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Abstract

Testing for active SARS-CoV-2 infections is key to controlling the spread of the virus and preventing

severe disease. A central public health challenge is defining test allocation strategies in the presence of

limited resourceand/ormultiple competing test options. In thispaper,weprovideamathematical frame-

work for defining an optimal strategy for allocating viral tests. The framework accounts for imperfect test

results, testing in certain high-risk patient populations, practical constraints in terms of budget and/or

total number of available tests, and the goal of testing. In our proposed approach, tests can be allocated

across population strata defined by symptom severity and other patient characteristics, allowing the test

allocation plan to prioritize higher risk patient populations. We extend our proposed method to address

the challenge of allocating two different types of tests with different cost and accuracy (for example the

expensive but more accurate RT-PCR test versus the cheap but less accurate rapid antigen test), admin-

istered under budget constraints. We provide a R Shiny web application allowing users to explore test

allocation strategies across a variety of pandemic scenarios. This work can serve as a useful tool for guid-

ing public health decision-making at a community level, adapted to different stages of the pandemic. We

use distribution of tests in New York City during the initial wave of the COVID-19 outbreak as a sample

example. We also show how this framework can be useful to reopening of college campuses.

Keywords: COVID-19 diagnostic test, rapid antigen testing, RT-PCR testing, reopening strategies,

stratified testing
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Introduction

The importance of testing for SARS-CoV-2 viral infections has been widely accepted by public health pro-

fessionals around the world. Identifying infected cases early in their infectious period through large-scale

testing efforts can help prevent disease transmission, guide contact tracing and isolation strategies, and

contribute to estimation of expected healthcare needs. While immunoglobulin antibody tests can evalu-

ate past SARS-CoV-2 viral infections, many public health interventions such as contact tracing are based

ondetection of active infections. Several testing options for detecting an active SARS-CoV-2 viral infection

are currently available, and these tests have varying levels of accuracy (as characterized by their sensitiv-

ity and specificity) and different barriers to access. Expensive RT-PCR tests are based on nasopharyngeal

swabs, whereas less accurate rapid antigen tests require only a saliva sample and are much less costly [1,

2]. Tests may be administered formany reasons, including diagnostic testing for symptomatic or exposed

individuals, population surveillance to detect an outbreak, or enhanced screening in high-risk strata (e.g.

essential workers). Testing for active infections is key to controlling the spread of the virus and reducing

rates of severe outcomes. A central public health challenge is defining “optimal" test allocation strategies

under resource constraints and/or multiple competing test options.

One ideal testing strategy for estimating the population infection rate is universal random testing

[3], where a large random sample of the entire population is tested. This process is repeated regularly to

track the pandemic over time. However, this approach requires conducting an enormous number of tests

and is impractical for countries or regions such as the United States with large population and limited

number of tests. Several approaches have been suggested for allocating tests under resource constraints.

Cleevely et al. [4] proposed stratified periodic testing for reducing the effective reproduction rate, where

tests are administered at different rates (in terms of test frequency and volume) for patients at different

levels of infection risk. Although this approach highlights the importance of stratifying the population

and prioritizing testing high-risk groups, the authors did not consider how exactly to distribute the tests

across different groups at the same time. Another approach that has been suggested for finding cases is
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pooled/group testing [5, 6, 7, 8, 9], where a single test is applied tomerged samples froma groupof people.

Under pooled testing, the number of required tests is dramatically reduced. Nevertheless, dilution due to

combinedsamples is alwaysoneof themajorconcerns in thepooled/group testingapproach [6, 8, 7]. Ely et

al. [10] describedallocationoffixednumbers ofmultiple different test typeswithdifferent sensitivities and

specificities to populations at high/low risk. Under this approach, tests are allocatedby adecision-making

process for maximizing the value of the tests, mathematically defined as the sum of the test’s specificity

and sensitivity weighted by the loss of the corresponding decision error. The problem setting is close to

oneof ours, but the twoobjective functions are of great difference, leading todifferent interpretationof the

results. A limitationof this approach is that it requires to quantify the relative importanceof false negatives

and false positives for each individual in the population, which is generally complicated to measure in

practice.

