1u

α21 + ξv + µ
,
ξvS

∗
2u + α12S

∗
1v

α21 + ωv + µ
, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

)
.

The local asymptotic stability property of the DFE (E0) can be explored using the next generation operator method
[28, 29]. In particular, using the notation in [28], it follows that the associated non-negative matrix (F ) of new
infection terms, and the M-matrix (V ), of the linear transition terms in the infected compartments, are given,
respectively, by (where the entries fi and gi, i = 1, · · · , 8, of the non-negative matrix F , are given in Appendix I):

F =



0 f1 f2 f3 f4 0 f5 f6 f7 f8

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 g1 g2 g3 g4 0 g5 g6 g7 g8

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0


,
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and,

V =



K1 0 0 0 0 −α21 0 0 0 0
−σ1 K2 0 0 0 0 −α21 0 0 0

0 −rσp K3 0 0 0 0 −α21 0 0
0 −(1− r)σp 0 K4 0 0 0 0 −α21 0
0 0 −φ1I 0 K5 0 0 0 0 −α21

−α12 0 0 0 0 K6 0 0 0 0
0 −α12 0 0 0 0 K7 0 0 0
0 0 −α12 0 0 0 −qσp K8 0 0
0 0 0 −α12 0 0 −(1− q)σp 0 K9 0
0 0 0 0 −α12 0 0 −φ2I 0 K10


,

where K1 = α12 + σ1 + µ,K2 = α12 + σP + µ,K3 = α12 + φ1I + γ1I + µ+ δ1I ,K4 = α12 + γ1A + µ,K5 =
α12 + γ1H + µ + δ1H ,K6 = α21 + σ2 + µ,K7 = α21 + σP + µ,K8 = α21 + φ2I + γ2I + µ + δ2I ,K9 =
α21 + γ2A + µ and K10 = α21 + γ2H + µ+ δ2H .

For mathematical tractability, the computations will be carried out for the special case of the model {(2.1), (2.2)}
in the absence of the back-and-forth transitions between the no-mask and mask-user groups (i.e., the special case
of the model with α12 = α21 = 0). Hence, from now on, we set α12 = α21 = 0. It follows that the control
reproduction number of the model {(2.1), (2.2)} (with α12 = α21 = 0), denoted byRc, is given by (where ρ is the
spectral radius):

Rc = ρ(FV −1) = max{Rc1 , Rc2}, (3.4)

where,

Rc1 = (a11 + a22) +
√

(a22 − a11)2 + 4 a21a12, and Rc2 = (a11 + a22)−
√

(a22 − a11)2 + 4 a21a12, (3.5)

with a11, a12, , a21 and a22 defined in Appendix II. The result below follows from Theorem 2 of [28].

Theorem 3.2. The DFE (E0) of the special case of the model {(2.1), (2.2)}, with α12 = α21 = 0, is locally-
asymptotically stable ifRc < 1, and unstable IfRc > 1.

The threshold quantity Rc is the control reproduction number of the model {(2.1), (2.2)}. It measures the average
number of new COVID-19 cases generated by a typical infectious individual introduced into a population where
a certain fraction of the population is protected (via the use of interventions, such as face mask, social-distancing
and/or vaccination). The epidemiological implication of Theorem 3.2 is that a small influx of COVID-19 cases will
not generate an outbreak in the community if the control reproduction number (Rc) is brought to, and maintained
at a, value less than unity.

In the absence of public health interventions (i.e., in the absence of vaccination, face mask usage and social-
distancing), the control reproduction number (Rc) reduces to the basic reproduction number (denoted by R0),
given by:

R0 = Rc|cs=ε0=εi=εv=S∗
1v=S∗

2v=0 = max{R1, R2}, (3.6)

where,

R1 = (b11 + b22) +
√

(b22 − b11)2 + 4 b21b12, and R2 = (b11 + b22)−
√

(b22 − b11)2 + 4 b21b12, (3.7)

with b11, b12, b21 and b22 defined in Appendix II.
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3.2 Vaccine-induced Herd Immunity Threshold

Herd immunity is a measure of the minimum percentage of the number of individuals in a community that is
susceptible to a disease that need to be protected (i.e., become immune) so that the disease can be eliminated from
the population. There are two main ways to achieve herd immunity, namely through acquisition of natural immunity
(following natural recovery from infection with the disease) or by vaccination. Vaccination is the safest and fastest
way to achieve herd immunity [30, 31]. For vaccine-preventable diseases, such as COVID-19, not every susceptible
member of the community can be vaccinated, for numerous reasons (such as individuals with certain underlying
medical conditions, infants, pregnant women, or those who opt out of being vaccinated for various reasons etc.) [7].
So, the question, in the context of vaccine-preventable diseases, is what is the minimum proportion of individuals
that can be vaccinated we need to vaccinate in order to achieve herd immunity (so that those individuals that cannot
be vaccinated will become protected owing to the community-wide herd-immunity). In this section, a condition for
achieving vaccine-derived herd immunity in the U.S. will be derived.

