
1 
 

Untargeted metabolomics of COVID-19 patient 
serum reveals potential prognostic markers of both 
severity and outcome.  
 

Ivayla Roberts1,*, Marina Wright Muelas1,*†, Joseph M. Taylor2,*, Andrew S. Davison2,*, Yun Xu1,*, Justine M. 

Grixti1,*, Nigel Gotts1,*, Anatolii Sorokin1, Royston Goodacre1, Douglas B. Kell1,3† 

1Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University 

of Liverpool, UK 

2Department of Clinical Biochemistry and Metabolic Medicine, Liverpool Clinical Laboratories, Royal Liverpool 

University Hospitals Trust, Liverpool, UK.  

3Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Building 220, Chemitorvet, 

Kgs Lyngby 2000, Denmark. 

*Equal contributions 

†Corresponding authors Dr. Marina Wright Muelas (m.wright-muelas@liverpool.ac.uk), Prof. Douglas B. Kell 

(douglas.kell@liverpool.ac.uk)  

 

Abstract  
 

The diagnosis of COVID-19 is normally based on the qualitative detection of viral nucleic acid sequences. 

Properties of the host response are not measured but are key in determining outcome. Although metabolic 

profiles are well suited to capture host state, existing metabolomics studies are either underpowered, 

measure only a restricted subset of metabolites (‘targeted metabolomics’), compare infected individuals 

against uninfected control cohorts that are not suitably matched, or do not provide a compact predictive 

model.  

We here provide a well-powered, untargeted metabolomics assessment of 120 COVID-19 patient samples 

acquired at hospital admission. The study aims to predict patient’s infection severity (i.e. mild or severe) 

and potential outcome (i.e. discharged or deceased).  

High resolution untargeted LC-MS/MS analysis was performed on patient serum using both positive and 

negative ionization. A subset of 20 intermediary metabolites predictive of severity or outcome were selected 

based on univariate statistical significance and a multiple predictor Bayesian logistic regression model. The 

predictors were selected for their relevant biological function and include cytosine (reflecting viral load), 

kynurenine (reflecting host inflammatory response), nicotinuric acid, and multiple short chain acylcarnitines 

(energy metabolism) among others.  

Currently, this approach predicts outcome and severity with a Monte Carlo cross validated area under the 

ROC curve of 0.792 (SD 0.09) and 0.793 (SD 0.08), respectively. Prognostic tests based on the markers 

discussed in this paper could allow improvement in the planning of COVID-19 patient treatment.  
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Abbreviations: 

 

  

AEX-LC-MS/MS anion-exchange LC-MS LC-MS liquid chromatography mass spectrometry

AF atrial f ibrillation LC-MS/MS liquid chromatography tandem mass spectrometry

ALT alanine aminotransferase LFC log fold change

ARDS acute respiratory distress syndrome Lymphs lymphocyte count

AUC area under the curve MB-PCA multiblock PCA

BMI body mass index MSI metabolomics Standards Initiative

BP systolic blood pressure MSML mass spectrometry metabolite library

CI confidence interval NEWS national early w arning score

COVID-19 Coronavirus disease 2019 NICE national institute for health and care excellence

CPAP continuous positive airw ay pressure NMR nuclear magnetic resonance

CRP C-reactive protein OR odds ratio

CRS cytokine release storms  PCA principal component analysis

CV coefficient of variation PCR polymerase chain reaction

eGFR estimated glomerular f iltration rate PLTs platelets count

ESI electrospray ionization QC quality control

FC fold change RLUH royal Liverpool university hospital

FDR false discovery rate ROC receiver operating characteristic

FIO2 fraction of inspired oxygen rRNA ribosomal RNA

GC-MS gas chromatography mass spectrometry RT retention time

GCS Glasgow  coma scale RTPCR reverse transcription PCR

GLM generalized linear models SARS-CoV-2 severe acute respiratory syndrome coronavirus-2

Hb haemoglobin levels SD standard deviation

HCT hematocrit SOB shortness of breath

IHD ischaemic heart disease WBC w hite blood cell count

IQA inter-batch quality assurance

 . CC-BY-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 11, 2020. ; https://doi.org/10.1101/2020.12.09.20246389doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.09.20246389
http://creativecommons.org/licenses/by-nd/4.0/


3 
 

 

Contents 
Abstract ......................................................................................................................................................... 1 

Introduction.................................................................................................................................................... 4 

Results .......................................................................................................................................................... 6 

Exploratory analysis .................................................................................................................................. 6 

Predictive models ...................................................................................................................................... 6 

Metabolic pathways linked to severity and outcome ................................................................................. 9 

Elevated serum cytosine association with severity and outcome ......................................................... 9 

Tryptophan and kynurenine metabolism compounds associate with both severity and outcome ...... 10 

Beta oxidation metabolites, acylcarnitines, increased in severe and deceased outcome patients .... 11 

Other compounds ................................................................................................................................ 11 

Model compounds adjusted for demographic factors and underlying conditions ................................... 11 

Discussion ................................................................................................................................................... 12 

Alterations in pyrimidine metabolites predictive of severity and outcome .............................................. 14 

Tryptophan - kynurenine degradation ..................................................................................................... 14 

Beta oxidation ......................................................................................................................................... 15 

Compounds requiring further investigation ............................................................................................. 15 

Limitations and future work ..................................................................................................................... 16 

Conclusions ................................................................................................................................................. 16 

Methods....................................................................................................................................................... 17 

Sample acquisition .................................................................................................................................. 17 

Sample preparation for metabolomics analysis ...................................................................................... 18 

LC-MS /MS analysis of spent serum samples ........................................................................................ 19 

LC-MS/MS data preprocessing and analysis .......................................................................................... 19 

Area normalization and batch correction ............................................................................................ 19 

Metadata and multiblock analysis ....................................................................................................... 20 

Selection of significant metabolic features .......................................................................................... 20 

Signal curation ........................................................................................................................................ 20 

Pathway enrichment analysis .............................................................................................................. 20 

Multiple predictor models .................................................................................................................... 21 

Adjusted compounds significance ....................................................................................................... 21 

Acknowledgements ..................................................................................................................................... 22 

Contributions ........................................................................................................................................... 22 

Conflict of interest ................................................................................................................................... 22 

References .................................................................................................................................................. 23 

 

 . CC-BY-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 11, 2020. ; https://doi.org/10.1101/2020.12.09.20246389doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.09.20246389
http://creativecommons.org/licenses/by-nd/4.0/


4 
 

Introduction 
 

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) outbreak started in Wuhan, China, in 
2019, and quickly resulted in a worldwide pandemic, challenging healthcare systems with the need to 
provide intensive care to a previously inconceivable number of patients (Bennet et al., 2020). SARS-CoV-
2 presents with a wide range of symptoms, ranging from minor, unspecific ones, including anosmia, a dry 
persistent cough, fever, diarrhoea, in certain cases combined with mild pneumonia, to more severe, 
potentially life-threatening symptoms, such as severe pneumonia with dyspnoea, tachypnoea and disturbed 
gas exchange. Approximately 5% of severely infected patients develop lung dysfunction, requiring 
ventilation, and shock or multiple organ failure (Marietta et al., 2020; Wu and McGoogan, 2020).  In some 
cases, symptoms remain for an extended period (‘long COVID’).  

The reasons behind the wide variability in individual responses to COVID-19, i.e. the illness resulting from 

SARS-CoV-2 infection, are still poorly understood, though some appear to involve interferon responses 

(Arunachalam et al., 2020; Hadjadj et al., 2020; Zhang et al., 2020). Much research, and evidence from the 

clinic, points towards the idea that severe complications in COVID-19 arise through a vasculopathy and 

coagulopathy elicited by infection rather than via the typical inflammatory responses normally observed in 

acute respiratory distress syndrome  or cytokine release storms (Fox et al., 2020; Grobler et al., 2020; 

Leisman et al., 2020; Libby and Lüscher, 2020; Paranjpe et al., 2020; Pretorius et al., 2020; Zheng et al., 

2020). Prognostic scores attempt to transform complex clinical pictures into tangible numerical values. 

However, many of these novel COVID-19 prognostic scores have been found to have a high risk of bias, 

possibly reflecting the fact that they have been developed in small cohorts, and many have been published 

without clear details of model derivation and testing (Knight et al., 2020; Wynants et al., 2020).  

Understanding changes in the biochemistry of an individual who is ostensibly healthy (Dunn et al., 2011; 

Dunn et al., 2015), including when they may show no overt symptoms of infection with SARS-CoV-2, 

remains a huge challenge. Similar questions apply to understanding who is likely to survive (unaided or via 

intervention) and who is likely to die from COVID-19 once diagnosed.  