In this paper, we develop a comprehensive mathematical framework illustrated in Figure 1 for

defining an optimal test allocation strategy, accounting for (1) imperfect test results, (2) intensified testing

in certainpatient populations, (3) resource limitations in termsof budget and/or total number of available

tests, and (4) the goal of testing. In our proposed approach, tests are allocated across population strata

defined by symptom severity and other patient characteristics (e.g., age, comorbidities, occupation), al-

lowing our test allocation plan to prioritize higher risk patient populations. Since the goal of testing may

vary at different points of the pandemic, our proposed objective function provides optimal flexible testing

strategies across the key phases of monitoring an ongoing disease surge/outbreak (here, called detecting

mode) and long-term surveillance for new outbreaks (called surveillancemode). During detectingmode,

our approach allocates testswith the goal of detecting asmanyof thepositive cases aswe can to guide con-

tact tracing efforts and isolation interventions. During surveillancemodel, our approach allocates tests to

give a test positive rate near a target threshold (e.g. 3%). An observed test positive rate exceeding this

threshold provides an indicator of rising case counts in the population. Unlike universal random testing

procedures andmanyother existing approaches, neither of theproposedmethods aim todirectly estimate

the disease prevalence in the population. However, we show that control of the test positive rate at a target
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level implies an upper bound on the population disease rate under certain conditions. Our framework as-

sumes that the true disease status is independent of patient characteristics, and selection is independent

of the disease status, conditional on the symptoms and patient characteristics. Furthermore, we assume

that the diagnostic result is independent of other factors (including symptoms) conditional on the true

disease status. Additionally, we assume that people with severe symptoms are always tested. Defining

population strata based on symptoms and age, we use extensive simulation studies to evaluate the pro-

posed method for optimal test allocation strategy based on the goal of testing in a wide set of scenarios.

We illustrate how these methods can be applied to determine test allocation through different stages of

the pandemic in New York City.

To address a related problem, we also extend this framework to address the question of how to

allocate two different types of tests with differing accuracy, e.g. RT-PCR tests versus rapid antigen tests.

This approach can provide guidance about allocation of multiple types of tests at the local level (e.g., for

colleges and universities) under budget constraints. We explore the properties of this approach through

simulation. We provide a R shiny app available at https://umich-biostatistics.shinyapps.io/

Testing_Optimization/ that implements all of the proposedmethods in the settingwhere population

strata are defined based on symptoms and age. In this app, users can specify their goals of testing as well

as other key variables to obtain a customized optimal test strategy.

Results

Simulations. We explore by simulation how the optimal strategy for allocating a single type of test varies

by 1) the number of available tests; and 2) the marginal probability of being asymptomatic for a truly in-

fected individual, t̄a , in a hypothetical region of population 8 million. Although the true proportion of

asymptomatic infections cannot be knownwithout extensive testing and confirmation, existing literature

suggests this proportion varies across regions, with estimates from around 30% to almost 90% [11, 12, 13].

We consider settings with high and low disease prevalence separately, which correspond to being near or
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past the pandemic peak, respectively. Other parameter settings can be found inMethods in the supple-

mentary materials.

Figure 2 a&b corresponds to the settingwith limited number of tests andhigh population disease

rate. In this setting, themajority of tests are allocated to peoplewith severe andmild symptoms unless the

probability of being asymptomatic among infected individuals is very high (e.g. >0.75). This is because,

unless t̄a is very large, the probability of a random person with mild symptoms testing positive is larger

than the probability of a random person without symptoms testing positive. In contrast, when we have

an abundance of tests available (Figure 2 c & d), the majority of the tests are allocated to asymptomatic

patients, partially due to a limited number of patients with severe andmild symptoms overall. When tests

are scarce and the goal is todetectmore cases, tests are allocatedacross all four age groupsbasedon the as-

sumedmarginal proportion of infected people who are asymptomatic, t̄a . These age distributions among

the tested patients are largely driven by differences in symptoms across age categories. Since younger

people are more likely to be asymptomatic [11], the majority of tests among asymptomatic people are al-

located to young (ages 0-17) people. For example, when the marginal probability of being asymptomatic

for an infectedperson is 0.55 (t̄a = 0.55) andwhenwehaveanabundanceof tests as200,000, 4.3%of tests are

allocated to people aged 65+withmild symptoms compared to 1.5% to people aged 0-17 withmild symp-

toms. After satisfying the tests requires for the severe and mild symptom groups, the remaining 59.5% of

tests are allocated to the young (age 0-17) asymptomatic group.