It is convenient to define (whereN∗1 andN∗2 represent the total size of the sub-population of Group 1 and Group
2 at disease-free equilibrium, respectively):

q1 = (1− cs)
[
S∗1u + (1− εv)S∗1v

N∗1

]
and q2 = (1− cs)

[
S∗2u + (1− εv)S∗2v

N∗2

]
. (3.8)

Using Equation (3.8), the expressions for a11, a12, a21 and a22 in Appendix II can be re-written as:

a11 = q1b11, a12 = q1(1− ε0)b12, a21 = q2(1− εi)b21, a22 = q2(1− εi)(1− ε0)b22. (3.9)

Furthermore, using (3.9) in (3.4) gives:

Rc = [q1b11 + q2(1− εi)(1− ε0)b22] +
√

[q2(1− εi)(1− ε0)b22 − q1b11]2 + 4q1q2b12b21(1− εi)(1− ε0).
(3.10)

Let f1v = S∗1v/N
∗
1 and f2v = S∗2v/N

∗
2 be the proportions of susceptible individuals in Groups 1 and 2,

respectively, that have been vaccinated at the disease-free equilibrium (E0). Hence, (3.8) can be re-written (in
terms of f1v and f2v) as:

q1 = (1− cs)(1− f1vεv) and q2 = (1− cs)(1− f2vεv). (3.11)

In order to compute the expression for the herd immunity threshold associated with the model {(2.1), (2.2)}, it is
convenient to let fv = max{f1v, f2v}. Using this definition in Equation (3.10) gives:

Rc = (1−cs)(1−fvεv)
{

[b11 + (1− εi)(1− ε0)b22] +
√

[(1− εi)(1− ε0)b22 − b11]2 + 4b12b21(1− εi)(1− ε0)
}
.

(3.12)
SettingRc, in Equation (3.12), to unity and solving for fv gives the herd immunity threshold (denoted by f cv ):

fv =
1

εv

{
1− 1

(1− cs)[b11 + (1− εi)(1− ε0)b22] +
√

[(1− εi)(1− ε0)b22 − b11]2 + 4b12b21(1− εi)(1− ε0)

}
= f cv .

(3.13)
It follows from (3.13) that Rc < (>)1 if fv > (<)f cv . Further, Rc = 1 whenever fv = f cv . This result is
summarized below:

Theorem 3.3. Consider the special case of the model {(2.1), (2.2)} with α12 = α21 = 0. Vaccine-induced herd
immunity (i.e., COVID-19 elimination) can be achieved in the U.S., using an imperfect anti-COVID vaccine, if
fv > f cv (i.e., if Rc < 1). If fv < f cv (i.e., if Rc > 1), then the vaccination program will fail to eliminate the
COVID-19 pandemic in the U.S.
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The epidemiological implication of Theorem 3.3 is that the use of an imperfect anti-COVID vaccine can lead to the
elimination of the COVID-19 pandemic in the U.S. if the sufficient number of individuals residing in the U.S. is
vaccinated, such that fv > f cv . The Vaccination program will fail to eliminate the pandemic if the vaccine coverage
level is below the aforementioned herd immunity threshold (i.e., if fv < f cv ). Although vaccination, no matter
the coverage level, is always useful (i.e., vaccination will always reduce the associated reproduction number, Rc,
thereby reducing disease burden, even if the program is unable to bring the reproduction number to a value less
than unity), elimination can only be achieved if the herd immunity threshold is reached (i.e., disease elimination is
only feasible if the associated reproduction number of the model is reduced to, and maintained at, a value less than
unity). The pandemic will persist in the U.S. if Rc > 1. Figure 3 depicts the cumulative mortality of COVID-19
in the U.S. for various steady-state vaccination coverage levels (denoted by fv). This figure shows a decrease in
cumulative mortality with increasing vaccination coverage. In particular, a marked decrease in cumulative mortality
is recorded when herd immunity (i.e., fv > f cv) is reached in the population.

Furthermore, Figure 4 depicts a contour plot of the control reproduction number (Rc) of the model, as a function
of vaccination efficacy (εv) and coverage (fv). This figure shows that the reproduction number decreases with
increasing values of vaccination efficacy and coverage. For instance, this figure shows that, with the baseline level
of social-distancing and face-mask usage in the U.S., although the AstraZeneca vaccine (with estimated efficacy
of 75%) can significantly reduces the reproduction number (from Rc ≈ 4.5 to about Rc ≈ 1.5 (hence, greatly
reduce disease burden), it is unable to lead to the elimination of the disease even if every member of the U.S.
population is vaccinated. However, such elimination is feasible using the AstraZeneca vaccine if the coverage level
of social-distancing is increased from the baseline (Table 2). For instance, if 60% of the U.S. population observe
social-distancing in public, the AstraZeneca vaccine can lead to COVID-19 elimination in the U.S. if about 89% of
the populace is vaccinated. The vaccination coverage needed to achieve elimination (using AstraZeneca vaccine)
decreases to a mere 35% if 80% of Americans will socially-distant in public (Table 2). If, on the other hand,
either the Moderna or Pfizer vaccine (with estimated efficacy of about 95%) is used, Figure 4 shows that, based on
the current baseline level of social-distancing coverage, vaccinating about 83% of the population will lead to the
elimination of the pandemic in the U.S. The vaccine coverage level needed to eliminate the pandemic (using either
of the Pfizer or Moderna vaccine) dramatically decreases to 26% if 80% social-distancing coverage can be reached
(Table 2).
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Figure 3: Simulations of the special case of the model {(2.1), (2.2)}, with α12 = α21 = 0, showing the cumulative
COVID-19 mortality in the U.S., as a function of time. (a) fv < f cv (r = 0.5) (b) fv = f cv (r = 0.7) (c)
fv > f cv (r = 0.9). Other parameter values used in the simulations are as given in Table 1, with α12 = α21 = 0.
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Figure 4: Contour plot of the control reproduction number (Rc) of the model {(2.1), (2.2)}, with α12 = α21 = 0,
as a function of vaccine coverage (fv) and vaccine efficacy (εv), for the US. Parameter values used are as given in
Table 1, with α12 = α21 = 0.