For fundamental reasons, the metabolome is a more sensitive indicator of the biochemical status of a cell 

or organism than is a proteome or a transcriptome (Kell and Oliver, 2016; Oliver et al., 1998; Raamsdonk 

et al., 2001). Consequently, metabolomic analyses of patient samples promise to enable understanding of 

biochemical changes in relation to poorly understood processes, for instance as recently shown in human 

frailty in ageing populations (Rattray et al., 2019). Because they measure the effects on the host and not 

simply the presence of the infecting agent, such metabolomic studies could provide a set of markers that 

can be of significant use for rapid tests, complementary to current polymerase chain reaction (PCR) or 

antibody tests, for confirmation of SARS-CoV-2 infection, disease severity and potential outcome.  

A small number of studies (Table 1) have applied metabolomics to investigate COVID-19 in human patients, 

(Blasco et al., 2020; Kimhofer et al., 2020; Overmyer et al., 2020; Shen et al., 2020; Thomas et al., 2020).  

These have highlighted disruption of lipid metabolism (Overmyer et al., 2020; Thomas et al., 2020) along 

with tryptophan metabolism in relation to inflammation (Blasco et al., 2020; Overmyer et al., 2020; Thomas 

et al., 2020) and changes in pyrimidine metabolism (Blasco et al., 2020) as metabolic features of COVID-

19 patients against controls. Some of these studies were clearly limited by patient numbers and may 

therefore not be fully representative of the variation in human responses to COVID-19, and some lacked 

proper  statistical tests (see (Broadhurst and Kell, 2006)). Moreover, many of these markers of COVID-19 

infection, severity and outcome have also been described in patients with sepsis and acute respiratory 

failure (Migaud et al., 2020). Most importantly, they tended simply to compare patients with healthy controls, 

which given that the disease status is in fact known does not of itself have either diagnostic or prognostic 

value. We here ask a more pertinent question in a well-powered study: can the metabolome distinguish 

patients with COVID-19 in terms of either disease severity (mild/severe) or outcome (deceased/survived)? 
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Table 1. Overview of findings and study design in published studies utilising metabolomics to assess COVID-
19 diagnosis, severity and outcome. 

Reference Sample types and numbers 
 
 

Outcome Metabolites/Metabolic 
pathways 

Targeted/untargeted 

(Blasco et al., 
2020) 

Plasma from time of COVID-19 diagnosis 
based on SARS-CoV-2 PCR for COVID-19 
patients vs control patients (does not provide 
details). 
 
Patient numbers: 55 COVID-19 patients vs 
45 controls 
 
 

Predict: diagnosis from 
metabotype and 
COVID-19 disease 
evolution (Day 7 and 
Day 15) 

Cytosine and 
tryptophan metabolism 
as marker of SARS-
CoV-2 infection and 
COVID-19 
severity/outcome 

Targeted LC-MS 
based on MSML, 
IROA 

(Shen et al., 
2020) 

Serum from patients with COVID-19 
diagnosis vs patients with similar symptoms 
but negative SARS-CoV-2 RTPCR or 
healthy control subjects.  
 
Patient numbers: 
- 28 severe COVID-19 
- 25 non-severe COVID-19 
- 28 healthy subjects 
- 25 non-COVID-19 (COVID-19 

symptoms, negative test) 
 
 

Differences in 
proteomic and 
metabolomic profiles of 
COVID-19 vs healthy 
controls. 
 
 

Dysregulated lipid, 
amino acid and 
kynurenine 
metabolism. Increased 
kynurenine pathway 
metabolite levels in 
COVID-19 patients 
 
Reduction in levels of 
many lipids in COVID-
19 patients vs controls 
 
Reduced levels of 
amino acids and 
derivatives, particularly 
metabolites of arginine 
metabolism, in COVID-
19 patients vs controls 

Untargeted LC-
MS/MS 

(Overmyer et 
al., 2020) 

Plasma on hospital admission with  
moderate to severe respiratory issues with 
suspected SARS-CoV-2 infection. Those 
with negative COVID-19 test outcome 
assigned to controls. 
 
Patient numbers: 102 COVID-19 vs 26 non-
COVID-19 (COVID-19 symptoms, negative 
test) 
 
 

Prediction of COVID-19 
severity along with 
proteomic and 
transcriptomic data 

Lipids and tryptophan 
metabolites associated 
with COVID-19 
severity. 

GC-MS and AEX-LC-
MS/MS. Semi-
targeted 

(Thomas et 
al., 2020) 

Serum samples. Day of sample draw not 
specified. Some controls were COVID-19 
convalescent patients (negative for SARS-
CoV-2 RTPCR) 
 
Sample numbers: 33 COVID-19 vs 16 
controls  
 

Observational study Alterations in 
metabolism of lipids, 
amino acids 
(particularly tryptophan 
and arginine) in 
COVID-19 patients. 

Untargeted and 
targeted LC-MS/MS 

(Kimhofer et 
al., 2020) 

Plasma from 17 adults with positive SARS-
CoV-2 test result vs 25 healthy controls from 
general population 
 

Differentiate SARS-
CoV-2 infected patient 
from controls 

Alterations in lipid and 
amino acid metabolism, 
particularly tryptophan 
metabolism in COVID-
19 vs healthy patients. 

NMR and targeted 
LC-MS of amino 
acids 

Abbreviations: MSML IROA, Mass Spectrometry Metabolite Library supplied by IROA Technologies; GC-MS: Gas Chromatography-Mass Spectrometry; AEX-
LC-MS/MS: Anion Exchange-Liquid Chromatography-Tandem Mass Spectrometry; NMR: Nuclear Magnetic Resonance. 
 

 

To that end, we adopted an untargeted metabolomics approach using LC-MS/MS to cohorts of serum 
samples collected at the Royal Liverpool University Hospital (RLUH). 120 patient samples were obtained 
at the time of admission and diagnosis with COVID-19. This study enabled us to identify prognostic 
biomarkers of both COVID-19 severity (severe vs mild) and outcome.  
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Here we present the study results via a set of different models. We first validate that untargeted 

metabolomics provides better severity and outcome distinction vs using solely demographics and clinical 

data, via multiblock analysis. A high dimensional predictive model is then presented, based on more than 

900 metabolites, showing promising predictive performance. Next, with the goal of clinical application in 

mind, we present predictive model results of 20 compounds selected on the basis of our confidence in the 

metabolites’ identity and known biological function. We discuss in detail the approaches used to make this 

selection via pathway enrichment analysis and manual curation. Finally, we explore (and largely discount) 

the possible confounding effects of demographic factors and underlying conditions of the selected metabolic 

predictors.   

 

Results 

 
LC-MS data preprocessing in Compound Discoverer resulted in 5234 ESI+ and 2465 ESI- retained 

metabolic features. The excluded features resulted from the standard filters; i.e., background compounds, 

features with quality control (QC) samples coefficient of variation (CV) >30 % or presence in less than 80 

% of the QCs. Additionally, compounds detected in less than 25 % of the experimental samples were also 

excluded. The latter allowed the removal of a large number of metabolites related to drugs and their 

metabolites taken by the patients for preexisting conditions, which would otherwise simply have represented 

confounders.  

Exploratory analysis 
Principal components analysis (PCA) was performed on both positive electrospray ionization (ESI+) and 

negative electrospray ionization (ESI-) data and no clear clustering due to either severity or outcome could 

be observed (Figure S1), indicating that a simple, unsupervised method such as PCA had failed to detect 

differences in metabolic profiles related to COVID-19 infection and potential outcome in complex data 

resulting from LC-MS analysis. In contrast, when PCA was applied to the metadata associated with the 120 

patients which include gender, age, body mass index (BMI), pulse, temperature, blood pressure, respiratory 

rate (full list is provided in the methods section), a trend of separation between severe and mild patients 

was observed (Figure 1A). This alone is not overly interesting because the severity assessment was drawn 

from a few variables in these metadata. However, when the metadata and the LC-MS ESI+/- data were 

analyzed together by using a multiblock PCA (Smilde et al., 2005; Xu and Goodacre, 2012) the separation 

trend improved (Figure 1B). Those observations are also valid in fatal outcomes where no clear clustering 

is observed in the metadata PCA block (Figure 1A). Individual block figures from the multiblock analysis 

are available in the supplementary information (Figure S2). Clearly PCA is not a classification technique 

and the lack or presence of clusters does not translate directly to any predictive potential of the data. To 

explore if differences in metabolic profiles are capable of predicting the severity and outcome of COVID-19 

infection, the next section explores in detail predictive models based on the LC-MS data. 

Predictive models 
Four multi-predictor models were trained: extreme gradient boosted tree (Chen and Guestrin, 2016; 

Friedman, 2001), Lasso regularization with elastic net (Zou and Hastie, 2005), logistic regression, and 

Bayesian logistic regression (Goodrich, 2020). All these models, when trained on the complete data of 

>7000 metabolic features, showed clear signs of overfitting despite the use of cross-validation and 

regularization. To overcome this, the set of predictors were filtered based on individual significance as 

determined by volcano plot analysis (p-value and fold change) as illustrated in Figure 2 for outcome. 