Figure 3 shows the optimal test allocation when the disease prevalence in the population is low

and many tests are available. In this situation, we are in a surveillance mode and want to monitor when

the test positive rate exceeds a certain threshold (c), e.g. 3%. A test positive rate exceeding the threshold

level c obtained under this testing strategymay provide a good indicator that the prevalence of the disease

is going up in the population. The optimal testing strategy does not require all available tests to be used,

and the majority of allocated tests are given to people aged 50+. Close monitoring of older asymptomatic

patients may provide a good strategy for capturing an outbreak as indicated by a raising test positive rate
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(Figure S1).

We compare our proposed optimal strategy to four other strategies, denoted the risk-based strat-

egy, the symptom-based strategy, the severe-only strategy, and the universal random testing strategy (Table

S1- S2). The risk-based strategy prioritizes the group with higher risk of being hospitalized; that is, it pri-

oritizes the severe and mild symptomatic people, but in each symptom group, elderly people are always

tested first. The symptom-based strategy allocates tests based only on the severity of symptoms, and tests

are randomly assigned to individuals within symptom groups. The severe-only strategy prioritizes test-

ing the severely-ill patients and randomly assigns the remaining tests to the rest of the population. The

universal random testing strategy randomly tests the entire population without prioritizing any group.

When we have a limited number of tests and our goal is to detect as many cases as possible, our

optimal strategy results in a large number of positive tests comparable to the risk-based strategy in the

setting where 55% of true cases are asymptomatic. Unlike the risk-based strategy, however, our method

prioritizes testing for people aged 50−64 over people aged 65+ among people with mild symptoms. The

difference between these two test strategies is more apparent when we have an abundance of tests. In

this setting, our proposed strategy assigns 59.5%of available tests to the young (aged 0−17) asymptomatic

people, rather than to the elderly (aged 65+) asymptomatic people. With a sufficient number of tests, our

proposed strategy identifies more positive cases than any other method, finding 2.6%more positive tests

than the risk-based strategy and 11 timesmore cases than universal random testing. Ourmethod outper-

forms all other approaches considered when the probability of being asymptomatic among true cases is

higher, e.g. t̄a = 0.9.

Unlike the other testing strategies that use all available tests, the proposed optimal test strategy

uses only 51.5% of available tests when our goal is conduct disease surveillance. For comparison, we

also present optimal test allocations obtained from our method under detecting model. Our surveillance

model approach finds about 40% fewer positive cases than the proposed method under detecting mode

and than risk-based and symptom-based strategies, but it still finds more cases than the severe-only and
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universal random testing strategies. Even using fewer tests than the othermethods, our approach can ob-

tain a nominal 3% test positive rate, and observed deviations from this target positive rate can be used as

an indicator that the population prevalence is larger than expected.

A sample case-study: test allocation strategy in New York City. We illustrate how our model can be ap-

plied todetermine test allocation throughdifferent stagesof thepandemic inNewYorkCity (N = 8,175,133)

betweenMarch3andNovember1. Thecasenumbersand the total available tests foreachweek/generation

are obtained from data released by the New York City Department of Health andMental Hygiene [14]. Ex-

isting work studying the magnitude of under-reported cases and the proportion of asymptomatic cases

suggest that the true number of cases is about 10 times the reported cases in the United States [15]. How-

ever, sinceNewYorkCity has tested nearly 70%of its populationuntil November 11 [14], which is far above

the national level of 45% [16], the fraction of under-reported cases should be smaller. We assume themul-

tiplicative under-reporting factor to be 4, meaning we assume the true number of cases in the New York

City to be 4 times the reported cases. Following Rahmandad et al. [15], we set the marginal probability

that a true case is asymptomatic, t̄a , to be 55%. Although the accuracy varies across different types of di-

agnostic tests, the false negative rate is known to be appreciable and depends on the type of test [17]. We

set the false positive (α) and false negative (β) rates to 0.01 and 0.3 [17], respectively. Other details regard-

ing assumed parameter settings can be found inMethods and Table S3 in the supplementary materials.

Alternative parameter values can be explored dynamically using our R shiny app.

Figure 4 shows the optimal test allocation strategy ourmethodwouldhave recommended forNew

York City throughout the pandemic. We supposewe had allocated tests with the goal of detecting asmany

cases as possible betweenMarch 3 and July 21, during which the disease prevalence was high in the pop-

ulation. Under this method, we predict that the test positive rate would have fallen below 0.03 during

the week of July 21st, and we suppose we then switched to surveillancemode for monitoring disease out-

breaks thereafter. When the goal is to detect as many cases as possible (detection mode), symptomatic

and the elderly patients should be prioritized, especially whenwe are short of tests. FromMarch 3 to April
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7, for example, our method would test only people with severe and mild symptoms, and people of age

0-17 would be rarely tested, because the probability of finding a positive test in the symptomatic group

is higher than the asymptomatic group. As the number of available tests gradually increased, more tests

would have been allocated to asymptomatic patients and to young people, because the younger people

would be more likely to be asymptomatic and the symptomatic elderly people would have already been

offered a test. After switching to surveillance mode, our method would have allocated just 53.9% of the

tests that are actually conducted. These tests would primarily be allocated to older asymptomatic people.