Table 2: Herd immunity threshold (fv) for the U.S. for various levels of social-distancing coverage (cs). Parameter
values used are as given in Table 1, with α12 = α21 = 0.

Herd threshold Herd threshold Herd threshold Herd threshold
Vaccine type (efficacy) cs = 30% cs = 40% cs = 60% cs = 80%
AstraZeneca (εv = 70%) fv = 112% fv = 107% fv = 89.1% fv = 35.3%
Pfizer & Moderna (εv = 95%) fv = 82.5% fv = 78.9% fv = 65.7% fv = 26%

4 Numerical Simulations: Assessment of Control Strategies

The model {(2.1), (2.2)} will now be simulated to assess the population-level impact of the various intervention
strategies described in this study. In particular, the singular and combined impact of social-distancing, face mask
usage and the three candidate vaccines (by AstraZeneca, Moderna and Pfizer) on curtailing (or eliminating) the
burden of the COVID-19 pandemic in the U.S. will be assessed. Unless otherwise stated, the simulations will be
carried out using the estimated and baseline values of the parameters of the model tabulated in Table 1. Further,
the baseline initial condition for the face mask use group (assumed to be 1%) will be used.

4.1 Assessing the impact of mask-use

The model (2.1)-(2.2) is simulated to assess the community-wide impact of using face-masks alone on the pandemic
in the United States. Specifically, we simulate the model using the baseline values of the parameters in Table 1
and various initial values of the number of individuals who habitually wear face masks in public, right from the
very beginning of the pandemic (denoted by N2(0)). It should be noted that the parameters associated with other
interventions (e.g., vaccination-related and social-distancing-related parameters) are kept at their baseline values
given in Table 1. The simulation results obtained, depicted in Figure 5, generally show that the early adoption of
face masks measures play a vital role in curtailing the COVID-related mortality in the U.S., particularly for the case
when mask-wearers do not opt to give up mask wearing (i.e., when α21 6= 0). For the case where the parameters
associated with the back-and-forth transitions between the masking and non-masking groups (i.e., α12 and α21)
are maintained at their baseline values (given in Table 1), this figure shows that the size of the initial number
of individuals who wear face masks, right from the beginning of the pandemic, has only marginal impact on the
cumulative COVID-related mortality in the U.S., as measured in relation to the cumulative mortality recorded
when the initial population of mask wearers is at the 1% baseline level (Figure 5 (a)). On the other hand, for the
case when mask-wearers remain mask-wearers since the very beginning of the pandemic (i.e., α21 = 0), while
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non-maskers in Group 1 can change their behavior and become mask-wearers (i.e., α12 6= 0), the initial number of
individuals who adopt masking from the beginning of the pandemic has a more pronounced effect on the cumulative
mortality (Figure 5 (b)), in relation to the baseline. In particular, if 25% of the U.S. population adopt mask-wearing
right from the beginning of the pandemic (and remain mask-wearers), up to 6% of COVID-related mortality can
be averted, in relation to the 1% baseline mask-wearing at the beginning of the pandemic (green curve, Figure 5
(b)). Further, the reduction in cumulative mortality rises to 11% (in relation to the baseline) could be achieved if
half of Americans opted to wear face masks since the very beginning of the pandemic (blue curve, Figure 5 (b)).
For the case when no back-and-forth transitions between the two (mask-wearing and non-mask-wearing) groups
is allowed (i.e., when α12 = α21 = 0), our simulations show a far more dramatic effect of face mask usage in
reducing COVID-19 mortality ( Figure 5 (c)). In particular, we showed that up to 24% cumulative mortality can
be averted, in comparison to the baseline (magenta curve), if 25% of the U.S. population adopted mask-wearing
mandate right from the beginning of the pandemic (green curve, Figure 5 (c)). Furthermore, 49% of the cumulative
mortality could have been prevented if 50% of the U.S. population were wearing face masks since the beginning of
the pandemic (blue curve, Figure 5 (c)).
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Figure 5: Assessment of the singular impact of face mask usage on COVID-19 pandemic in the U.S. Simulations
of the model (2.1)-(2.2), showing cumulative COVID-induced mortality, as a function of time, for (a) face mask
transition parameters (α12 and α21) maintained at their baseline values, (b) mask-wearers strictly adhere to wearing
masks (α21 = 0) and non-mask-wearers transit to mask wearing at their baseline rate (α12 6= 0), (c) non-mask
wearers and mask-wearers do not change their behavior (i.e., α12 = α21 = 0). Mask use change is implemented in
terms of changes in the initial population of individuals who wear face-masks (i.e., in terms of changes in the initial
total population size in Group 2, N2(0)). Parameter values used in the simulations are as given by the baseline
values in Table 1, with different values of α12 and α21.

