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Abstract 

Background: Understanding the impact of non-pharmaceutical interventions remains a critical 

epidemiological problem in South Africa that reported the largest number of confirmed 

COVID-19 cases and deaths from the African continent. Methods: In this study, we applied 

two existing epidemiological models, an extension of the Susceptible-Infected-Removed 

model (eSIR) and SAPHIRE, to fit the daily ascertained infected (and removed) cases from 

March 15 to July 31 in South Africa. To combine the desirable features from the two models, 

we further extended the eSIR model to an eSEIRD model. Results: Using the eSEIRD model, 

the COVID-19 transmission dynamics in South Africa was characterized by the estimated basic 

reproduction number (𝑅𝑅0) at 2.10 (95%CI: [2.09,2.10]). The decrease of effective reproduction 

number with time implied the effectiveness of interventions. The low estimated ascertained 

rate was found to be 2.17% (95%CI: [2.15%, 2.19%]) in the eSEIRD model. The overall infection 

fatality ratio (IFR) was estimated as 0.04% (95%CI: [0.02%, 0.06%]) while the reported case 

fatality ratio was 4.40% (95% CI: [<0.01%, 11.81%]). As of December 31, 2020, the cumulative 

number of ascertained cases and total infected would reach roughly 801 thousand and 36.9 

million according to the long-term forecasting. Conclusions: The dynamics based on our 
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models suggested a decline of COVID-19 infection and that the severeness of the epidemic 

might be largely mitigated through strict interventions. Besides providing insights on the 

COVID-19 dynamics in South Africa, we develop powerful forecasting tools that allow 

incorporating ascertained rate and IFR estimation and inquiring into the effect of intervention 

measures on COVID-19 spread.  

Key words: COVID-19; South Africa; forecasting; unascertained cases; underreporting factors; 

infection fatality ratio 

Key Messages: 

 This study delineated the COVID-19 dynamics in South Africa from March 15 to July 31 

and confirmed the effectiveness of the main non-pharmaceutical intervention—

lockdown, and mandatory wearing of face-mask in public places using epidemiological 

models;  

 COVID-19 spread in South Africa was found to be associated with both low ascertained 

rate and low infection fatality ratio; 

 According to the long-term forecast, by December 31, 2020, the cumulative number 

of ascertained cases and total infected would reach roughly 801 thousand and 36.9 

million respectively.  
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1 Introduction 

The coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome 

coronavirus 2 (SARS-CoV-2), was first detected in early December 2019 in Wuhan, China. The 

first case was confirmed in South Africa on March 5, 2020. As of October 20, 2020, there are 

1,262,476 confirmed cases (cumulative total) and 28,601 deaths confirmed in Africa1. South 

Africa remains the ‘epicenter of the outbreak in the African continent’1 with the largest 

number of confirmed cases (800,872) and deaths (21,803), contributing to 53% of the total 

confirmed cases and 89% of deaths, while accounting for only 5% of population in Africa as of 

December 4, 20202. Although, there is no seroprevalence survey result published on the 

population in South Africa to our knowledge, an antibody survey on 3,000 blood donors in 

Kenya, a Sub-Saharan African country, estimated 1.6 million people with SARS-CoV-2 

antibodies by the end of July 20203, implying the possibility of a large degree of 

underreporting/undetected cases in Africa, including South Africa. Thus, understanding the 

key epidemiological constructs for COVID-19 outbreak is paramount for containing the spread 

of COVID-19 in South Africa, as well as explaining the disparity between seroprevalence 

estimates and reported number of cases.  

1.1 Interventions: With a universal goal to ‘flatten the curve’, a series of non-pharmaceutical 

interventions were implemented by the government in South Africa, that have been gradually 

lifted since early May 20204. On March 27, 2020, South Africa adopted a three-week 

nationwide hard-lockdown (level 5) along with closure of its international borders, which was 

extended to April 30, 2020. Thereafter, to balance the positive health effects of strict 

interventions against their economic costs5, South Africa began a gradual and phased recovery 

of economic activities with the lockdown restriction eased to level 44, allowing inter-provincial 
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travel only for essential services. From June 1, national restrictions were lowered to level 3 

allowing for inter-provincial travel and school opening (Table 1). Face-mask wearing was 

mandatory in public places at all times, with limitations on gatherings, and sale of alcohol and 

cigarettes were restricted6. Although these interventions implemented at an early stage had 

a higher potential for pandemic containment, previous studies6–9 reported a consistently large 

value for the estimated basic reproduction number (𝑅𝑅0) ranging from 2.2 to 3.2 in South Africa 

by models trained with data in relatively early time windows. Using data observed under 

various intervention scenarios over a longer period of time, we carry out a thorough 

investigation to assess the current COVID-19 spread and the effect of these interventions, 

which will provide valuable insights into the transition dynamics of COVID-19 and intervention 

deployment in South Africa, and beyond.  