Volcano plots for severity are available in the Supplementary information (Figure S3). 

 

 . CC-BY-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 11, 2020. ; https://doi.org/10.1101/2020.12.09.20246389doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.09.20246389
http://creativecommons.org/licenses/by-nd/4.0/


7 
 

 

Figure 1. Metadata alone (A) and multiblock (B) PCA for severity and outcome. It can be observed that group 
separation trends improve with addition of LC-MS data (B). It is important to note that deceased patients are a subset 
of severe cases that do not appear to show specific clustering in this exploratory analysis. Axis are labelled with 
principal component and its explained variance in percentage.  

 

Figure 2. Volcano plots ESI+(A) and ESI-(B) for metabolites discriminating disease outcome. Dotted lines mark 
boundary of significance 0.5 for Log2 Fold Change (FC) 0.05 for q-value at 0.05 with second dotted for q-value at 0.01. 
Compounds with higher levels in poor outcome are coloured in red and inversely compounds with significantly lower 
levels in blue. It can be observed that in both ESI+ and ESI- differences in fatal outcome are more often based on 
increased levels. 

Significance filtering based on volcano analysis reduced the number of metabolic features to 1987/ 937 

(ESI+/- respectively) for severity and/or outcome combined. For those features, signal curation based on 

chromatogram and spectral quality (see Methods section), was performed in Compound Discoverer and a 

total of (526/409 ESI+/- respectively) features were retained. Table 2 below provides a breakdown of those 
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compounds in terms of Metabolomics Standards Initiative (MSI) levels (Sumner et al., 2007), ranging from 

MSI level 1 to 4. 

Table 2. Number of metabolic features remaining after LC-MS/MS data pre-processing, statistical selection of 
significant features and manual curation for chromatographic peak shape and spectral signal. Compounds 
where no molecular formula could be assigned by CD3.1 (see Methods) were discarded. 

MSI level (Sumner et al., 2007) ESI+ ESI- 

Level 4: Molecular formula match 526 409 

Level 3: Molecular formula + Mass library match 384 283 

Level 2: all above plus MS/MS match (spectral match ≥ 70 %) 45 33 

Level 1: MS/MS experimental in-house library match 14 8 

 

Evaluation of the four predictive models on this reduced set of 937 ESI+/- metabolic features showed best 

generalization results using Bayesian logistics regression; therefore, all the following results are based on 

this model. The mean area under the curve (AUC) was calculated at 0.836 (SD 0.069) for severity and 

0.807 (SD 0.081) for outcome, demonstrating good predictive power of the patient metabolome. However, 

a mass spectrometry-derived model with some 900 compounds is not a practical solution (Kenny et al., 

2010) for an assay of general utility, and thus subsets of these compounds were investigated further. The 

sub-group selection was guided by metabolic pathway enrichment analysis and manual curation of well 

identified (i.e. MSI level 1 or 2) compounds with known biological activity. A final model with 20 compounds 

selected in this way showed a reasonable cross-validated mean AUC of 0.793 (SD 0.080) for severity and 

0.792 (0.090) for outcome. Mean balanced accuracy was calculated at 0.716 (0.088) and 0.655 (0.098) for 

severity and outcome, respectively. Representative receiver operating characteristic (ROC) curves for one 

random train-test split are shown in Figure 3.  

 

Figure 3. Predictive model based on 20 compounds selected for their identification confidence and known 
biological role (see Figure 4). Balanced accuracy and AUC for the represented in the graphic model are in the 
0.70s and 0.80s, respectively. ROC 95% confidence intervals were calculated with 2000 stratified bootstrap replicates 
on the test data and are presented as blue shading around the mean curve. A Monte Carlo cross-validation results 
estimate the model balanced accuracy at 0.716 for severity and 0.655 for outcome. Cross-validated AUC was 
calculated at ~0.79 in both conditions.  
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Metabolic pathways linked to severity and outcome 
Pathway enrichment analysis was performed with MUMMICHOG (Li et al., 2013) as implemented in 

MetaboAnalyst (Pang et al., 2020) as a way of selecting biologically relevant sub-groups of compounds. As 

expected, no ‘entire’ pathways showed significant p-values when ESI+ and ESI- results were grouped 

together (Anderson et al., 2014; Kell and Goodacre, 2014; Kell and Westerhoff, 1986). However, pathways 

that showed multiple significant hits were further investigated manually. These included pyrimidine 

metabolisms, tryptophan metabolism, and aspartate and asparagine metabolism. A number of these are in 

accordance with recently published studies comparing COVID-19 patients to healthy controls (Blasco et al., 

2020; Overmyer et al., 2020; Thomas et al., 2020). The 20 compounds selected with this approach (shown 

with their significance in patient outcome Figure 4) are further discussed below. Selected compound 

significance in the prediction of COVID-19 severity is shown in Figure S4.  

 

Figure 4. Compounds retained for severity and outcome predictive model. Box plot shows compound area 
differences between discharged and deceased patients ordered by fold change. Compounds areas are standardized 
(mean = 0, SD = 1) to facilitate comparison. Boxes represent the interquartile rage Q1 to Q3 with Q2 (i.e. median) line 
in the middle. Outliers range is depicted by the ‘whiskers’. The table on the right side of the figure shows detailed 
information about the compounds including FC and q-value (false discovery rate corrected p-value) following ‘star’ 
notation i.e. ‘***’ correspond to q-values <0.001, ‘**’ <0.01, and missing when >0.1. 

Elevated serum cytosine association with severity and outcome 
Cytosine levels were increased over 2-fold in patient samples at admission who went on to develop severe 

symptoms or subsequently died (Figure 5 A and B). Furthermore, cytosine:uracil ratios showed a 

comparable separation. Elevated cytosine levels were also found in COVID-19 patients measured against 
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healthy controls and 15 days post infection in (Blasco et al., 2020), but severity or outcome were not 

discriminated as they were here. 

 

Figure 5. Cytosine levels in patients according to (A) severity or (B) outcome.  Boxplot markings follow the 
same standard as Figure 4.  

Uridine, another pyrimidine, was found significantly decreased in fatal outcome cases; however, its Log 

Fold Change (LFC) was close, but not significant in severe cases. Moreover, pseudouridine, an isomer of 

uridine, was increased in patient samples with severe disease progression or deceased outcome. 

Pseudouridine (Figure 4) is a marker of cell ribosomal RNA (rRNA) turnover (Nakano et al., 1993), for 

instance in heart failure (Dunn et al., 2007).  

Tryptophan and kynurenine metabolism compounds associate with both severity and outcome 
Kynurenine (a tryptophan degradation product, see schematic in Figure 6) was significantly increased in 

both severe cases and in patients who died, with a fold change of 1.5. The difference was even more 

marked for kynurenic acid in outcome, with levels increasing over 2-fold.  

In addition to changes in kynurenine and kynurenic acid, our results showed that a reduction in levels of 

serotonin (MSI level 3) and melatonin (MSI level 3) were associated with severity and death. We also 

observed an increase in serum levels of cortisol with q-value of 0.006 and ~1.3-fold in severe cases as well 

as those who died. The observed changes in tryptophan metabolism appear to be related to an immune 

response to SARS-CoV-2 since tryptophan dioxygenase, a tryptophan-degrading enzyme, activity is 

upregulated by cortisol and initiates degradation of tryptophan to kynurenine. Previous research  (Thomas 

et al., 2020) has found a correlation between increases of interleukin 6 and kynurenine levels in COVID-19 

patients compared to controls. Finally, kynurenine pathway upregulation as part of an inflammatory 

response is known to impact serotonin levels negatively (Hunt et al., 2020; Li et al., 2017), as also observed 

in our results. 
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Figure 6. Simplified schematic representation of tryptophan metabolism highlighting connections to 
compounds discussed in this section. Compounds marked with green background are part of our predictive 
model. Arrows indicated the change in severity or outcome and arrows green colour indicate good confidence in 
compound identification (i.e. MSI level 1 or 2).  

Interestingly we observed nicotinamide (MSI 1) levels to be 1.5-fold higher in severe case, but not significant 

in outcome. Conversely, nicotinuric acid (MSI 3) levels were over 2-fold higher in fatal outcome and non-

significant in severity. Both nicotinamide and nicotinuric acid are related to kynurenine/tryptophan 

metabolism (Murray, 2003), and forms of nicotinic acid (i.e. niacin or vitamin B3). It is important to note that 

niacin was not detected in the experiment and was not reported as part of any patient’s treatment.  

Beta oxidation metabolites, acylcarnitines, increased in severe and deceased outcome patients 
Multiple fatty acyl carnitines, e.g. hydroxybutyrylcarnitine (>2-fold), hexenoylcarnitine (1.4-fold) and 

hydroxyoctanoyl (~2 fold), were found to be significantly higher in both severe and poor outcome cases. 