4.2 Assessing the impact of social-distancing

In this section, we carry out numerical simulations to assess whether social-distancing alone (implemented right
from the very beginning of the pandemic) might be sufficient to contain the COVID-19 pandemic in the U.S. To
achieve this objective, the model {(2.1), (2.2)} is simulated using the parameters in Table 1 with various levels
of the social-distancing compliance parameter (cs) and all other control-related parameters (e.g., initial face mask
coverage and efficacy, vaccination rate and efficacy etc.) are maintained at their baseline values.

The simulation results obtained, depicted in Figure 6, show that the cumulative mortality (Figure 6 (a)) and
daily mortality (Figure 6 (b)) decrease with increasing social-distancing compliance. In the absence of social-
distancing (i.e., cs = 0), the simulations show that the U.S. could record up to 422, 013 cumulative deaths by
September 12, 2021 (Figure 6 (a), red curve). For this (social-distancing-free) scenario, the U.S. will record a
peak daily mortality of about 6, 585 deaths on March 21, 2020 (Figure 6 (b), red curve). It is further shown
that, if 30% of the U.S. population will be observing social-distancing in public, up to 24% reduction can be
recorded in the cumulative mortality, in relation to the cumulative mortality recording for the social-distancing-
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free scenario (Figure 6 (a), magenta curve). Similarly, up to 51% reduction can be achieved in daily mortality
(Figure 6 (b), magenta curve), and the pandemic would have peaked a month later (in April 2020; the daily
mortality at this peak would have been 3, 247). Further dramatic reduction in COVID-19 mortality is recorded as
social-distancing compliance is further increased. For instance, if 60% of the U.S. population adhere to the social-
distancing measures, about 62% of the cumulative deaths recorded (for the case with cs = 0) would have been
averted (Figure 6 (a), green curve). For this scenario, 87% of the daily deaths would have been prevented and the
pandemic would have peaked in June 2020 (the daily mortality at this peak would have been 864). Finally, if 75%
of the U.S. population complied with the social-distancing measures, right from the beginning of the pandemic,
the COVID-19 pandemic would have failed to generate a major outbreak in the U.S. (Figure 6, blue curves). In
particular, the cumulative mortality for the entire U.S. by September 21, 2021 will be about 20, 000. Thus, in
summary, the simulations in Figure 6 show that COVID-19 could have been effectively suppressed in the U.S.
using social-distancing at moderate to high compliance levels.
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Figure 6: Assessment of the singular impact of social-distancing on COVID-19 pandemic in the U.S. Simula-
tions of the model (2.1)-(2.2) showing (a) cumulative mortality, as a function of time; (b) daily mortality, as a
function of time, for various compliance levels of the social-distancing parameter (cs). Initial conditions used
are: (S0
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2) = (0.99 × 336218660 − 1, 0, 0, 1, 0, 0, 0, 0.01 ×

336218660, 0, 0, 0, 0, 0, 0). Parameter values used in the simulations are as given by the baseline values in Ta-
ble 1.

4.3 Assessment of combined impact of vaccination and social-distancing

The model (2.1)-(2.2) will now be simulated to assess the community-wide impact of the combined vaccination
and social-distancing interventions. Although the vaccines are expected to be available by the end of the year 2020
or early in 2021, we assume that there will be some time lag before the vaccines are made widely available to the
general public. This is because the vaccines will initially be targeted to the people most at risk (notably the frontline
healthcare workers, nursing home residents and staff, essential workers, people with underlying conditions etc.)
before being made available to the general. For simulation purposes, we assume that the vaccines will be available
to the general public by March 15, 2021.