1.2 Unascertained cases and deaths: Based on the clinical characteristics of COVID-19, a 

majority of patients are symptomatic (roughly 84% according to a recent study10), most of 

whom have mild symptoms11 and tend to not seek testing and medical care. While private 

hospitals have reached maximum capacity, public and field hospitals beds have still some 

margin left with additional challenges due to scarcity of staff12. Several recent studies13–15 

reported that a nonnegligible proportion of unascertained cases contributed to the quick 

spreading of COVID-197. It is suggested that only 1 in 4 mildly ill cases would be detected in 

South Africa16. The relatively lower testing rate in South Africa (Table 1; Figure 1(b)) coupled 

with a very high positive rate of testing especially in July and August17, suggests inadequacy of 

testing, as well as the possibility of a large unobserved number of unascertained cases18. The 

WHO situation report dated October 20 reports an addition of 429 retrospective deaths over 

just 7 days from mortality audits in South Africa further questioning the reliability of COVID-
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19 mortality data19. Thus, modeling both ascertained and unascertained cases and deaths can 

measure infection fatality ratios (IFRs, the proportion of deaths among all infected 

individuals20) of COVID-19, leading to a better understanding of the clinical severity of the 

disease.  

1.3 Epidemiological models: The Susceptible-Infectious-Removed or SIR model21 is arguably 

the most commonly used epidemiological models for modeling the trajectory of an infectious 

disease. A recent extension of SIR, called extended-SIR or eSIR22, was developed to 

incorporate user-specified non-pharmaceutical interventions and quarantine protocols into a 

Bayesian hierarchical Beta-Dirichlet state-space model, which was successfully applied to 

model COVID-19 dynamics in India23. One major advantage of this Bayesian hierarchical 

structure is that uncertainty associated with all parameters and functions of parameters can 

be calculated from posterior draws without relying on large-sample approximations23. 

Extending the simple compartment structure in eSIR model, the SAPHIRE model24, delineated 

the full transmission COVID-19 dynamics in Wuhan, China with additional compartments by 

introducing unobserved categories13. In this article, we extended the eSIR approach to the 

eSEIRD model to combine the advantages of the two existing models, using a Bayesian 

hierarchical structure to introduce additional unobserved compartments and characterize 

uncertainty in critical epidemiological parameters including basic reproduction number, 

ascertained rate and IFR, with input data as observed counts for cases, recoveries and deaths. 

Furthermore, we applied these three models and compared the results of the eSEIRD model 

with the eSIR and SAPHIRE model, with the following primary objectives: (i) characterizing the 

COVID-19 dynamics from March 15 to July 31; (ii) evaluating the effectiveness of the main 

non-pharmaceutical intervention—lockdown, and mandatory wearing of face-mask in public 
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places; (iii) capturing the uncertainty in estimating the ascertained rate and IFR; and (iv) 

forecasting the future of COVID-19 spread in South Africa.  

2 Methods 

2.1 Study Design and Data Source: COVID-19 data for South Africa were extracted from the 

COVID-19 Data Repository by the Center for Systems Science and Engineering (CSSE) at Johns 

Hopkins University25 from the onset of the first 50 confirmed case (March 15) to November 

29, 2020. We fitted the models using data up to July 31 and predicted the state of COVID-19 

infection in South Africa in a short-term window, from August 1 to August 31, and a relatively 

long-term window up to December 31. To compare the model short-term prediction 

performance of different models, we used the symmetric mean absolute percentage error 

(SMAPE), given by:  SMAPE = 𝟏𝟏𝟏𝟏𝟏𝟏%
𝒏𝒏

∑ |𝑭𝑭𝒕𝒕−𝑨𝑨𝒕𝒕|
(|𝑨𝑨𝒕𝒕|+|𝑭𝑭𝒕𝒕|) 𝟐𝟐⁄

𝒏𝒏
𝒕𝒕=𝟏𝟏   where 𝑨𝑨𝒕𝒕  is the observed value from 

August 1 to 31 and 𝑭𝑭𝒕𝒕 is the forecast value in this time period. This design enabled us to select 

an optimal modeling strategy for South Africa data and check the robustness of prediction 

performance across different models.  