To validate our proposedmethod, we compare the number of detected cases and the test positive

rate observed for New York City to the predicted values under our optimal testing strategymethod Figure

5. Under our assumptions about the rate of case under-reporting, the proposed testing strategy is able to

detect a greater number of cases than were actually observed in New York City betweenMarch 3rd to July

21st. After July 21st, the optimal test strategy detects a similar number of reported cases but uses far fewer

tests than were actually administered during this time period for New York City.

Extension to allocating two tests. For universities and colleges, test allocation should be customized ac-

cording to the local disease rates and community testing capacity (Table S4), as are often characterized by

the budget for testing, the total number of tests available and the observed number of positive tests and

test positive rate. As tests of different costs andaccuracies becomeavailable, thequestionof test allocation

becomes even more challenging. Subject to budget constraints, we extend our proposed test allocation

method (seeMethods) to address allocation of two competing tests with differing cost and accuracy as a

function of symptoms and patient characteristics. We consider the hypothetical scenario where we want

to allocate a fixed budget to a mixture of rapid antigen tests and RT-PCR tests. The RT-PCR test, which is

considered to be the gold-standard test in COVID-19 diagnosis, costs about $100 per test and has sensi-

tivity as high as 0.9 [18, 19, 20]. Rapid antigen tests, in contrast, cost as little as $ 5 per test but have much

lower sensitivity [18, 19, 21]. Mirroring current market information, we set the price for the rapid antigen

test and for the RT-PCR test as $5 and $135, respectively, andwe assume test sensitivity values are 0.45 and
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0.9, respectively [21, 20]. Specificity is set to 0.99 for both tests. We suppose that at the current generation

g , the number of truly infected cases in a population of 8 million is 10,000 and the budget is 1 million. Al-

ternative scenarios (including different budgets, population size, age distributions, etc.) can be explored

using our R Shiny app.

Figure6provides theoptimalbudget allocationbetween the two tests as a functionof themarginal

probability thata truecase is asymptomatic (t̄a). As seen insupplementaryFigureS2, RT-PCRtests areonly

allocated to people with severe and mild symptoms, and the majority of rapid antigen tests are allocated

to asymptomatic people. Since the absolute number of symptomatic people decreases when t̄a increases

under a fixed number of total cases, the proportion of the budget allocated to RT-PCR testing decreases

with increased t̄a .

Discussion

In this paper, we provide a mathematical framework for relating population COVID-19 infection rates to

test positive rates as a function of targeted diagnostic testing with imperfect accuracy. We develop a strat-

egy forobtainingoptimal allocationofdiagnostic tests acrosspopulationstratadefinedbysymptomsever-

ity and other factors such as age. This method adapts to different scenarios in terms of public health ob-

jectives. For example, when the goal is to detect as many infected cases as possible in the acceleration

phase of the pandemicwith high community prevalence, tests should be allocatedwith targeted testing in

population stratamost likely to contain cases. When our goal is to detect new disease outbreaks as part of

population surveillance after a disease wave has passed and we are in a state of containment, fewer tests

may be needed, and a substantial proportion of tests should be allocated to asymptomatic people. In the

setting where we have a sufficient number of tests, we demonstrate that our proposed detecting mode

strategy can find 2.6% more positive tests than the risk-based strategy and 11 times more than universal

random testing. Under the surveillance mode, our strategy only uses 51.5% of tests that are available. Al-

though our model assumes that a person’s disease status is independent of his/her characteristics, this

9

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 11, 2020. ; https://doi.org/10.1101/2020.12.09.20246629doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.09.20246629
http://creativecommons.org/licenses/by/4.0/


assumption can be relaxed if the distribution of true disease status given patient characteristics is known.