Long chain fatty acyl carnitines were not reliably detected in the study as the LC gradient used for data 

acquisition is optimized for more hydrophilic molecules. Therefore, fatty acyl carnitines with more than 10-

carbon FA chains were excluded from the analysis. On the other hand, carnitine (MSI level 1) and its 

precursors, i.e. lysine (MSI 1) and methionine (MSI 1), were unchanged in severity and outcome.  

Other compounds 
The final selection of compounds also includes the amino acids arginine (MSI level 1) and asparagine (MSI 

level 3); asparagine showed more than a 2-fold change in poor outcome and 1.7-fold in severe cases. 

Additionally, S-adenosylhomocysteine (MSI level 2), a precursor to homocysteine showed significantly 

increased levels in severe cases and fatal outcome conditions. Moreover, the model includes N-

acetylspermidine (MSI level 3) that was reported along with spermidine by (Thomas et al., 2020) as 

increased in COVID-19 patient sera compared to controls. Interestingly, in contrast to N-acetylspermidine, 

spermidine did not show significant changes in relation to either severity or outcome. Finally, the model 

includes creatinine (MSI level 2) which, in accordance with the clinically acquired data, tend to increase in 

patients with fatal outcomes but did not increase with disease severity.  

Model compounds adjusted for demographic factors and underlying conditions  
Confounders are an important issue in omics studies (Broadhurst and Kell, 2006), and several factors (age, 

gender, BMI, and existing inflammatory diseases) are recognised as predisposing patients infected with 

COVID-19 to severe infection and poor outcome. Any impact on compound levels simply from population 

demographics and underlying conditions was explored with univariate logistic regression odds ratios (OR) 

and 95% confidence interval (95% CI) analysis. Individual compounds’ odds ratio (OR) and 95% confidence 

intervals (CI) for outcome as adjusted for age, gender, BMI, diabetes, liver, kidney and cardiac disease and 

all together are presented in Table 3. The severity-based table is available in the supplementary information 

(Table S1). It is important to note that identifying links between those factors and the compounds of interest 

is meaningful when evaluating their biological role; however, being ‘confounded’ does not invalidate their 

predictive power and relevance in a predictive model. Additionally, it can be observed that not all 

compounds (e.g. kynurenic acid, cortisol) selected for their significant q-value and fold change showed 

significance based on 95% CI.  
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An important result from this analysis is that cytosine and kynurenine remained significant regardless of 

patient demographics or underlying conditions. By contrast, increases in levels of short and medium fatty 

acylcarnitines in severity and outcome appear to be partially explained by age and BMI, as their OR tended 

to decrease when adjusted, and this may be correlated to frailty in ageing (Rattray et al., 2019). After 

adjusting for all recorded conditions in the study, only butyrylcarnitine, 3-hydroxybutyrylcarnitine and 

hydroxyhexanoycarnitine showed a strong relation to disease severity. In respect to outcome, 

butyrylcarnitine remained the most significant. This indicates that higher levels of acyl carnitines are likely 

linked to metabolic differences in the patients prior to the viral infection. As such they could potentially 

indicate a risk group. Moreover, pseudouridine’s significance was impacted by age, BMI and mildly by 

cardiac conditions and hypertension. This in itself is not a confounding issue since both age and BMI also 

contribute statistically to the outcome of COVID-19 (Hussain et al., 2020; Iaccarino et al., 2020). 

Interestingly asparagine, despite maintaining strong significance while adjusted for all factors showed an 

increased OR when adjusted for age in fatal outcome case. In contrast asparagine OR dropped when 

adjusted for age and BMI in severe (vs mild) cases. Lower asparagine levels have also been associated 

with an increased risk of developing type 2 diabetes mellitus and coronary artery disease (Ottosson et al., 

2018).  

 

Discussion 
 

In this study we employed untargeted metabolomics using LC-MS/MS to detect and measure changes in 

the baseline serum metabolome of a cohort of 120 COVID-19-infected patients at the point of hospital 

admission. Our aim was to find not only prognostic markers of subsequent disease severity and outcome, 

but to also understand what effects COVID-19 infection has on the patient’s metabolome and inversely 

what effect patient biochemistry and physiology have on infection development. These results could then 

be used to guide patient treatment and medical attention requirements following COVID-19 diagnosis. Most 

studies to date applying metabolomics to COVID-19 human patients have compared them against healthy 

controls; this is of limited predictive value, as rapid PCR and antibody tests exist, and does not provide an 

insight into what biochemical changes drive disease severity or outcome. Moreover, a number of these 

studies (Table 1), used a small number of patients with limited variation in human responses to COVID-19, 

and some lacked proper statistical analysis (see (Broadhurst and Kell, 2006; Trivedi et al., 2017)). 

Our results showed that distinct alterations in the serum metabolome were already capable of distinguishing 

both subsequent COVID-19 severity and outcome (discharge versus deceased) at the time of diagnosis 

and admission. More importantly, using both univariate and a multiple predictor Bayesian logistic regression 

model we found a subset of 20 metabolites with relevant biological functions that are predictive of 

subsequent disease severity and patient outcome with AUC 0.792 and 0.793 respectively. These changes 

centered particularly around pyrimidine, tryptophan and acylcarnitine metabolism, which can be related to 

viral replication, host inflammation response and alterations in energy metabolism.  
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Table 3. Adjusted logistic regression results by outcome. Positive OR indicate increased levels in patients with poor outcome and are presented with OR (95% CI). Significance 
is presented in ‘star’ notation i.e. ‘***’ correspond to p-values <0.001, ‘**’ <0.01, ‘*’ <0.05, ‘.’ < 0.1 and missing when >0.1. Compounds are adjusted for age, gender, BMI, liver 
conditions, cardiovascular diseases, hypertension, kidney disease, diabetes and all together. Details of specific diseases in each category are available in the Methods section. 

 

Compound OR Sig. OR Sig. OR Sig. OR Sig. OR Sig. OR Sig. OR Sig. OR Sig. OR Sig. OR Sig.

Cytosine
2.1 

(1.4-3.6) **

2 

(1.2-3.4) *

2.3 

(1.4-3.9) **

2.1 

(1.3-3.8) **

2.1 

(1.4-3.6) **

2.1 

(1.3-3.5) **

2 

(1.3-3.4) **

2 

(1.3-3.5) **

2 

(1.3-3.5) **

2.5 

(1.4-4.9) **

Uracil
0.75 

(0.47-1.1)  

0.84 

(0.56-1.2)  

0.79 

(0.49-1.2)  

0.83 

(0.56-1.2)  

0.75 

(0.47-1.2)  

0.72 

(0.44-1.1)  

0.78 

(0.48-1.2)  

0.79 

(0.49-1.2)  

0.79 

(0.49-1.2)  

0.81 

(0.45-1.4)  

Pseudouridine
1.9 

(1.3-2.8) **

1.5 

(0.97-2.4) .

1.9 

(1.2-2.9) **

1.6 

(1.1-2.5) *

1.9 

(1.3-2.8) **

1.8 

(1.2-2.8) **

1.7 

(1.1-2.7) *

2 

(1.2-3.5) *

2 

(1.2-3.5) *

1.6 

(0.91-2.9)  

Uridine
0.39 

(0.21-0.67) **

0.58 

(0.37-0.88) *

0.4 

(0.22-0.7) **

0.61 

(0.39-0.91) *

0.39 

(0.21-0.67) **

0.36 

(0.19-0.63) ***

0.41 

(0.22-0.7) **

0.41 

(0.22-0.71) **

0.41 

(0.22-0.71) **

0.41 

(0.19-0.82) *

Tryptophan
0.71 

(0.46-1.1)  

0.88 

(0.59-1.3)  

0.68 

(0.43-1.1) .

0.79 

(0.53-1.2)  

0.72 

(0.46-1.1)  

0.72 

(0.46-1.1)  

0.73 

(0.47-1.1)  

0.76 

(0.48-1.2)  

0.76 

(0.48-1.2)  

0.72 

(0.42-1.2)  

Kynurenine
2.7 

(1.7-4.8) ***

2.3 

(1.4-4.2) **

2.8 

(1.8-5.1) ***

2.3 

(1.4-3.9) **

2.7 

(1.7-4.8) ***

2.9 

(1.7-5.4) ***

2.6 

(1.6-4.6) ***

2.6 

(1.6-4.7) ***

2.6 

(1.6-4.7) ***

2.6 

(1.5-5) **

Kynurenic acid
1.5 

(0.99-2.6)  

1.4 

(0.91-2.7)  

1.5 

(0.96-2.6)  

1.4 

(0.88-2.6)  

1.5 

(0.98-2.6)  

1.5 

(1-2.6) .