2.2 Statistical Methodology: We considered two existing epidemiological methods, the eSIR 

and SAPHIRE model, and the extension of eSIR, viz., the eSEIRD model, as described in Section 

1.3. The infection transition schematic diagrams for the three models are shown in Figure 2. 

Parameter settings: Table S.1.1 summarizes the list of notations and assumptions. We 

assumed a constant population size (𝑁𝑁= 57,779,622) for all models and fixed a few transition 

parameters below in the SAPHIRE and eSEIRD model. First, we set an equal number of daily 

inbound and outbound travelers (𝑛𝑛), in which 𝑛𝑛 = 4 × 10−4𝑁𝑁 from March 15 to 25 estimated 

by the number of international travelers to South Africa in 201826, otherwise 𝑛𝑛 = 0 when 
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border closed, i.e. after March 26. We fixed the transmissibility ratio between unascertained 

and ascertained cases at 𝛼𝛼=0.55 assuming lower transmissibility for unascertained cases27, an 

incubation period of 5.2 days, and a pre-symptomatic infectious period of 𝐷𝐷𝑝𝑝=2.3 days28,29, 

implying a latent period of 𝐷𝐷𝑒𝑒=2.9 days. The mean of total infectious period was 𝐷𝐷𝑖𝑖+𝐷𝐷𝑝𝑝 = 5.2 

days28, assuming constant infectiousness across the pre-symptomatic and symptomatic 

phases of ascertained cases30, thus, the mean symptomatic infectious period was 𝐷𝐷𝑖𝑖=2.9 days. 

We set the period of ascertained cases from reporting to hospitalization 𝐷𝐷𝑞𝑞=7 days, the same 

as the median interval from symptom onset to admission reported31,32. The period from being 

admitted in hospital to discharge or death was assumed as 𝐷𝐷ℎ = 8.6 days33. 

Choice of Initial states: For the eSIR model, the prior mean for the initial infected/removed 

proportion was set at the observed infected/removed proportion on March 15, and that for 

the susceptible proportion was the total number of the population minus the infected and 

removed proportions22. 

For the SAPHIRE model, other than setting prior parameters for initial states, we set the 

number of initial latent cases 𝐸𝐸(0) was the sum of those ascertained and unascertained cases 

with onset during March 15-17 as 𝐷𝐷𝑒𝑒=2.9 days13 and the number of initial pre-symptomatic 

cases 𝑃𝑃(0) was that from March 18-19 as 𝐷𝐷𝑝𝑝 =2.3 days13. The number of ascertained 

symptomatic cases 𝐼𝐼(0) was assumed as the number of observed infected cases on March 15 

excluding 𝐻𝐻(0),𝑅𝑅(0) 𝑎𝑎𝑎𝑎𝑎𝑎 𝐷𝐷(0) (the initial numbers for hospitalized, recovered, and deaths). 

The initial ascertainment rate (𝑟𝑟0) was assumed as 0.10 as reported in literature15,34, implying 

𝐴𝐴(0) = 0.90
0.10

𝐼𝐼(0) , and a sensitivity analysis with 𝑟𝑟0 =0.25 was conducted to address weak 

information for 𝑟𝑟0 obtained in South Africa and variation of 𝑟𝑟0 in different scenarios. 𝐻𝐻(0) was 

assumed as 50% of the observed ascertained cases on March 9 (by assuming the period from 
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reported to hospitalized was 7 days31,32 at the early stage of the pandemic). In addition, we 

denoted 𝑅𝑅(0) as the sum of observed recovered and death cases on March 15. The number 

of initial susceptible cases 𝑆𝑆(0)  was calculated as the total population (𝑁𝑁) minus 𝐸𝐸(0) ,𝑃𝑃(0) , 

𝐼𝐼(0) ,𝐴𝐴(0) and 𝑅𝑅(0). 

In the eSEIRD model, we set the prior mean of initial ascertained, unascertained and 

hospitalized cases as 𝐼𝐼(0) , 𝐴𝐴(0)  and 𝐻𝐻(0)  discussed above. However, since the latent 

compartment incorporates the pre-symptomatic cases, the mean of the initial latent 

cases was set as the sum of those ascertained and unascertained cases with onset during 

March 15-19 as 𝐷𝐷𝑒𝑒 + 𝐷𝐷𝑝𝑝 = 5.2 days13.The prior mean of initial recoveries and deaths were 

fixed as the number of observed recovered and death cases on March 15, respectively. 

Therefore, the prior mean of initial susceptible compartment was set as the total population 

excluding the mean of other compartments. 

Prior distributions: In the eSIR model, the log-normal priors were used for the removed rate 

𝜈𝜈  and the basic reproduction number 𝑅𝑅0 , in particular 𝜈𝜈~ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(−2.955, 0.910),

with 𝐸𝐸(𝜈𝜈) = 0.082 and 𝑆𝑆𝑆𝑆(𝜈𝜈) = 0.1 22, and 𝑅𝑅0(= 𝛽𝛽
𝜈𝜈

)~𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(0.582, 0.223)  with 𝐸𝐸(𝑅𝑅0) = 

3.2 and 𝑆𝑆𝑆𝑆(𝑅𝑅0) = 123. Flat Gamma priors were used for the scale parameters of the Beta-

Dirichlet distributions as follows: 𝜔𝜔~𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(2,0.0001) , 𝜆𝜆𝐼𝐼~ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(2,0.0001) and 