Wedemonstrate this optimal test allocation strategy in a special casewhere thepopulation is strat-

ified based on age and the severity of symptoms, using New York City as a illustrative example. If tests had

been allocated as suggested by our method, we may have used only 53.9% of the tests that were actually

conducted andhave still found asmany cases aswere reported. Weprovide aRShinyweb app (available at

https://umich-biostatistics.shinyapps.io/Testing_Optimization/) allowing users to ex-

plore the optimal test allocation as a functionof test positive/negative rates, number of available tests, and

the true rate of infection among asymptomatic people.

In an extension of the proposed method, we develop a strategy for obtaining optimal allocation

of two tests with different false negative rates and cost (e.g. cheap rapid antigen tests vs. expensive RT-

PCR tests) subject to overall budget constraints. We show that the expensive but more accurate RT-PCR

tests should be used on the severe or mild symptomatic people, which is in accordance with the finding

in [10]. This approach can be used to help inform test allocation decisions currently beingmade bymany

universities, communities, businesses, etc. for planning their reopening. Through our R Shiny app, users

can explore the impact of comparative cost, total budget, population age profile, and other key factors on

the optimal test allocation at different points in a pandemic wave.

Our R shinyweb app can also be used to explore the problemof repeated testing, where rapid anti-

gen tests are repeatedly used to improve sensitivity. We found that the probability of correctly identifying

an infected individual goes upwith repeated rapid antigen testing, but the ability to detect cases in the en-

tire population decreases as fewer different people are able to be tested under a fixed overall test budget.

An advantage of the proposed test allocation method is that it directly incorporates test accuracy

and canbe applied to allocationof different types of tests, including fast antigen tests and/orRT-PCR tests.

We focuson theparticular casewherepopulationstrataaredefinedbasedonageaswell as symptomsever-

ity, but thismethod can be extended to also incorporate occupation, geographical location, and other key
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factors into defining population strata. We provide an example R script for implementing the methods

with strata defined by age and symptoms in the supplementary materials. Users can adapt this code to

apply our methods under different strata definitions. Care must be taken when specifying model param-

eters, since the resulting test allocationmay be sensitive to these choices. We recommend, therefore, that

users explore test allocation across a spectrum of plausible input parameters to inform decision-making

in practice.

Methods

Conceptual Framework

Consider a population of sizeN , and letD (g )
i be a binary variable representing person i ’s true (unobserved)

disease status (infected-1 vs. not infected-0) at the g -th generation of disease circulation. Here, a genera-

tion is defined as the average time it takes an infected person to become infectious, which is around 5 days

[22]. At the g -th generation, some subset of the population will be tested, with binary S(g )
i representing

whether person i in the population is tested during generation g . LetD?(g )
i denote the test result (positive-

1 vs. negative-0) for person i during generation g , whichmay ormay not be the correct result (may ormay

not equal D (g )
i ). If person i is not tested, D?(g )

i will not be recorded. Let T (g ) denote the number of tests

available for generation g . With limited testing capacity, current test strategies prioritize tests based (at

least in part) on severity of symptoms. Let Sym(g )
i be a categorical variable which takes value in {s,m, a}

corresponding to severe, mild, and asymptomatic symptom levels respectively. We suppose testing may

also depend on other covariates, Zi , such as patient age and occupation.

In modeling symptoms, we assume the probability P (Sym(g )
i = j |D (g )

i , Zi = z) is the same for any

g . We let t j (Zi ) be the probability of developing the j -th symptom conditional on D (g )
i = 1 and Zi , and we

let f j (Zi ) be the probability conditional on D (g )
i = 0. The marginal probabilities of developing symptom j

in the infected and uninfected population are denoted as t̄ j and f̄ j . We further make the following three
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independence assumptions about testing and test results:

A1. P (D (g )
i |Zi ) = P (D (g )

i ), so D (g )
i is independent of Zi .

A2. P (S(g )
i = 1|D (g )

i ,Sym(g )
i , Zi ) = P (S(g )

i = 1|Sym(g )
i , Zi ), so S(g )

i is independent of D (g )
i given Sym(g )

i and Zi .

A3. P (D?(g )
i |Sym(g )

i , Zi ,D (g )
i ) = P (D?(g )

i |D (g )
i ), so D?(g )

i is independent of Sym(g )
i and Zi given D (g )

i .