1.4 

(0.91-2.4)  

1.3 

(0.87-2.4)  

1.3 

(0.87-2.4)  

1.2 

(0.73-2.1)  

Cortisol
1.4 

(0.93-2.2)  

1.3 

(0.9-2.1)  

1.4 

(0.93-2.2)  

1.2 

(0.82-2)  

1.4 

(0.94-2.2)  

1.4 

(0.91-2.1)  

1.4 

(0.92-2.2)  

1.4 

(0.93-2.1)  

1.4 

(0.93-2.1)  

1.4 

(0.86-2.3)  

Nicotinamide
1.1 

(0.68-1.5)  

1.2 

(0.8-1.8)  

1 

(0.67-1.5)  

1 

(0.69-1.5)  

1 

(0.67-1.5)  

1.1 

(0.68-1.5)  

1.1 

(0.69-1.6)  

1.1 

(0.67-1.5)  

1.1 

(0.67-1.5)  

1.2 

(0.7-1.9)  

Nicotinuric acid
1.6 

(1.1-2.6) *

1.5 

(1-2.8) .

1.6 

(1.1-2.5) *

1.6 

(1-2.9) .

1.7 

(1.1-2.7) *

1.6 

(1.1-2.6) *

1.5 

(1-2.4) *

1.5 

(1-2.6) .

1.5 

(1-2.6) .

1.5 

(0.92-2.6)  

Propionylcarnitine
2.2 

(1.5-3.6) ***

2 

(1.3-3.2) **

2.2 

(1.4-3.5) ***

1.9 

(1.2-3) **

2.3 

(1.5-3.6) ***

2.2 

(1.4-3.5) ***

2.1 

(1.4-3.5) ***

2.2 

(1.4-3.5) **

2.2 

(1.4-3.5) **

1.9 

(1.1-3.2) *

Butyrylcarnitine
2.5 

(1.6-4.4) ***

2.8 

(1.6-5.7) **

2.5 

(1.6-4.5) ***

2.3 

(1.3-4.4) **

2.6 

(1.6-4.6) ***

2.5 

(1.5-4.4) ***

2.4 

(1.5-4.3) ***

2.4 

(1.5-4.3) ***

2.4 

(1.5-4.3) ***

2.2 

(1.3-4.4) *

3-hydroxybutyrylcarnitine
1.9 

(1.3-2.9) **

1.7 

(1.1-2.8) *

2.1 

(1.4-3.3) ***

1.5 

(0.98-2.4) .

1.9 

(1.3-2.9) **

1.8 

(1.2-2.9) **

1.8 

(1.2-2.9) **

1.8 

(1.2-2.8) **

1.8 

(1.2-2.8) **

1.6 

(1-2.7) *

Hexanoylcarnitine
1.4 

(0.95-2.4)  

1.2 

(0.82-2.2)  

1.4 

(0.92-2.3)  

1.3 

(0.83-2.2)  

1.4 

(0.95-2.4)  

1.4 

(0.93-2.3)  

1.3 

(0.9-2.3)  

1.3 

(0.88-2.2)  

1.3 

(0.88-2.2)  

1.1 

(0.67-1.7)  

L-Octanoylcarnitine
1.4 

(0.93-2.2)  

1.2 

(0.78-1.9)  

1.3 

(0.9-2.2)  

1.2 

(0.79-1.9)  

1.4 

(0.93-2.2)  

1.3 

(0.91-2.2)  

1.3 

(0.87-2.1)  

1.3 

(0.84-2.1)  

1.3 

(0.84-2.1)  

0.95 

(0.56-1.5)  

Creatinine
1.5 

(1-2.4) *

1.4 

(0.91-2.2)  

1.5 

(1-2.3) .

1.4 

(0.93-2.4)  

1.5 

(1-2.4) *

1.6 

(1.1-2.4) *

1.4 

(0.93-2.2)  

1.4 

(0.91-2.3)  

1.4 

(0.91-2.3)  

1.4 

(0.82-2.4)  

Asparagine
2.8 

(1.4-6.9) *

7.5 

(2.8-24) ***

2.7 

(1.4-6.5) *

3.2 

(1.4-8.4) **

2.8 

(1.4-6.9) *

3 

(1.5-7.3) **

3.9 

(1.8-10) **

3.2 

(1.5-8.3) **

3.2 

(1.5-8.3) **

4.5 

(1.8-14) **

Arginine
0.53 

(0.33-0.81) **

0.66 

(0.43-0.97) *

0.52 

(0.32-0.81) **

0.69 

(0.46-1) .

0.51 

(0.32-0.8) **

0.53 

(0.33-0.81) **

0.53 

(0.33-0.82) **

0.55 

(0.34-0.86) *

0.55 

(0.34-0.86) *

0.59 

(0.33-1) .

N1-acetylspermidine
1.9 

(1.3-3) **

1.8 

(1.2-3.1) *

1.9 

(1.3-3.1) **

1.7 

(1.1-2.9) *

2 

(1.3-3.2) **

1.9 

(1.2-3) **

1.9 

(1.3-3.1) **

1.8 

(1.2-2.9) **

1.8 

(1.2-2.9) **

1.7 

(1-3) *

Adenosylhomocysteine
2.3 

(1.4-4.2) **

2.2 

(1.3-4.5) *

2.3 

(1.4-4.4) **

2.3 

(1.3-4.7) *

2.3 

(1.4-4.2) **

2.2 

(1.4-4.1) **

2.2 

(1.3-4.1) **

2.3 

(1.3-4.8) *

2.3 

(1.3-4.8) *

2.1 

(1.2-4.3) *

AllNone Age Gender BMI Liver disease Kidney disease DiabetesCV disease Hypertension
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Alterations in pyrimidine metabolites predictive of severity and outcome 
Viral infections induce characteristic changes in host cell metabolism to enable effective viral replication 

(Thaker et al., 2019). Moreover, the resulting metabolic impact and cellular reprogramming varies between 

viruses (even within the same family) and host cell type. In the case of SARS-CoV-2, cytosine has been 

described as pivotal in the virus’ evolution (Danchin and Marlière, 2020) where avoidance of host defense 

mechanisms have favored a reduced cytosine proportion in viral RNA, estimated at 17.6 %. When 

compared to typical human RNA, the cytosine proportion is significantly lower. In contrast to cytosine, the 

proportion of uracil in SARS-CoV-2 is estimated at around 32.4 % (Danchin and Marlière, 2020) and it is 

significantly higher than that in human RNA. Consequently, the ratio of serum uracil to cytosine may be 

even more informative of the viral load and current reproduction activity in a patient. This difference between 

host and viral RNA composition could result in significant levels of cytosine being released into the 

circulation upon the death of infected cells. Therefore, higher levels of cytosine in blood can reasonably be 

expected to indicate higher levels of viral load. 

Cytosine has been reported previosuly to discriminate between COVID-19 infection compared to uninfected 

individuals (Blasco et al., 2020) but has not been assessed regarding severity or outcome. Here, our 

analyses showed that cytosine levels were predictive of subsequent disease severity and outcome; serum 

cytosine levels were increased over 2-fold in serum from patient samples at admission who went on to 

develop severe symptoms or subsequently died (Figure 5 A and B). Given the reduced incorpration of 

cytosine into SARS-CoV-2, these results may indicate a higher viral load and replication, subsequently 

leading to the development of severe symptoms,  in some cases resulting in death.  

Increased viral reproduction activity could be due to an initial higher viral load, a host environment favorable 

to viral reproduction, or the effective stage of the infection. It is thus not possible to draw mechanistic 

conclusions from our results; nevertheless the cytosine OR remained stable when adjusted for demographic 

factors and known underlying conditions indicting that those factors are not significant with regard to viral 

replication rates. This would be more consistent with the fact that the initial load before admission is the 

most important parameter affecting both disease severity and outcome. 

The serum cytosine:uracil ratio showed comparable resutls, with significant increase in severe cases and 

poor outcome. This result furthermore confirms the proposed relationship between pirimidines levels and 

viral activity based on (Danchin and Marlière, 2020) SARS-CoV-2 genome description.     

Given these results, measurement of cytosine, uracil, and their ratios, could potentially allow tracking of 

viral activity and predict recovery or aggravation. However, it is important to note a limitation of 

cytosine:uracil ratio usage given that cytosine degradation pathway goes through uracil. To acknowledge 

this relationship, the kinetics of the degradation process need to be incorporated in a potential viral activity 

predictive model. Moreover, as highlighted by (Migaud et al., 2020) the levels of certain nucleobases are 

also increased in patients who die from sepsis and acute respiratory failure. Further investigation would be 

required to tease out the contributions of SARS-CoV-2 viral replication to the levels of these pyrimidines 

against the secondary effects of the virus on the host (human) health. 