𝜆𝜆𝑅𝑅~ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(2,0.0001) 23. In the eSEIRD model, apart from same prior for 𝑅𝑅0 �=

𝛽𝛽 �𝑎𝑎(1 − 𝑟𝑟)𝐷𝐷𝑖𝑖 + 𝑟𝑟
1
𝐷𝐷𝑖𝑖
+ 1
𝐷𝐷𝑞𝑞

��, the ascertained rate 𝑟𝑟~𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(10,90)35, the priors for IFR for non-

hospitalized cases 𝜅𝜅1~𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(0.03,2.93) and for hospitalized cases 𝜅𝜅2~𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(0.44,1.76) with 

mean equal to 0.1% and 20%, respectively33. In addition, to account for the effect of time-
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varying contact rate on the transmission rate, we set a time-varying contact rate modifier 𝜋𝜋(𝑡𝑡) 

in the eSIR and eSEIRD model, 𝜋𝜋(𝑡𝑡)= 1 before lockdown, 𝜋𝜋(𝑡𝑡)= 0.75 during strict lockdown 

and 𝜋𝜋(𝑡𝑡)=0.9016,23,36 after September 20 when the interventions were largely eased. Note that 

the modifier 𝜋𝜋(𝑡𝑡) is a conjectural quantity and hence must be guided by empirical studies23. 

Using MCMC sampling method for the eSIR and eSEIRD model, we set the adaptation number 

to be 104, thinned by 10 draws to reduce autocorrelation, and set a burn-in period of 5 × 104 

draws under 1 × 105 iterations for 4 parallel chains.  

We fit the SAPHIRE model in four time periods: March 15-March 26, March 27- April 30, May 

1- May 31 and June 1- July 31, separated by the change-points of the lockdown strictness level, 

and denote the ascertained rate and transmission rate in the time periods as 𝑟𝑟1, 𝑟𝑟2, 𝑟𝑟3, 𝑟𝑟4, 𝛽𝛽1, 

𝛽𝛽2, 𝛽𝛽3 and 𝛽𝛽4. We used 𝑟𝑟1~𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(10,90) and reparameterized 𝑟𝑟2, 𝑟𝑟3 and 𝑟𝑟4 by  

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑟𝑟2) = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑟𝑟1) + 𝛿𝛿1 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑟𝑟3) = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑟𝑟2) + 𝛿𝛿2 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑟𝑟4) = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑟𝑟3) + 𝛿𝛿3 

where 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑟𝑟) = 𝑙𝑙𝑙𝑙𝑙𝑙 ( 𝑟𝑟
1−𝑟𝑟

). We assumed 𝛿𝛿1, 𝛿𝛿2 and 𝛿𝛿3~𝑁𝑁(0,1), and a non-informative prior 

for all transmission rates 𝛽𝛽1,𝛽𝛽2,𝛽𝛽3 and 𝛽𝛽4~𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈(0,2), to reflect lack of information about 

these hyperparameters13. Therefore, 𝛽𝛽 and 𝑟𝑟 were assumed to follow different distributions 

for these four time periods. Finally, the effective reproduction number was given by 𝑅𝑅𝑒𝑒 =

𝛽𝛽 �𝑎𝑎𝐷𝐷𝑝𝑝 + 𝑎𝑎(1 − 𝑟𝑟)𝐷𝐷𝑖𝑖 + 𝑟𝑟
1
𝐷𝐷𝑖𝑖
+ 1
𝐷𝐷𝑞𝑞

�. Posterior samples were drawn using the delayed rejection 

adaptive metropolis algorithm implemented in the R package BayesianTools (version 0.1.7). 

We set a burn-in period of 105 iterations and continued to run 105 iterations with a sampling 

step size of 10 iterations. 
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Methodology implementation details were given in the Supplementary section S.1, with a 

comparison between the four models in the Supplementary S.2. All analyses were conducted 

in R (version 4.0.0), and source codes are available at https://github.com/umich-

cphds/south_africa_modeling. Posterior mean and corresponding 95% credible interval (95% 

CI) were reported for the parameters of interests.  

3 Results  

3.1 Reproduction number and intervention evaluation: The estimated posterior mean of 𝑅𝑅0 

was similar in the eSIR (2.05 (95%CI: [1.81,2.31])) and eSEIRD (2.10 (95%CI: [2.09,2.10])) model 

and robust when 𝑟𝑟0 = 0.25 (Table 2). To evaluate the time-varying effect of non-

pharmaceutical interventions, we evaluated the effective reproduction number (𝑅𝑅𝑒𝑒)  in 

different lockdown periods using SAPHIRE model and it demonstrated that 𝑅𝑅𝑒𝑒  decreased 

dramatically from 3.47 (95%CI: [3.32,3.61]) before lockdown to 1.39 (95%CI: [1.36,1.41]) after 

lockdown implementation though still significantly above 1, suggesting that the effective 

contact rate decreased 60% in the lockdown time period. When lockdown was eased to a 

relatively less strict level in the latest two time periods, the 𝑅𝑅𝑒𝑒  increased slightly to 1.43 

(95%CI: [1.42,1.45]) under lockdown level 4 and 1.58 (95%CI: [1.57,1.58]) under lockdown 

level 3 (Table 2; Figure 3(e)).   