These assumptions result in the followingmodel structure at generation g :

Symptommodel: P (Sym(g )
i = j |D (g )

i = 1, Zi = z) = t j (z) j ∈ {s,m, a}

P (Sym(g )
i = j |D (g )

i = 0, Zi = z) = f j (z) j ∈ {s,m, a}

Model for who is tested: P (S(g )
i = 1|Sym(g )

i , Zi )

Model for observed test results: P (D?(g )
i = 1|D (g )

i = 1) = 1−β

P (D?(g )
i = 1|D (g )

i = 0) =α

Under thismodel structure, we can establish theprobabilistic relationship between thedetection of a pos-

itive case and the testing procedure. We use this relationship to predict the number of people testing pos-

itive at generation g , denoted P (g ), as a function of test allocation.

Predicting P (g ), the number of people who will test positive

For a tested/selected person i , we express the probability of testing positive as

P (D?(g )
i |S(g )

i = 1) =∑
j ,z

P (D?(g )
i |S(g )

i = 1,Sym(g )
i = j , Zi = z) ·P (Sym(g )

i = j , Zi = z|S(g )
i = 1) (Eq. 1)

For simplicity, we assume Zi takes discrete values, and the summation over Zi in Eq. 1 would become an

integral if Zi were continuous. The first term of the summation captures the likelihood of a positive test in

the selected population given symptoms Sym(g )
i and other covariates Zi . The second term describes the

joint distribution of symptoms and Zi in the selected population. We now take a closer look at each of the

terms in the summation.
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Theprobability of person i testing positive canbe expressed as a function of symptoms Sym(g )
i and

covariate Zi as follows:

P (D?(g )
i = 1|S(g )

i = 1,Sym(g )
i , Zi ) =

∑
d∈{0,1} P (D?(g )

i = 1,D (g )
i = d ,S(g )

i = 1,Sym(g )
i |Zi )

P (S(g )
i = 1,Sym(g )

i |Zi )
(Eq. 2)

=
∑

d∈{0,1} P (D?(g )
i = 1|D (g )

i = d ,S(g )
i = 1,Sym(g )

i , Zi ) ·P (S(g )
i = 1|Sym(g )

i ,D (g )
i = d , Zi ) ·P (Sym(g )

i |D (g )
i = d , Zi ) ·P (D (g )

i = d |Zi )

P (S(g )
i = 1|Sym(g )

i , Zi )P (Sym(g )
i |Zi )

Under assumptions A1-A3, then Eq. 2 can be written as:

P (D?(g )
i = 1|S(g )

i = 1,Sym(g )
i , Zi ) =

∑
d∈{0,1} P (D?(g )

i = 1|D (g )
i = d) ·P (Sym(g )

i |D (g )
i = d , Zi ) ·P (D (g )

i = d)

P (Sym(g )
i |Zi )

= (1−β)t j (Zi ) D(g )

N +α f j (Zi ) N−D(g )

N

P (Sym(g )
i |Zi )

(Eq. 3)

where D (g ) = ∑
i D (g )

i is the number of infected people in the population. The joint distribution of Sym(g )
i

and Zi for tested people can be expressed as:

P (Sym(g )
i , Zi |S(g )

i = 1) = P (S(g )
i = 1|Sym(g )

i , Zi )

P (S(g )
i = 1)

·P (Sym(g )
i |Zi ) ·P (Zi ) (Eq. 4)

Putting these pieces together, the probability that person i in the selected population has a positive test

can be expressed as:

P (D?(g )
i = 1|S(g )

i = 1) =∑
j ,z

(1−β)t j (z)D (g ) +α f j (z)(N −D (g ))

N ·P (S(g )
i = 1)

P (S(g )
i = 1|Sym(g )

i = j , Zi = z) ·P (Zi = z) (Eq. 5)

Summing over tested people, the number of positive tests is predicted as

P̂ (g ) =∑
j ,z

(
(1−β)t j (z)D (g ) +α f j (z)(N −D (g ))

) ·P (S(g )
i = 1|Sym(g )

i = j , Zi = z) ·P (Zi = z) (Eq. 6)

Eq. 6 dependsonP (S(g )
i = 1|Sym(g )

i = j , Zi = z), which is theprobabilityof testing ingeneration g for aperson

i with symptoms Sym(g )
i and covariates Zi = z. This term represents the testing protocol in the population,

and constraints on testing in terms of (1) test availability and (2) testing prioritization correspond to con-

straints on P (S(g )
i = 1|Sym(g )

i = j , Zi = z).
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Optimal test strategy

Manyresearchershavebeenstudying the trueprevalenceofCOVID-19 in thepopulationgiven thenumber

of positive tests [23, 15]. Let D (g ) represent the true number of cases in the population at generation g .