We consider the three vaccines currently on the verge of being approved by the FDA for use in humans, namely
the AstraZeneca vaccine (with estimated efficacy of 70%) and the Moderna and Pfizer vaccines (each with estimated
efficacy of about 95%). Simulations are carried out using the baseline parameter values in Table 1, with various
values of the vaccination coverage parameter (ξv). For these simulations, parameters and initial conditions related
to the other intervention (face mask usage) are maintained at their baseline values. Since the Moderna and Pfizer
vaccines have essentially the same estimated efficacy (≈ 95%), we group them together in the simulations.
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The simulation results obtained for the AstraZeneca vaccine, depicted in Figures 7 (a)-(c)), show that, in the
absence of vaccination (and with social-distancing at baseline compliance level), approximately 1, 388 will be
recorded on August 31, 2021 (red curves of Figures 7 (a)-(c)). Furthermore, this figure shows a marked reduction
in daily mortality with increasing vaccination coverage (ξv). This reduction further increases if vaccination is
combined with social-distancing (particularly with high enough compliance). For instance, with social-distancing
compliance maintained at its baseline value (cs = 0.3015), vaccinating at a rate of 0.00074 per day (which roughly
translates to vaccinating 250, 000 people every day) resulted in a reduction of the projected daily mortality on
August 31, 2021 by 14% (in comparison to the case when no vaccination is used; magenta curve in Figure 7 (a)).
In fact, up to 78% of the projected daily mortality for August 31, 2021 could be averted if, for this vaccination rate,
60% social-distancing compliance is attained (magenta curve in Figure 7 (c)). If the vaccination rate is further
increased to, for instance, ξv = 0.0015 per day (corresponding to vaccinating about 500, 000 people every day),
our simulations show a reduction of 26% in the projected daily mortality on August 31, 2021 if social-distancing
is maintained at its baseline level (gold curve, Figure 7 (a)). This reduction increases to 85% if the vaccination
program is supplemented with social-distancing with 60% compliance (gold curve, Figures 7 (c)). If 1 million
people are vaccinated per day (i.e., ξv = 0.003) per day, our simulations show that the use of AstraZeneca vaccine
could lead to up to 46% reduction in the projected daily mortality on August 31, 2021 if the vaccination program is
combined with social-distancing at baseline compliance level. Further reductions in the projected daily mortality
are recorded when either the Moderna or Pfizer vaccine (with moderate to high vaccination coverage) is used
(Figures 7 (d)-(f)), particularly if combined with social-distancing with high compliance (blue curves in Figures 7
(d)-(f)). These results are summarized in Table 3.
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Figure 7: Assessment of the combined impact of vaccination and social-distancing on daily mortality. Simulations
of the model (2.1)-(2.2), depicting daily mortality as a function of time, for various vaccine types and social-
distancing compliance (cs). (a)-(c): AstraZeneca vaccine. (d)-(f): Pfizer or Moderna vaccine. The vaccination
rates ξv = 7.4× 10−4, 1.5× 10−3, 3.0× 10−3, 5.9× 10−3 correspond, respectively, to vaccinating approximately
2.5× 105, 5.0× 105, 1.0× 106, 2.0× 106 people per day. Other parameter values of the model are as presented in
Table 1.
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Table 3: Percentage reduction in projected daily mortality on August 31, 2021, in relation to the daily mortality
in the absence of vaccination (1, 383 COVID-19 deaths on August 31, 2021), for different types of COVID-19
vaccines: AstraZeneca vaccine (efficacy εv = 0.7); Pfizer and/or Moderna vaccine (efficacy εv = 0.95), and
various compliance levels of social-distancing (cs) and number of individuals vaccinated per day.

Reduction with Reduction with Reduction with
Number of people cs = 0.3051 cs = 0.45 cs = 0.60

vaccinated per day εv = 70% εv = 95% εv = 70% εv = 95% εv = 70% εv = 95%

250,000 14% 15% 38% 39% 78% 79%

500,000 26% 29% 48% 51% 85% 87%

1,000,000 46% 51% 65% 69% 93% 95%

2,000,000 74% 80% 87% 91% 98.8% 99.5%

4.4 Impact of vaccination and social-distancing on time to pandemic elimination

The model (2.1)-(2.2) will now be simulated to assess the community-wide impact of the combined vaccination and
social-distancing interventions on the expected time the implementation of these interventions will take to result in
the elimination of the pandemic in the U.S. (i.e., time needed for the number of new COVID-19 cases to be essen-
tially zero). As in Section 4.3, we consider the three candidate vaccines (the AstraZeneca, Moderna and the Pfizer
vaccines). The model is simulated to generate a time series of new daily COVID-19 cases in the U.S., for various
vaccination coverage and social-distancing compliance levels. The results obtained, for the AstraZeneca vaccine,
depicted in Figures 8 (a)-(c), show a marked decrease in the time-to-elimination with increasing vaccination cov-
erage and social-distancing compliance. In particular, vaccinating 250, 000 people per day, with the AstraZeneca
vaccine, will result in COVID-19 elimination in the U.S. by late October of 2025, if the social-distancing compli-
ance is kept at its current baseline level of 30.51% (red curve of Figure 8 (a)). For this scenario, the elimination
will be reached in early October 2025 using either the Moderna or the Pfizer vaccine. If the vaccination rate is
further increases, such as vaccinating 1 million people every day, COVID-19 elimination is achieved much sooner.
For instance, for this scenario (i.e., ξv = 0.003 per day), the pandemic can be eliminated, using the AstraZeneca
vaccine, by mid July of 2022 if the vaccination program is combined with social-distancing at 60% compliance
(green curve of Figure 8 (c)). Here, too, using the Moderna or the Pfizer vaccine can lead to the elimination of the
pandemic a little sooner (by mid June 2022) if social-distancing is maintained at 60% (green curve, Figure 8 (f)).
A summary of time-to-elimination for the aforementioned, and other, scenarios is given in Table 4. In conclusions,
these simulations show that any of the three candidate vaccines considered in this study will lead to the elimination
of the U.S. The time-to-elimination depends on the vaccination rate and the compliance level of social-distancing.
The pandemic can be eliminated by as early as June of 2022 if moderate to high vaccination rate (e.g., 1 million
people are vaccinated per day) and social-distancing compliance (e.g., cs = 0.6) are attained and maintained.
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Figure 8: Effect of vaccination and social-distancing on time-to-elimination. Simulations of the model (2.1)-(2.2),
depicting the impact of three candidate vaccines against COVID-19 (the AstraZeneca vaccine, and the Pfizer or
Moderna vaccine) and social-distancing, on time-to-elimination of the pandemic in the U.S. (a)-(c): AstraZeneca
vaccine. (d)-(f): Moderna or Pfizer vaccine. The social-distancing compliance is cs = 0.3051 for (a) and (d),
cs = 0.45 for (b) and (e), and cs = 0.60 for (e) and (f). The vaccination rates ξv = 7.4× 10−4, 1.5× 10−3, 3.0×
10−3, 5.9× 10−3 correspond, respectively, to vaccinating approximately 2.5× 105, 5.0× 105, 1.0× 106, 2.0× 106

people per day. The values of the other parameters of the model used in the simulation are as given in Table 1.