Pseudouridine, was also noted to be increased in severe cases and poor outcome. As mentioned previously 

pseudouridine (Figure 4) is a marker of cell (rRNA) turnover (Nakano et al., 1993), for instance in heart 

failure (Dunn et al., 2007). When adjusting for cardiovascular disease this compound remained significant 

but showed slight correlation with hypertension and age. Finally, when adjusted for all factors pseudouridine 

95 % CI lost significance indicating correlation with more than one factor. Interestingly, growing evidence 

points toward complications in COVID-19 arising through a vasculopathy and coagulopathy elicited by the 

infection (Pretorius et al., 2020) and may be indicative of this process. 

Tryptophan - kynurenine degradation 
The degradation of tryptophan to kynurenine is a well-studied pathway associated with increased 
inflammatory processes. In the context of this study the non-significant decrease of tryptophan in severe 
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cases could be explained either by change in dietary habits or more likely by the higher stimulation of 
tryptophan to kynurenine degradation indicated by the significant increase in levels of kynurenine and 
kynurenic acid. Upregulation of this process was further confirmed by the higher levels of cortisol, which 
stimulates tryptophan degradation, especially in severe cases (Table 3). An increase in patient kynurenine 
levels has also been reported in COVID-19 compared to controls in (Thomas et al., 2020), associated with 
severity in (Overmyer et al., 2020), and also linked to fatal sepsis development in (Migaud et al., 2020). 
This provides strong evidence of higher levels of immune response in severe cases and those with a fatal 
outcome. More recently, upregulation of tryptophan metabolites including kynurenine has been found to 
play a protective role in radiation injury during cancer radiotherapy (Guo et al., 2020) indicating that these 
relationships are more complicated than previously thought, and also involve the gut microbiome.    

Furthermore, changes in levels of nicotinic acid reflected by its condensation product nicotinuric acid could 

possibly reflect a dysfunctional energy metabolism. Interestingly our data indicates increased levels of 

nicotinamide in severity and nicotinuric acid in outcome. Increased levels of nicotinuric acid in urine have 

been previously reported as pathogenic markers in metabolic syndrome and cardiovascular disease 

(Huang et al., 2013), again consistent with the known cardiovascular effects of SARS-CoV-2 infection (Fox 

et al., 2020; Grobler et al., 2020; Leisman et al., 2020; Libby and Lüscher, 2020; Paranjpe et al., 2020; 

Pretorius et al., 2020; Zheng et al., 2020). 

Beta oxidation 
Interestingly, levels of short and medium chain acylcarnitines were previously reported by (Thomas et al., 

2020) as reduced in COVID-19 patients versus controls irrespective of Interleukin 6 (IL6) levels. In this 

study we identified multiple short chain acyl carnitines as increased in severe cases and those with a fatal 

outcome compared to mild cases and discharged patients. Changes in serum acylcarnitines have been 

previously associated with cardiovascular disease, diabetes and inflammation (Anderson et al., 2014). 

Moreover, increased levels of octanoyl-l-carnitine have been previously associate with arterial stiffness 

(Kim et al., 2015) and dysregulation of the carnitine shuttle. Long chain acyl carnitines, not detected in this 

study, have been additionally reported in relation to frailty (Rattray et al., 2019).  

Indeed, adjusted logistic regression results (Table 3) here show that some of their significance can be 

explained by BMI levels. This could possibly indicate different levels change in energy metabolism as 

response to viral infection linked to preexisting phenotype i.e. BMI and therefore represent a high-risk group.  

Compounds requiring further investigation  
Our study highlighted a number of other compounds (not discussed here) that changed significantly in 

severity and outcome. However, as is common in metabolomics (Blaženović et al., 2018; Salek et al., 2013), 

these require further rigorous identification following Metabolomics Standards Initiative reporting for 

chemical analysis (Sumner et al., 2007) and so were not included in the predictive model at this stage. 

Examples of such compounds include pentahomomethionine (MSI 3) and trihomomethionine (MSI 3), both 

sulfur-containing amino acids. These were both increased in severe cases and were especially high in 

patients with a fatal outcome. Other sulfur containing compounds such as cysteine and taurine have been 

found to be reduced in COVID-19 cases compared to controls, and in COVID-19 patients with moderate-

high IL-6 levels (Thomas et al., 2020). Homomethionines such as penta- and tri-homomethionine identified 

in our results are formed by transamination of oxo-acids that are themselves formed in fatty acid breakdown 

possibly indicating a procatabolic phenotype, as is common in inflammation (Underwood et al., 2006).  

Another compound worthy of further attention is ergothioneine. Ergothioneine is a potent exogenous 

antioxidant, usually acquired via the consumption of mushrooms (Borodina et al., 2019; Cheah and 

Halliwell, 2012). The potential protective value in SARS-CoV-2 infections of ergothioneine was recently 

reviewed by (Cheah and Halliwell, 2020). The results of our study found ergothioneine levels to be following 

the expected trend, i.e. lower in severe cases and poor outcome; however its q-values (in a population 

whose mushroom consumption was neither monitored nor controlled) fell just slightly short of significance 

(see Figure S5 A and B). Moreover, piperine (MSI 2) (representative of black pepper consumption) was 

interestingly found significantly decreased in severe cases and poor outcome (see Figure S5 C and D). 
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This most likely reflects dietary changes in the patients experiencing severe symptoms; however the 

potential impact of piperine to the host organism is not fully understood.  

Limitations and future work  
Whilst untargeted LC-MS analysis allows detection of a large number of compounds of diverse chemical 

classes, limitations in the compound coverage can result from sample preparation methods, LC solvents 

and gradient. In this study the serum extraction and LC gradient were targeted at hydrophilic compounds, 

therefore numerous lipids were not reliably measured, i.e. long chain acyl carnitines. Despite this limitation 

several lipids that exhibit amphiphilic properties e.g. phospholipids and fatty acids were detected and 

showed significant changes between our patient groups. However, confirmation of their precise identity will 

require further work before being integrated into a predictive model. 

Additional limitations in the presented work come from the preselection of metabolic features that were 

individually significant in volcano analysis. While this simple method of feature selection narrows the list of 

compounds it also prevents us from identifying more complex interactions in the case of disjoint populations. 

More importantly such variable selection performed on all data require validation in a separate patient 

cohort. 

Despite these limitations, multiple significant biological processes were identified as key in discriminating 

between disease severity and outcome. Future work will aim to validate these findings against a new patient 

cohort.  

Conclusions 
 

We have here performed a well-powered, untargeted metabolomics analysis of serum of COVID-19 patients 

with the aim of finding prognostic markers of disease severity and outcome. Using both univariate and a 

multiple predictor Bayesian logistic regression model we found a subset of 20 metabolites with relevant 

biological functions that are predictive of subsequent disease severity and patient outcome. Although, no 

individual metabolite appeared be strongly discriminative on its own, a combined model based on viral 

activity, host immune response and underlying metabolic differences showed promising predictive results 

with AUC 0.792 and 0.793, respectively. These markers hold promise to improve patient care upon COVID-

19 infection and diagnosis. Building on these encouraging results, further work will aim to validate those 

findings and their prognostic potential in a longitudinal study. 
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Methods 

Sample acquisition 
All samples were acquired at the Royal Liverpool University Hospital (RLUH) on the first positive SARS 

CoV-2 test (not fasted and different times of the day). Surplus serum was saved after routine diagnostic 

testing on patients admitted to the hospital who subsequently tested positive for SARS-CoV-2 via PCR. 

Blood was initially collected into VACUETTE Clot Activator tubes (Greiner, Germany) within approximately 

48 h of presentation and centrifuged at 1,500 x g for 10 min within 60 min of collection. Surplus serum was 

stored at –80 ° C prior to processing and analysis. Ethical approval for the use of serum samples and 

associated metadata in this study was obtained from the local ethics committee (REC ref: 20/NW/0332). 

Severity scoring was based on the level of respiratory support required and overall patient outcome where 

severe = required fraction of inspired oxygen (FIO2) > 40 % and/or required CPAP and/or required 

mechanical ventilation and/or did not survive. Patients were also stratified using the 4C Mortality Score 

(Knight et al., 2020). Patient demographics by severity and outcome are presented in Table 4. 