We then estimate t j (z) and f j (z), the probability of developing symptom j given Zi = z and D (g )
i using the

historical data (seeMethodsParameter estimates and setup). Under the abovemathematical framework,

the problem of test allocation is nothing but to find P (S(g )
i = 1|Zi = z,Sym(g )

i = j ). We then construct the

following objective function:

min
P (S

(g )
i =1|Sym

(g )
i = j ,Zi=z)

w ||P̂ (g ) −D (g )||2 + (1−w)||P̂ (g ) − cN P (S(g )
i = 1)||2 (Eq. 7)

with constraints: 1 P (S(g )
i = 1|Sym(g )

i = s, Zi = z) = 1 for any z and 2 N P (S(g )
i = 1) ≤ T (g )

where c ∈ (0,1) is a pre-fixed target test positive rate for detecting the outbreak of the pandemic. The first

term ||P̂ (g ) −D (g )||2 controls the difference between the number of positive tests and the true case counts.

The second term ||P̂ (g ) − cN P (S(g )
i = 1)||2 controls the difference between positive rate and the target out-

break threshold c. w takes value 0 or 1, indicating the preference for either component in defining the

optimal testing strategy. For example, when w = 1, the objective function reduces to ||P̂ (g ) −D (g )||2, which

corresponds to a goal of finding the most accurate test allocation strategy to detect the greatest number

of positive tests (detecting mode). On the other hand, w = 0 corresponds to a goal of detecting if the test

positive ratehas crossedapre-designatedoutbreak threshold (surveillancemode). In supplementaryma-

terials, we show that the population disease prevalence is bounded by a function of the test positive rate

under mild conditions, so a low test positive rate implies a low disease prevalence in the population. The

first constraint in Eq. 7 ensures that everyonewith severe symptoms is prioritized for testing. With limited

testing resources, the second constraint guarantees that the number of people tested does not exceed the

total number of available tests. We obtain the optimal testing strategy in Eq. 7 using R package optiSolve

[24].
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Our objective function involves the most commonly-used information metrics for COVID-19, in-

cluding the overall number of positive tests and the overall test positive rate, which are straightforward

and easy to understand for the general public. Neither the detecting mode or the surveillance mode in

our objective function aims for estimating the true prevalence in the population, which is usually the goal

of universal random testing. It is worthy to mention that if testing is performed randomly in the popu-

lation, e.g. universal random testing, then an unbiased estimator of the population prevalence would be(
P (D?(g )

i = 1|S(g )
i = 1)−α)

/
(
1−β−α)

.

Extension to two tests

The above framework can be extended to handle allocation of two different types of tests with different

cost and accuracy constrained by a fixed total budget. We suppose the first test option is cheap but has

low sensitivity (e.g. rapid antigen testing) and the second test option is more expensive but has higher

sensitivity (e.g. RT-PCR testing). Let S(g )
i ∈ {0,1,2} represent whether an individual is untested or given the

first or second type of test, respectively. Following Eq. 6, the predicted numbers of positive tests of each

type, denoted as P̂ (g )
1 and P̂ (g )

2 are:

P̂ (g )
1 =∑

j ,z

(
(1−β1)t j (z)D (g ) +α1 f j (z)(N −D (g ))

) ·P (S(g )
i = 1|Sym(g )

i = j , Zi = z) ·P (Zi = z)

P̂ (g )
2 =∑

j ,z

(
(1−β2)t j (z)D (g ) +α2 f j (z)(N −D (g ))

) ·P (S(g )
i = 2|Sym(g )

i = j , Zi = z) ·P (Zi = z)

where α1, α2, β1, β2 are the false positive and negative rates corresponding to two tests. Suppose that the

costs for one test of each typeare y1 and y2. In the special casewhereour goal is to identify asmany infected

cases as possible (w = 1 in Eq. 7 ), we construct the following objective function for allocating two types of

tests subject to a fixed total budget:
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min
P (S

(g )
i =1,2|Sym

(g )
i = j ,Zi=z)

||P̂ (g )
1 + P̂ (g )

2 −D (g )||2 with constraints: (Eq. 8)

1 P (S(g )
i = 1|Sym(g )

i = s, Zi = z)+P (S(g )
i = 2|Sym(g )

i = s, Zi = z) = 1 for any z

2 y1P (S(g )
i = 1)N + y2P (S(g )

i = 2)N ≤ bud g et (g )

The first constraint guarantee that all the severe patients will be tested, and the second constraint ensures

that the total spending does not exceed the budget. For the problem of assigning two tests, we do not

consider to set w = 0 because it would always recommend to use the less accurate test for a lower test

positive rate.