Table 4: Time to eliminate the COVID-19 pandemic in the U.S., for various values of the vaccination rate (ξv) using
the three candidate vaccines (AstraZeneca vaccine with efficacy εv = 70%; the Moderna or Pfizer vaccine with
efficacy εv = 95%) and various levels of social-distancing compliance (cs). Parameter values used are as given in
Table 1.

Reduction with Reduction with Reduction with
Number of people cs = 0.3051 cs = 0.45 cs = 0.60

vaccinated per day εv = 70% εv = 95% εv = 70% εv = 95% εv = 70% εv = 95%

250,000 10/26/2025 10/09/2025 07/08/2025 07/15/2025 07/03/2024 06/06/2024

500,000 05/19/2024 05/14/2024 01/10/2024 12/26/2023 04/25/2023 04/02/2023

1,000,000 03/26/2023 03/06/2023 12/31/2022 12/11/2022 07/14/2022 06/18/2022

2,000,000 06/24/2022 06/09/2022 04/24/2022 04/05/2022 01/14/2022 12/21/2021

5 Discussion and Conclusions

Since its emergence late in December of 2019, the novel Coronavirus pandemic continues to inflict devastating
public health and economic burden across the world. As of December 5, 2020, the pandemic accounted for over 67
million confirmed cases and over 1.5 million deaths globally. Although control efforts against the pandemic have fo-
cused on the use of non-pharmaceutical interventions, such as social-distancing, face mask usage, quarantine, self-
isolation, contact-tracing, community lockdowns, etc., a number of highly promising (safe and highly-efficacious)
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anti-COVID vaccines are currently on the verge of being approved by the Food and Drug Administration (FDA)
for use in humans. In particular, two vaccine manufacturers, Moderna Inc. and Pfizer Inc., filed for Emergency
Use Authorization with the FDA in November 2020 (each of the two vaccines has estimated protective efficacy
of about 95%). Furthermore, AstraZeneca vaccine, developed by the pharmaceutical giant, AstraZeneca, and Uni-
versity of Oxford, UK, is undergoing Phase III of clinical trials with very promising results (estimated efficacy of
70%). Mathematics (modeling, analysis and data analytics) has historically been used to provide robust insight into
the transmission dynamics and control of infectious diseases, dating back to the pioneering works of the likes of
Daniel Bernoulli in the 1760s (on smallpox immunization), Sir Ronald Ross and George Macdonald between the
1920s and 1950s (on malaria modeling) and the compartmental modeling framework developed by Kermack and
McKendrick in the 1920s [32–34]. In this study we have used mathematical modeling approaches, coupled with
rigorous analysis, to assess the potential population-level impact of the wide scale deployment of any (or combina-
tion of) the aforementioned candidate vaccines in curtailing the burden of the COVID-19 pandemic in the U.S. We
have also assessed the impact of other non-pharmaceutical interventions, such as face mask and social-distancing,
implemented singly or in combination with any of the three vaccines, on the dynamics and control of the pandemic
in the U.S.

We developed a novel mathematical model, which stratifies the total population into two subgroups of individu-
als who habitually wear face masks in public and those who do not. The resulting two group COVID-19 vaccination
model, which takes the form of a deterministic system of nonlinear ordinary differential equations, was initially
fitted using observed cumulative COVID-induced mortality data for the U.S. The model allowed for the assessment
of social-distancing measures on combating the spread of the pandemic. The model was then rigorously analysed
to gain insight into its dynamical features. In particular, we showed that the disease-free equilibrium of the model
is locally-asymptotically stable whenever a certain epidemiological threshold, known as the control reproduction
number (denoted by Rc), is less than unity. The implication of this result is that (for the case when Rc < 1), a
small influx of COVID-infected individuals will not generate an outbreak in the community.

The expression for the reproduction number (Rc) was used to compute the nationwide vaccine-induced herd
immunity threshold. The herd immunity threshold represents the minimum proportion of the U.S. population that
needs to be vaccinated to ensure elimination of the pandemic. Simulations of our model shows, for the current
baseline level of social-distancing in the U.S. (at 30%), herd immunity cannot be achieved in the U.S. using the
AstraZeneca vaccine. However, achieving such herd immunity threshold is feasible using either the Moderna or
the Pfizer vaccine if at least 83% of the U.S. residents are vaccinated. Our simulations further showed that the
level of herd immunity needed to eliminate the pandemic decreases, for each of the three vaccines, with increasing
social-distancing compliance. In particular, if 80% of American residents adhere to social-distancing, vaccinating
only 35% and 26% with the AstraZeneca or Moderna/Pfizer vaccine, respectively, will generate the desired herd
immunity. In other words, this study shows that the prospect of achieving vaccine-derived herd immunity, using
any of the three candidate vaccines, is very promising, particularly if the vaccination program is complemented
with social-distancing measures with moderate to high compliance levels.