  

Table 4. Patient demographics by severity and outcome. Cohort demographics are presented in counts with 
percentage (%) of the group total or mean with interquartile range (Q1 – Q3) depending on the data nature. P-values 
indicating significant differences between groups follow ‘star’ notation i.e. ‘***’ correspond to p-values <0.001, ‘**’ <0.01, 
‘*’ <0.05, ‘.’ < 0.1 and missing when > 0.1. P-values were not calculated for the group counts(N). This study looked at 
the serum samples from 120 COVID-19 patients. 49 patients developed severe symptoms and 31 patients died as a 
result of the infection. Severity score metrics based on the 4C Mortality score (Knight et al., 2020) are provided as 
group means. Some disparity can be observed in gender as women represent 13 % of the severe cases and only 29 
% of the deceased patients. Age groups of severe and deceased patients also tend to be slightly higher. BMI do not 
show significant difference between groups. O2 support indicates the number of patients that required oxygen support 
at any time during their hospitalization. Max FiO2 represent the maximum fraction of inspired oxygen required by the 
patient during the hospitalization period, where respiratory support capture the patients requiring any support at 
diagnosis and FiO2 represents the fraction of inspired oxygen required at time of sample acquisition. As expected, 
oxygen need and inspired fraction, are highly correlated with severity and fatal outcome. National Early Warning Score 
(NEWS) also showed correlation with both severity and outcome. Cardiac disease refers to multiple cardiovascular 
conditions, most frequently: ischemic heart disease, atrial fibrillation, and heart failure. Kidney disease is a grouping of 
stages G2 to G5 of chronic kidney disease as defined by the National Institute for Health and Care Excellence (NICE) 
(NICE, 2015). Liver disease in most cases refers to cirrhosis and hepatitis. Malignancy cases vary from lung, bladder, 
prostate, skin cancer to haematological. Those underlying conditions did not show significance in severity or outcome. 
Despite kidney disease classification not showing correlation, estimated Glomerular Filtration Rate (eGFR) levels 
showed significance in severity and outcome. Fever (temperature ≥ 38 °C), cough and Shortness Of Breath (SOB) 
were noted at time of sample acquisition and did not show relation to severity or outcome. Pulse, systolic Blood 
Pressure (BP) and respiratory rate also taken at samples acquisition showed correlation with severity and outcome, 
where higher pulse, higher respiratory rate and lower blood pressure are associated with severe cases and poor 
outcome. Haemoglobin levels (Hb), white blood cell count (WBC), lymphocyte count (Lymphs), platelets count (PLTs), 
hematocrit (HCT) and alanine aminotransferase (ALT) measured at sample acquisition did not show significant 
correlation with severity and outcome. Urea, creatinine, and C-reactive protein (CRP) concentrations are consistently 
elevated in severe and deceased patients. Hb,WBC, Lymphs, PLTs and HCT were measured on Beckman analyser. 
ALT, urea, creatinine and CRP were measured on a Roche analyser. Reference ranges are provided in [ ] when 
available.     
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Sample preparation for metabolomics analysis 
Patient serum samples were thawed at room temperature and maintained on ice throughout the sample 

preparation process. Samples were prepared by addition of 100 µL sample to a 2 mL Eppendorf containing 

350 µL Methanol (LC-MS grade) previously cooled at -80 °C and maintained on dry ice whenever possible. 

The mixture of serum and methanol was vortexed vigorously followed by centrifugation at 18,000 x g for 15 

min at 4 °C to pellet proteins. Multiple 75 µL aliquots (for extraction replicates) of the resulting supernatant 

dried in a vacuum centrifuge (ScanVac MaxiVac Beta Vacuum Concentrator system, LaboGene ApS, 

Denmark) with no temperature application and stored at -80 °C until required for LC-MS/MS analysis.  

Mild Severe P-v Discharged Deceased P-v

N 71 49 - 89 31 -

4C score  8.39 ( 4.75 - 12) 12.87 (10.00 - 16) ***  8.91 ( 5.25 - 12) 14.34 (13.00 - 16) ***

Male 38 (54%) 32 (65%)  48 (54%) 22 (71%) .

Female 33 (46%) 17 (35%)  41 (46%) 9 (29%) .

Age 66.0 (54 - 77) 69.2 (56 - 87)  63.8 (52.0 - 77.0) 77.1 (65.5 - 88.5) ***

BMI 26.4 (21.8 - 28.6) 27.0 (23.0 - 32.0)  26.7 (22.3 - 29.0) 26.4 (21.9 - 29.6)  

O2 support 32 ( 45%) 49 (100%) *** 50 ( 56%) 31 (100%) ***

Max FiO2 24.7 (21 -  28) 71.6 (40 - 100) *** 33.3 (21 -  35) 74.2 (36 - 100) ***

Respiratory support 17 (24%) 39 (80%) *** 34 (38%) 22 (71%) **

FiO2 (%) at dignosis 22.8 (21 - 21) 47.0 (28 - 60) *** 28.2 (21.0 - 28) 45.5 (22.5 - 60) **

NEWS 2.56 (1 -  4) 7.27 (5 - 10) *** 3.47 (1 -  6.0) 7.40 (6 - 10.8) ***

Hypertension 28 (39%) 26 (53%)  35 (39%) 19 (61%) *

Cardiac disease 20 (28%) 17 (35%)  25 (28%) 12 (39%)  

Kidney disease 24 (34%) 19 (39%)  28 (31%) 15 (48%)  

eGFR 67.7 (49 - 90) 56.5 (30 - 90) * 67.7 (48.0 - 90.0) 49.9 (26.5 - 68.5) **

Liver disease 7 ( 9.9%) 6 (12.2%)  9 (10%) 4 (13%)  

Malignancy 13 (18%) 6 (12%)  13 (15%) 6 (19%)  

Fever 34 (48%) 30 (61%)  49 (55%) 15 (48%)  

Cough 33 (46%) 29 (59%)  43 (48%) 19 (61%)  

SOB 35 (49%) 29 (59%)  48 (54%) 16 (52%)  

Pulse (BPM)  87.9 (72.0 - 102) 102.8 (91.8 - 114) ***  90.6 (74 - 106) 103.8 (92 - 114) **

Temp. (°C) 37.1 (36.6 - 37.4) 37.5 (36.7 - 38.1) * 37.2 (36.6 - 37.5) 37.3 (36.7 - 37.9)  

BP (mmHg) 137 (120 - 151) 123 (102 - 138) ** 135 (120 - 149) 120 (102 - 130) **

Respiratory rate 20.1 (17 - 22) 26.6 (20 - 30) *** 21.7 (17.0 - 22) 25.7 (19.2 - 30) *

Hb (g/L)

male [133-168]

female [118-148]

126 (111 - 141) 124 (107 - 146)  127 (113 - 140) 120 ( 96 - 146)  

WBC (x109/L)

[3.5-11.0]
8.28 (4.8 - 10.9) 9.98 (5.9 - 11.7) . 8.63 (5.1 - 11.0) 9.97 (6.5 - 11.6)  

Lymphs (x109/L)

[1.0-3.5]
1.25 (0.75 - 1.4) 1.06 (0.60 - 1.6)  1.239 (0.7 - 1.50) 0.994 (0.5 - 1.35) .

PLTS (x109/L)

[150-400]
256 (176 - 306) 236 (166 - 292)  255 (175 - 305) 226 (169 - 259)  

HCT (%) 0.372 (0.337 - 0.417) 0.371 (0.329 - 0.436)  0.375 (0.341 - 0.416) 0.361 (0.287 - 0.443)  

ALT (U/L) 32.8 (13 - 31.8) 47.1 (16 - 39.0)  36.1 (15 - 39.0) 46.6 (13 - 31.5)  

Urea (mmol/L)  8.29 (4.6 -  8.75) 13.05 (5.2 - 19.00) **  8.53 (4.4 -  8.8) 15.12 (8.0 - 22.2) ***

Creatinine (µmol/L) 112 (66 - 104) 133 (70 - 168)  109 (65.0 - 105) 153 (84.5 - 184) .

CRP (mg/L)  47.7 (11 -  61.2) 132.9 (49 - 190.0) ***  61.4 (13.5 -  79.5) 144.3 (52.5 - 209.5) ***

Condition
Severity Outcome
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Batch quality controls (QC) and conditioning QC samples were also prepared in this way by pooling serum 

samples for each batch. Inter-batch quality assurance (IQA) samples were prepared with the same protocol 

using pooled serum samples provided by RLUH. Therefore, those samples are not representative of the 

study samples, but representative of the general hospital population and sample acquisition and storage 

practices.  

Additional inter-batch quality assurance samples were prepared using commercial pooled human serum 

(BioIVT, Lot BRH1413770, Cat: HMSRM, mixed gender 0.1 um filtered) spiked with internal standards. 

Here, 100 µL sample were added to a 2 mL Eppendorf containing 330 µL Methanol (LC-MS grade) and 20 

µL of internal standards mix (ISTDs) as described in (Muelas et al., 2020). The mixture of methanol and 

internal standards (ISTDs) was previously cooled at -80 °C and maintained on dry ice when adding serum. 

Extraction blanks were prepared in the same way as serum samples replacing serum and ISTDs mix with 

120 µL of water (LC-MS grade). Prior to analysis, samples were resuspended in 40 µL water (LC-MS), 

centrifuged at 17,000 x g for 15 min at 4 °C to remove any particulates and transferred to glass sample 

vials. 