3.2 Short-term and long-term forecasts: We forecasted the total cumulative number of 

infections, including unascertained cases, in the SAPHIRE model up to August 31 depending 

on the time-period considered for estimating the trend. The estimated cumulative number of 

infections was: (a) 24.8 million if the trend of the strict lockdown (level 5) was assumed, (b) 

28.2 million with if the trend of the lockdown level 4 was assumed, and (c) 35.2 million if the 
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trend of lockdown level 3 was assumed. All the short-term forecasts in SAPHIRE model were 

robust under different 𝑟𝑟0  settings which contradicts the intuition to some degree that 

different situation in the early stage may lead to different trajectory of pandemic (Table 3). 

The eSEIRD model also output the predicted total cumulative number of cases which was 32.0 

million under 𝑟𝑟0 = 0.10, or 28.9 million under 𝑟𝑟0 = 0.25, and the total deaths counts as 22 or 

19 thousand when 𝑟𝑟0 = 0.10 or 0.25, respectively, by August 31 (Table 3).  Furthermore, we 

used the eSEIRD model to forecast the epidemic trajectory for a relatively longer time period, 

where we found that by December 31, the cumulative number of ascertained cases and total 

infected would reach roughly 801 thousand and 36.9 million (which is around 60% of the total 

population in South Africa), respectively. The number of total deaths was forecasted as 28 

thousand at the same time. 

3.3 Fitting and prediction performance: All the three main models fitted the COVID-19 data 

in South Africa with high accuracy as the estimated daily new cases were close to the observed 

numbers (Figure 3(a)-(c)). However, the SAPHIRE model performed best in terms of predicting 

cumulative infected cases with the smallest SMAPE (1.81% for 15 days and 2.96% for 31 days 

when 𝑟𝑟0 = 0.10) while the eSEIRD model had the second smallest SMAPE (4.78% for 15 days 

and 6.02% for 31 days when 𝑟𝑟0 = 0.10) (Table 4). Therefore, for selected important time 

points, the predicted number of cumulative ascertained infected cases for the SAPHIRE and 

eSEIRD model were closer to the observed numbers compared with the eSIR model(Table 3). 

The predictive accuracies for the three candidate methods substantiate their credibility in 

terms of capturing the transmission dynamics for the time-period considered in this study.  

3.4 Unascertained cases and deaths: As demonstrated by SAPHIRE modeling results in Figure 

3(d), the large number of unascertained and pre-symptomatic cases contributed to the rapid 
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spread of disease. The estimated ascertained rates were very low: 9.53% (95% CI: [8.70%, 

10.40%]), 1.85% (95% CI: [1.74%, 1.98%]), 2.21% (95% CI: [2.16%, 2.26%]), and 1.84% (95% CI: 

[1.82%, 1.86%]) in the four time periods evaluated, respectively (Table 2; Figure 3(f)). 

Specifically, in the latest three time periods after lockdown, the ascertained rates estimates 

were almost consistent with time. Similarly, in the eSEIRD model, the estimated ascertained 

rate was also at a very low level as 2.17% (95%CI: [2.15%, 2.19%]) (Table 2). As of August 31, 

the overall under-reported factor for the infected cases is estimated as 46 and 54 in the eSEIRD 

and SAPHIRE model, respectively. 

By the eSEIRD model, the overall IFR was estimated as 0.04% (95%CI: [0.02%, 0.06%]) while 

the observed overall case fatality ratio was estimated as 4.40% (95% CI: [<0.01%, 11.81%]) 

(Figure 4). Furthermore, the eSEIRD model provided Bayesian estimates for IFR and deaths 

among hospitalized and non-hospitalized cases. The estimated IFR for the hospitalized cases 

was 12.06% (95% CI: [11.76%, 12.35%]) which was much higher than that for non-hospitalized 

cases (less than 0.01%), and these estimates were robust to the choice of initial ascertained 

rate 𝑟𝑟0. The under-reporting factor for deaths was estimated very close to 1, suggesting that 

most deaths occurred in hospitals.  