This study also shows that the use of any of the three vaccines (i.e., the AstraZeneca, Pfizer, or Moderna
vaccine) will dramatically reduce the burden of the COVID-19 pandemic in the U.S. (as measured in terms of
cumulative or daily COVID-induced mortality). The level of reduction achieved increases with increasing daily
vaccination coverage. Furthermore, the effectiveness of the vaccination program (using any of the three candidate
vaccines), to reduce COVID-19 burden, is significantly enhanced if the vaccination program is complemented with
other interventions, such as social-distancing (at moderate to high compliance levels). Our study further highlights
the fact that early implementation of masks adoption (i.e., face mask adoption from the very beginning of the
pandemic) plays a crucial role in effectively combating the burden of the COVID-19 pandemic (as measured in
terms of reduction in cumulative COVID-related mortality) in the U.S. It was further shown that the level of such
reduction is very sensitive to the rate at which mask-wearers opt to abandon mask-wearing (i.e., reverting to the
group of non-mask wearers). In other words, our study emphasize the fact that early implementation or adoption
of mask mandate, together with (strict) compliance to this mandate, plays a major role in effectively curtailing, or
halting, the COVID-19 pandemic in the U.S.

We further showed that the time-to-elimination of COVID-19 in the U.S., using a vaccine (and a non-pharmaceutical
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intervention), depends on the vaccination rate (i.e., number of people vaccinated everyday) and the level of com-
pliance of social-distancing measures in the country. Specifically, our study shows that the COVID-19 pandemic
can be eliminated in the U.S. by early June of 2022 if moderate to high vaccination rate (e.g., 1 million people
vaccinated per day) and social-distancing compliance (e.g., 60% social-distancing compliance) are achieved and
maintained. It should, however, be mentioned that the time-to-elimination is sensitive to the level of community
transmission of COVID-19 in the population (it is also sensitive to the effectiveness and coverage (compliance)
levels of the other (non-pharmaceutical) interventions, particularly face mask usage and social-distancing compli-
ance, implemented in the community). Specifically, our study was carried out during the months of November and
December of 2020, when the United States was experiencing a devastating third wave of the COVID-19 pandemic
(recording an average of 200, 000 confirmed cases per day, together with record numbers of hospitalizations and
COVID-induced mortality). This explains the somewhat longer estimated time-to-elimination of the pandemic,
using any of the three vaccines, for the case where social-distancing compliance is low. The estimate for the
time-to-elimination (using any of the three vaccines) will be shorter if the community transmission is significantly
reduced (as will be vividly evident from the reduced values of the transmission- and mortality-related parameters
of the re-calibrated version of our model).

From the derivation of our model, there is clearly an endemic disease equilibrium whose value we have not
explicitly calculated, and whose existence and stability will signal the long term persistence of the disease in the
population. However, since our analysis was geared towards eradication of the disease, the herd immunity thresh-
olds determined here, that hold when the control reproduction number is less than unity, also serve as condition
for the non-existence of the endemic equilibrium state in the absence of the phenomenon of backward bifurcation.
These, and other aspects such as long term dynamics that have not been fully examined in the current analysis are
aspects for further studies.
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Table 5: Description of the state variables of the model {(2.1), (2.2)}.

State variable Description
S1u Population of non-vaccinated susceptible individuals who do not habitually wear face masks
S2u Population of non-vaccinated susceptible individuals who habitually face masks
S1v Population of vaccinated susceptible individuals who do not habitually wear face masks
S2v Population of vaccinated susceptible individuals who habitually wear face masks
E1 Population of exposed (newly-infected) individuals who do not habitually wear face masks
E2 Population of exposed (newly-infected) individuals who habitually wear face masks
P1 Population of pre-symptomatic infectious individuals who do not habitually wear face masks
P2 Population of pre-symptomatic infectious individuals who habitually wear face masks
I1 Population of symptomatically-infectious individuals who do not habitually wear face masks
I2 Population of symptomatically-infectious individuals who habitually wear face masks
A1 Population of asymptomatically-infectious individuals who do not habitually wear face masks
A2 Population of asymptomatically-infectious individuals who habitually wear face masks
H1 Population of hospitalized individuals who do not habitually wear face masks
H2 Population of hospitalized individuals who habitually wear face masks
R1 Population of recovered individuals who do not habitually wear face masks
R2 Population of recovered individuals who habitually wear face masks
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Table 6: Description of the parameters of the model {(2.1), (2.2)}.