LC-MS /MS analysis of spent serum samples 
Untargeted LC-MS/MS data acquisition was performed as previously described (Muelas et al., 2020) and 

using published methodologies and guidelines (Broadhurst et al., 2018; Broadhurst and Kell, 2006; Brown 

et al., 2005 ; Dunn et al., 2011 ; Mullard et al., 2015 ). Data were acquired using a ThermoFisher Scientific 

Vanquish UHPLC system coupled to a ThermoFisher Scientific Q-Exactive mass spectrometer 

(ThermoFisher Scientific, UK). 

Samples were analysed following guidelines set out in (Dunn et al., 2011) and (Broadhurst et al., 2018). 

Briefly, blank extraction samples were injected at the beginning and end of each batch to assess carry over 

and lack of contamination. QC samples, prepared by pooling equal aliquots of analytical samples in each 

batch, were applied to condition the analytical platform, enable reproducibility measurements and to correct 

for systematic errors within batches. Quality Assurance (QA) samples were also incorporated in every batch 

at regular intervals up to 12 samples per run. Two pools of hospital patient serum (referred as IQA) and 

commercial serum (referred as SQA) were prepared at the beginning of the study and used in every batch 

allowing batch alignment in the data processing step. Isotopically labelled internal standards were added 

to SQA samples, prepared as previously described  (Muelas et al., 2020), to monitor mass accuracy. IQA 

samples were subsequently used to correct across all batches. Four samples per batch were ran with 

replicates to ensure reproducibility.  

LC-MS/MS data preprocessing and analysis 
Raw instrument data from all batches in .RAW file format were exported to Compound Discoverer 3.1 

(CD3.1) for deconvolution, alignment and annotation (full workflow and settings as described in (Muelas et 

al., 2020)) based on IQA samples.  

Compound grouping was performed in CD3.1 where 6971 compounds in ESI+ and 3122 compounds in 

ESI- were retained. Retained compounds are selected based on presence in more than 80 % of the IQA, 

CV less than 30 % and signal 5 times higher than the blank injections. From those compounds 267 in ESI 

+ and 142 in ESI- had identification in mzCloud with score higher than 70 % and full match on Predicted 

Composition. For all data acquired, annotation and identification criteria were according to (Schymanski et 

al., 2014) and (Sumner et al., 2007). 

Area normalization and batch correction 
A custom 2-step normalization was used to correct for small within batch runtime drift and larger between 

batch variations. This approach showed better results than one step normalization performed by available 

tools. To perform this, non-normalized peak areas from CD3.1 were exported as a .csv file. QC-based 

correction was performed in R (version 4.0.2) as discussed in (Dunn et al., 2011) using fANCOVA package. 

The QC correction was performed on each batch independently to remove runtime drift intensity variations. 
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Subsequently, variation between batches was corrected in refence to all batches IQA mean. PCA plots 

comparing the results for different normalization approaches are included in the supplementary information 

(Figure S6).  

Metadata and multiblock analysis  
The following variables in the meta data were used for multivariate analysis: gender, age, BMI, Glasgow 

coma scale (GCS), NEWS, pulse, temperature, blood pressure, respiratory rate, Hb, WBC, Lymphs, PLTs, 

HCT, ALT, total bilirubin, urea, creatinine, eGFR, CRP, FiO2 (%) and O2 saturation (%) description of the 

biochemical tests is presented in Table 4.  There were 1.44 % missing values in this meta data set and they 

were imputed by using K-NN imputation algorithm (Troyanskaya et al., 2001). 

The multiblock analysis was performed on three data blocks: LC-MS ESI+, ESI- data and metadata. For 

each block, the data matrix was auto-scaled so that each variable has a mean of 0 and a standard deviation 

of 1. In addition, a block scaling factor which is the inverse of the square root of the number of variables of 

this block was applied to compensate differences in variance due the difference in the number of variables. 

A multiblock PCA (MB-PCA) model called consensus PCA (Smilde et al., 2003) was applied to the three 

blocks of data. The results of this MB-PCA model are consisted of one super scores matrix which represents 

the common trend of all the blocks and three block scores matrix which represents the pattern of each block 

under perspective of the common trend. 

Selection of significant metabolic features  
Background compounds and compounds detected in less than 25 % of the samples were excluded from 

the analysis. Compounds were further filtered down based on False Discovery Rate (FDR) corrected p-

value (i.e. q-value) significance < 0.05 and log2 fold change > 0.5 in severity (i.e. severe vs mild cases) and 

outcome (i.e. diseased vs discharged patients). p-values were calculated using the Mann-Whitney as LC-

MS data do not satisfy normality assumption required for T-test. The usually adopted log transformation 

approach to satisfy T-test requirements tend to overemphasize low abundance compounds; therefore, was 

not retained in this study.  

Significance in severity was detected for 1143/601 compounds in ESI+/-, in outcome 1650/680 ESI+/- made 

the cut. For simplicity as those two groups tend to overlap the union of the two conditions was taken forward 

for further analysis 1987/973 ESI+/-.  

Signal curation  
Significant compounds were manually curated in CD3.1 based on the LC signal quality and MS spectra. 

LC quality was assessed based on batch retention time (RT) overlap and clear peak separation. MS spectra 

was evaluated on the detection of preferred ion i.e. [M+H]+1 and [M-H]-1 with at least 2 isotopes. Additionally, 

compound where the signal was filled by CD gap fill option for more than 20 % of the QC and 90 % of the 

samples were also excluded.  

Where compounds of interest were detected in both ESI+ and ESI-, the clearest signal was retained for 

further analysis. When necessary standards were run to confirm MS/MS, RT and signal intensity by polarity. 

Specifically, in the case of uridine and pseudouridine best separation and signal intensity detection of 

standards was achieved in ESI-, therefore negative polarity data was used for those compounds. 

Pathway enrichment analysis 
Pathway enrichment analysis was performed in MUMMICHOG (Li et al., 2013) version 2 incorporated in 

MetaboAnalyst (Pang et al., 2020). To match the MUMMICHOG requested m/z compound format, resolved 

masses retrieved form CD analysis were altered to achieve [M+H]+1 adduct for ESI+ and ESI- results. 

MUMMICHOG adduct option was set to recognize exclusively [M+H]+1 adducts. This allowed processing of 

ESI+ and ESI- results together and minimize false hits due to multiple adduct matches. Pathways with a 

high number of significant hits were further manually investigated and hits subsequently verified by MS, 

RT, MS/MS and match against standards when available.  
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Multiple predictor models  
Reported results for multiple predictor models were produced with a Bayesian logistic regression model 

implemented in R with rstanarm R package (Goodrich, 2020). Comparative analysis was performed with 

the extreme gradient boosting xgboost R package (Chen and Guestrin, 2016; Friedman, 2001), Logistic 

regression with Generalized Linear Models (GLM) glm R package and GLM with Elastic net regularization 

glmnet R package (Zou and Hastie, 2005). Data were separated into training and test groups (80:20) with 

balanced label ratios. Conservative regularization parameters were used to reduce overfitting. Bayesian 

GLM approach was set to increased regularization with prior scale = 1, for glmnet alpha was set to 0.1 and 

xgboost eta to 0.01 with max_depth = 1. Due to the large group disparities in outcome, weights were 

incorporated in the model to handle class imbalance. Sparsity inducing parameters such as L1 

regularization in glmnet and lasso or hierarchical shrinkage prior in Bayesian GLM were avoided despite 

better results in some cases. This allowed to perform subgroup selection accounting for compound identity 

confidence level and known biological role. From the four compared methods Bayesian logistic regression 

consistently showed better generalization and was therefore retained for results reporting.  

Mean and standard deviation for accuracy and AUC were estimated using cross-validation with 100 

iterations. These cross-validation results were used to describe the model sensitivity to the data and not for 

hyperparameters optimization. Visual ROC and 95 % CI representations were obtained from a randomly 

selected train/test partition using pROC R package with 2000 stratified bootstrap replicates on the test data.  

Adjusted compounds significance 
Individual OR and 95% CI for selected compounds were evaluated with univariate logistic regression with 

Generalized Linear Models (glm) implementation in R stats package. OR (95 % CI) and p-values for 

significance are presented in the reported tables. Compounds are adjusted for age, gender, BMI, liver 

disease, cardiovascular disease, hypertension, kidney disease (i.e. chronic kidney disease stages 2 to 5),  

diabetes mellitus (type 1 or 2) and all together. Liver conditions include cirrhosis, hepatitis, alcoholic 

hepititis, autoimmune hepatitis, ascites, transplant, fatty liver disease. Cardiovascular conditons include 

ischaemic heart disease (IHD), atrial fibrillation (AF), cardiomegaly, cardiomyopathy, left ventricular systolic 

dysfunction, left ventricular hypertrophy, left ventricular failure, congestive heart failure, drug induced 

myocarditis, heart failure, angina and Takotsubo cardiomyopathy with IHD and AF being most frequent.   
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