Parameter estimates and setup

In the New York City example and all simulations, we estimate t j (z) and f j (z) using the publicly available

historical data [25, 26]. For a given value of ta , themarginal probability for a truly infected person to be an

asymptomatic carrier, themarginal probability of developing severe symptoms for an infected person is

assumed to be roughly 1/4 of all COVID-19 symptomatic cases (t̄m = 3∗ t̄s ), which is roughly the ratio of the

number of hospitalizations to the cases until September 18, 2020 in the New York City [27]. For the unin-

fected person, themarginal probabilities of having severe ( f̄s) or mild ( f̄m) symptoms are set to 2.3×10−5

and 1.6×10−4, respectively, using the data from the New York State Department of Health 2019-2020 Flu

Monitoring Archives [25]. In obtaining these estimates, hospitalized patients with flu-like symptomswere

treated as severe cases, and the remaining laboratory-confirmed caseswere treated asmild cases. We sup-

pose Zi represents age and is grouped into four categories: age 0−17, age 18−49, age 50−64 and age ≥ 65.

Probabilities t j (z) of having severe, mild and no symptoms for an infected person are approximated as

t̄ j ·P (Zi=z|Symi= j ,Di=1)
P (Zi=z) . We estimated the age distribution within symptom categories from COVID-19 case

counts and hospitalized counts by age from the New York City Department of Health andMental Hygiene

through September 18, 2020 [26]. Similarly, f j (z) is estimated using data from the New York State Depart-
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ment of Health 2019-2020 Flu Monitoring Archives by age group [25]. Table S3 provides estimates of t j (z)

and f j (z) when t̄a = 0.55.

When we evaluate the optimal strategy by simulation, we assume that 175,000 people are truly in-

fected at generation g (D (g ) = 175,000), whichmimic the situationof thepeak of thepandemic. We suppose

T (g ), the number of available tests, to be either 50,000 or 200,000. These two scenarios correspond to the

settingwith limited testing resources and the settingwith relatively sufficient testing resources. Due to the

large number of infected cases in the population, the test strategy in this setting should be aimed at de-

tecting cases, so the weight w in the objective function Eq. 7 is set as 1. After the peak of the pandemic, we

assume that the number of infected cases in the population deceases to 10,000 (D (g ) = 10,000) with 200,000

tests available. In this setting, our goal is for long-term surveillance to detect outbreaks, and we obtain

optimal test allocation by setting w = 0 in Eq. 7 . We define the outbreak threshold c to be 0.03 [28].
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Figures

Figure 1: Illustration of data structure at generation g with the incorporation of selection andmisclassifi-

cation. For a person i with the characteristic information(or risk factors) Zi = z at the beginning of genera-

tion g , the true disease status D (g )
i is unobserved, with 1 indicating being infected and 0 being uninfected.

The probability for an infected person of developing severe(s)/mild(m)/no(a) symptoms is t j (z), where

j ∈ {s,m, a}, which is based on the characteristics. An uninfected person may also develop similar symp-

toms due to other diseases, e.g. influenza, and the probability is f j (z). Often, people are tested/selected

based on symptoms and some other risk factors. β and α are the false negative and positive rate for the

test.
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Figure 2: Tests allocated to each symptom and age group near the peak of the pandemic under the detect-

ingmode, assuming either 50,000 (a) or 200,000 (b) tests are available and that the number of true infected

cases is 175,000 in a region of 8million people.

Allocation with 50,000 available tests

Allocation with 200,000 available tests
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Figure 3: Tests allocated to each symptom and age group for surveillance past the peak of the pandemic,

assuming 200,000 tests are available and the number of true infected cases is low (10,000) in a region of 8

million people. The test positive rate for the disease outbreak is 0.03.
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Figure 4: Test allocation strategy for the New York City assuming a case under-reporting factor of 4, strati-

fied by symptoms and age.

Figure 5: Comparison on predicted case numbers and test positive rates under optimal testing strategy to

values observed for New York City assuming a case under-reporting factor of 4.
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Figure 6: A total of 1 million budge divided for rapid antigen tests and RT-PCR tests. The price of a single

antigen test and RT-PCR test are $ 5 and $ 135, respectively. The number of infected cases is assumed to be

10,000 in a region of population 8 million.
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