Parameters Description
Π Recruitment (birth or immigration) rate into the population
µ Natural mortality rate
βP1(βP2) Effective contact rate for pre-symptomatic individuals who do not wear (wear)

face masks
βI1(βI2) Effective contact rate for infectious symptomatic individuals who do not wear (wear)

face masks
βA1(βA2) Effective contact rate for symptomatically-infectious individuals who do not wear (wear)

face masks
βH1(βH2) Effective contact rate for hospitalized individuals who do not wear (wear)

face masks
0 < ε0 < 1 Outward protective efficacy of face masks
0 < εi < 1 Inward protective efficacy of face masks
ωv Vaccine waning rate
α12 Rate at which non-habitual face masks wearers choose to become habitual wearers
α21 Rate at which habitual face masks wearers choose to become non-habitual wearers
ξv Per capita vaccination rate
0 < εv < 1 Protective efficacy of the vaccine
σ1(σ2) Rate at which exposed individuals who do not wear (wear) face masks progress to the

corresponding pre-symptomatic infectious stage
σP Rate at which pre-symptomatic infectious individuals progress to

symptomatically-infectious or asymptomatically-infectious stage
r(q) Proportion of pre-symptomatic infectious individuals who do not wear (wear) face masks

that become symptomatically-infectious
φ1I(φ2I) Hospitalization rate for symptomatically-infectious individuals who do not wear (wear)

face masks
γ1A(γ2A) Recovery rate for asymptomatically-infectious individuals who do not wear (wear)

face masks
γ1I(γ2I) Recovery rate for symptomatically-infectious individuals who do not wear (wear)

face masks
γ1H(γ2H) Recovery rate for hospitalized individuals who do not wear (wear) face masks
δ1I(δ2I) Disease-induced mortality rate for symptomatically-infectious individuals who do not

wear (wear) face masks
δ1H(δ2H) Disease-induced mortality rate for hospitalized individuals who do not wear (wear)

face masks
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Appendix I: Entries of the Non-negative Matrix F

f1 = (1−cs)βP1

[
S∗1u + (1− εv)S∗1v

N∗1

]
, f2 = (1−cs)βI1

[
S∗1u + (1− εv)S∗1v

N∗1

]
, f3 = (1−cs)βA1

[
S∗1u + (1− εv)S∗1v

N∗1

]
,

f4 = (1− cs)βH1

[
S∗1u + (1− εv)S∗1v

N∗1

]
, f5 = (1− cs)(1− ε0)βP2

[
S∗1u + (1− εv)S∗1v

N∗1

]
,

f6 = (1− cs)(1− ε0)βI2

[
S∗1u + (1− εv)S∗1v

N∗1

]
, f7 = (1− cs)(1− ε0)βA2

[
S∗1u + (1− εv)S∗1v

N∗1

]
,

f8 = (1− cs)(1− ε0)βH2

[
S∗1u + (1− εv)S∗1v

N∗2

]
, g1 = (1− cs)(1− εi)βP1

[
S∗2u + (1− εv)S∗2v

N∗2

]
,

g2 = (1− cs)(1− εi)βI1
[
S∗2u + (1− εv)S∗2v

N∗2

]
, g3 = (1− cs)(1− εi)βA1

[
S∗2u + (1− εv)S∗2v

N∗2

]
,

g4 = (1− cs)(1− εi)βH1

[
S∗2u + (1− εv)S∗2v

N∗2

]
, g5 = (1− cs)(1− εi)(1− ε0)βP2

[
S∗2u + (1− εv)S∗2v

N∗2

]
,

g6 = (1− cs)(1− εi)(1− ε0)βI2

[
S∗2u + (1− εv)S∗2v

N∗2

]
, g7 = (1− εi)(1− ε0)βA2

[
S∗2u + (1− εv)S∗2v

N∗2

]
,

g8 = (1− εi)(1− ε0)βH2

[
S∗2u + (1− εv)S∗2v

N∗2

]
.

Appendix II

a11 =
K3K5K6K7K8K9K10σ1[f3σp(1− r) + f1K4] + rK4K6K7K8K9K10σ1σp(f2K5 + f4φ1)

2

10∏
i=1

Ki

,

a12 =
σ1K1K2K3K4K5 [rg2K4K5σp + (1− r)g3K3K5σp + rg4K4φ1σp + g1K3K4K5]

4

10∏
i=1

Ki

,

a21 =
σ2K6K7K8K9K10 [qf6K9K10σp + (1− q)f7K8K10σp + qf8K9φ2σp + f5K8K9K10]

4

10∏
i=1

Ki

,

a22 =
K1K2K3K4K5K8K10σ2[g7σp(1− q) + g5K9] + qK1K2K3K4K5K9σ2σp(g6K10 + g8φ2)

2
10∏
i=1

Ki

.
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b11 =
K3K5K6K7K8K9K10σ1[βA1σp(1− r) + βP1K4] + rK4K6K7K8K9K10σ1σp(βI1K5 + βH1φ1)

2

10∏
i=1

Ki

,

b12 =
σ1K1K2K3K4K5 [rβI1K4K5σp + (1− r)βA1K3K5σp + rβH1K4φ1σp + βP1K3K4K5]

4

10∏
i=1

Ki

,

b21 =
σ2K6K7K8K9K10 [qβI2K9K10σp + (1− q)βA2K8K10σp + qβH2K9φ2σp + βP2K8K9K10]

4
10∏
i=1

Ki

,

b22 =
K1K2K3K4K5K8K10σ2[βA2σp(1− q) + βP2K9] + qK1K2K3K4K5K9σ2σp(βI2K10 + βH2φ2)

2
10∏
i=1

Ki

.
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