4 Discussion 

This modeling study investigates the spread process of COVID-19 in South Africa, ‘the hardest 

hit country on the African continent’19, considering the unascertained cases and population 

movement in different time periods at the same time, and evaluating the effect of the 

intervention strategy employed. Moreover, our study provides powerful methodological tools 

to estimate the IFR and predict deaths due to COVID-19 by making use of the reported deaths.  
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The SAPHIRE model characterizes the transmission dynamics of COVID-19 in South Africa as 

follows: it spread rapidly in South Africa before lockdown with a large effective reproduction 

number comparable to that in the early stage in Wuhan without interventions13. The lockdown 

intervention and mandatory face-mask wearing in public places employed in South Africa 

seemed to contain the spread of COVID-19 effectively as the 𝑅𝑅𝑒𝑒 decreased dramatically and it 

increased slightly due to the relaxation of lockdown stringency afterwards. However, the 𝑅𝑅𝑒𝑒 

was consistently above 1 throughout the whole period analyzed, which implies the 

interventions failed to dampen the transmission fully, further substantiated by the basic 

reproduction number estimates in the eSIR and eSEIRD model as well. To stop the pandemic 

or prevent the resurgence, more strict intervention policies, such as lockdown, mandatory 

face-mask wearing, are suggested based on these results taking account their potential 

economic costs at the same time5,37. 

The estimated ascertained rate is very low in South Africa compared to that reported for many 

other countries13,15,35, also implied by the low testing rate and high testing positive rate in 

South Africa17. As of September 21, the number of total tests conducted is 4.0 million, 

suggesting that about 7% population were tested17. Furthermore, the estimated ascertained 

rate is consistent with that in other multiple global epicenters under severe pandemic of 

COVID-19, such as France, the United States, Italy and Spain in March34. The large number of 

unascertained cases may contribute significantly to the rapid spread of COVID-1927,38,39. 

Therefore, even though the spread of COVID-19 is exhibiting an optimistic pattern of decline 

as indicated by the decay in daily ascertained cases starting at the end of July, with high 

probability, there is still a large number of active infectious cases as suggested by the low 

ascertained rate. Considering the unascertained infections, our findings suggest that there are 
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roughly more than 40% of the total population in South Africa infected by July 31 and more 

than 60% by the end of year 2020.  Our long-term forecasts for November 1 are much lower 

but closer to the observed numbers, compared to the long-term projection in NICD report in 

May16, which also used a stochastic compartmental transmission model with a generalized 

SEIR structure accounting for disease severity and the treatment pathway, fitting early-stage 

data up to April 3016. For instance, as of November 1, the NICD report projected an estimated 

3.4-3.7 million laboratory-confirmed cases, whereas the eSEIRD model prediction was 793 

thousand, much closer to the observed count: 727 thousand confirmed cases. However, more 

surveillance testing and effective testing strategies under conditions of limited test availability, 

such as contact tracing of the contacts and confirmed cases, will be helpful to curtail the 

pandemic in South Africa6. 

Although highly transmissible and lowly ascertained, the COVID-19 IFR is estimated as 0.05% 

in South Africa, comparable to the estimates in other locations with similar low mortality rate 

based on serological data40. The low IFR may due to the entire South African population being 

relatively young such that decreases the fatal impact on general population to some extent41. 

Our estimates of the IFR of hospitalized cases are much higher than that for non-hospitalized 

cases, suggesting that the most severe cases may have been admitted to hospitals despite the 

relatively lack of the testing arrangements.  

Comparison of the models: The eSIR and the SAPHIRE model have been successfully applied 

to the data in India and Wuhan, China, separately22,31. While SAPHIRE model still has a great 

robust prediction performance on COVID-19 cases, the eSIR model has relatively poor 

predictive capacity for capturing the change in the trend of the epidemic in time for neglecting 

some important clinical characteristics. The eSEIRD model has a comparable 15-day prediction 
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performance to the SAPHIRE though relatively sensitive to the initial ascertained rate, which 

is more reasonable as the trajectory of pandemic would change with the number of initial 

infectious cases. Moreover, it is useful to measure the IFR of COVID-19 accurately accounting 

for the unascertained cases when evaluating the impact of pandemic.  

Strengths and Limitations: Our research investigated and supported some important 

epidemiological and clinical characteristics of COVID-19 and estimated and projected the 

trend of the spread in South Africa accounting for some critical information obtained, such as 

the population movement and the prior distribution of the ascertained rate and IFR. It is worth 

noting that we provide useful statistical tools for predicting infections and deaths and 

accurately estimating for substantive parameters accounting for both the reported cases and 

deaths information at the same time.  

However, there are some important limitations. First, the assumptions in the models were 

collected from previous reports from other countries because of the lack of such information 

for South Africa, especially the fixed values for hyper-parameters. Though the estimation of 

parameters and prediction of infections seem to be robust to these assumptions to some 

extent, the inference and prediction would be much more convincing when based on accurate 

information in South Africa using these statistical tools. Second, the ascertained rate was 

assumed to follow the same distribution across the whole time period in the eSEIRD model 

although it might be time-varying depending on the accumulating knowledge and deployment 

of clinical resources for COVID-19, given the spatial variation within South Africa regarding the 

population density and movement, as well as regarding location of COVID-19 hotspots and 

hospital resources. Further, the population density is highly heterogeneous in different 

regions in South Africa with higher concentration near high-density economic hub cities, such 
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as Cape Town and Durban. COVID-19 cases are also diversely spread. For instant, Gauteng 

Province is a very small, highly dense province with roughly 30% of total cases in the nation, 

and 49% of confirmed cases cluster in KwaZulu-Natal, Eastern Cape and Western Cape 

Province. Without considering these heterogeneities and potential confounding factors in 

individual region, the conclusion on the national data might be biased. The burden of HIV and 

tuberculosis comorbidity, particularly among the less privileged socio-economic population, 

also adds to the complexity of analyzing the COVID-19 data from South Africa42.  In addition, 

in this paper we implicitly assumed that the recovered cases would not be infected again but 

it is still inconclusive based on extant research for COVID-1943. It might lead to a resurgence if 

this assumption is not valid and the interventions are totally lifted. Thus, it may be needed to 

conduct some serological surveys on COVID-19 among the general population in South Africa 

to confirm the national, as well as provincial, seroprevalence and thus provide more powerful 

evidence to support the evolving benefits of nonpharmaceutical interventions decisions and 

of their uptake, furthermore, provide guidance to manage provincial level disparity. 
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Figures and tables 

 

Figure 1. (a) Total cases by country in the African continent on September 21; (b) The 7-day 

average testing positive rate of COVID-19 in South Africa during March 5 – September 21. 

Figure 2. Schematic diagram of the three models (a) eSIR; (b) SAPHIRE; (c) eSEIRD.  

Figure 3. (a)-(c) Daily new number of ascertained infections cases estimated by the models 

compared with observed data: (a) eSIR, (b) SAPHIRE, and (c) eSEIRD; (d) Current pre-

symptomatic/unascertained/ascertained infectious in the SAPHIRE model; (e)-(f) Estimated 

effective reproduction number (𝑅𝑅𝑒𝑒) and ascertained rate (r) in the SAPHIRE model in four time 

periods. (Assume initial ascertained rate (𝑟𝑟0) equal to 0.10.) 

Figure 4. Case fatality ratio (CFR) and estimated infection fatality ratio (IFR) in the eSEIRD 

model.   

 

 

Table 1. Timeline of COVID-19 preventions and interventions in South Africa. 

Table 2. The posterior mean and credible intervals of the basic/effective reproduction number 

(𝑅𝑅0/𝑅𝑅𝑒𝑒) and ascertained rate (𝑟𝑟) obtained from different models and settings. 

Table 3. Comparison of the models regarding the cumulative ascertained infected and death 

with the observed (in thousands). 

Table 4. Symmetric mean absolute percentage error (SMAPE) of short-term forecasting.  
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Figure 2. Schematic diagram of the three models (a) eSIR; (b) SAPHIRE; (c) eSEIRD.  
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Figure 3. (a)-(c) Daily new number of ascertained infections cases estimated by the models 

compared with observed data: (a) eSIR, (b) SAPHIRE, and (c) eSEIRD; (d) Current pre-

symptomatic/unascertained/ascertained infectious in the SAPHIRE model; (e)-(f) Estimated 

effective reproduction number (𝑅𝑅𝑒𝑒) and ascertained rate (r) in the SAPHIRE model in four time 

periods. (Assume initial ascertained rate (𝑟𝑟0) equal to 0.10.)   
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Figure 4. Case fatality ratio (CFR) and estimated infection fatality ratio (IFR) in the eSEIRD 

model. CFR = Number of reported deaths
Number of reported deaths and recovered

 ; IFR1 = Number of reported deaths
Number of of reported and unreported cases

; 

and IFR2 = Number of reported and unreported deaths
Number of of reported and unreported cases

1.  

 

  

 
1 World Health Organization, “Estimating Mortality from COVID-19: Scientific Brief, 4 August 2020” (World Health 
Organization, 2020), 19. 
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Table 1. Timeline of COVID-19 preventions and interventions in South Africa. 

Date 

(2020) 

Confirmed2 Death Testing 

rate3 

Interventions and update4 

5 March 1 0 -  

10 March 7 0 - Screening at ports of entry has intensified and escalated.  

15 March 51 0 - Self-quarantine for COVID-19 is recommended. Visas to visitors 

from high-risk countries (Italy, Iran, South Korea, Spain. 

Germany, US, UK) are cancelled and previously granted visas 

are hereby revoked. Gatherings of more than 100 are 

prohibited. Mass celebrations are canceled.  

16 March 62 0 - Of the 53 land ports, 35 are shut down. 

18 March 116 0 - A travel ban on foreign nationals from high-risk countries such 

as Germany, US, UK and China.  

27 March 1170 1 - A national lockdown is implemented. Alert level 5 is in effect 

from midnight 26 March to 30 April. 

1 May 5951 116 0.004 A less strict lockdown is in place. Alert level 4 is in effect from 1 

to 31 May. Borders will remain closed to international travel, 

no travel will be allowed between provinces, except for the 

transport of goods and exceptional circumstances. 

1 June 34,357 705 0.013 From 1 June 2020 alert level 3 will be in effect. 

Restrictions on many activities, including at workplaces and 

socially, to address a high risk of transmission. 

8 June 50,879 1080 0.016 More than half of the cases since the outbreak started have 

occurred in the last 2 weeks 

17 July 337,594 4804 0.041 Recommendations that isolation period for those confirmed to 

drop from 14 to 10 days 

21 July 434,200 6655 0.044 South Africa has the 5th most confirmed Covid-19 infections in 

the world. An acceleration of cases has increased by 30% in the 

last week.  

 

  

 
2 Johns Hopkins University, “COVID-19 Data Repository by the Center for Systems Science and Engineering (CSSE),” 
n.d., https://github.com/CSSEGISandData/COVID-19. 
3  Our World in Data, “Data on COVID-19 (Coronavirus),” n.d., github.com/owid/covid-19-
data/tree/master/public/data/testing. 
4  South Africa Department of Health, “COVID-19 Online Resource and News Portal,” n.d., 
https://sacoronavirus.co.za. 
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Table 2. The posterior mean and credible intervals of the basic/effective reproduction number 

(𝑅𝑅0/𝑅𝑅𝑒𝑒) and ascertained rate (𝑟𝑟) obtained from different models and settings. 

Model 𝒓𝒓𝟎𝟎  𝑹𝑹𝟎𝟎/𝑹𝑹𝒆𝒆* 𝒓𝒓 (%) 

 Mean 95%CI Mean 95%CI 

eSIR  0.10  2.05 [1.81,2.31] - - 

 0.25  2.04 [1.82,2.31] - - 

SAPHIRE 0.10 Mar 15-26 3.47 [3.32,3.61] 9.53 [8.70,10.40] 

 Mar 27-Apr 30 1.39 [1.36,1.41] 1.85 [1.74,1.98] 

 May 1-31 1.43 [1.42,1.45] 2.21 [2.16,2.26] 

 Jun 1-July 31 1.58 [1.57,1.58] 1.84 [1.82,1.86] 

 0.25 Mar 15-26 4.65 [4.48,4.83] 14.12 [12.80,15.50] 

 Mar 27-Apr 30 1.41 [1.39,1.43] 1.95 [1.83,2.08] 

 May 1-31 1.44 [1.43,1.45] 2.22 [2.17,2.27] 

 Jun 1-July 31 1.58 [1.57,1.58] 1.84 [1.82,1.86] 

eSEIRD 0.10  2.10 [2.09,2.10] 2.17 [2.15,2.19] 

 0.25  2.10 [2.09,2.10] 2.17 [2.15,2.20] 

*𝑅𝑅0 in eSIR and eSEIRD model; 𝑅𝑅𝑒𝑒 in SAPHIRE model.   

 

Table 3. Comparison of the models regarding the cumulative ascertained infected and death 

with the observed (in thousands). Bold-faced entries indicate column winners regarding the 

closeness to the observed.  

Model 𝒓𝒓𝟎𝟎 

Infected  Death  

Estimation Prediction Estimation Prediction 

Jul 31 Aug 15 Aug 31 Jul 31 Aug 15 Aug 31 

eSIR  0.10 496  769 1,230 - - - 

 0.25 496 768 1,228 - - - 

SAPHIRE 0.10 493 603 653 - - - 

 0.25 493 603 653 - - - 

eSEIRD 0.10 439 594 698 11 17 22 

 0.25 308 483 633 7 13 19 

Observed - 493  584 627 8 12 14 
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Table 4. Symmetric mean absolute percentage error (SMAPE) of short-term forecasting. Bold-

faced entries indicate column winners regarding prediction performance. 

 

Model 

 Cumulative ascertained cases Cumulative ascertained deaths 

𝒓𝒓𝟎𝟎 Testing SMAPE Testing SMAPE 

 Aug 1 -Aug 15 Aug 1 – Aug 31 Aug 1 -Aug 15 Aug 1 – Aug 31 

eSIR  0.10 13.57% 30.96% - - 

 0.25 13.47% 30.85%   

SAPHIRE 0.10 1.81% 2.96% - - 

 0.25 1.80% 2.95%   

eSEIRD 0.10 4.78% 6.02% 36.28% 38.97% 

 0.25 31.38% 18.96% 4.12% 12.46% 
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