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ABSTRACT 

Dozens of coronavirus (COVID-19) forecasting models have been created; however, little information 
exists on their performance. Here we examine the performance of nine commonly-used COVID-19 
forecasting models, as well as equal- and performance-weighted ensembles, based on their knowledge – 
i.e., accuracy and precision, and their ‘self-knowledge’ – i.e., ‘calibration’ and ‘information’. Calibration 
and information are measures commonly employed in structured expert judgment to assess an expert’s 
ability to meaningfully communicate the extent and limits of their knowledge.1 Data on observed 
COVID-19 mortality in 4 states, selected to reflect differences in racial composition and COVID-19 case 
rates, over eight weeks in the summer of 2020 provided the basis for evaluating model predictions.  

Only two models showed little bias (geometric mean of observed/predicted < 10%) and good precision 
(geometric standard deviation of observed/predicted < 1.6). Three models demonstrated good calibration 
and information. However, only one model exhibited superior performance in both dimensions.  

Nearly all models under-predicted COVID-19 mortality, some quite substantially. Further, model 
performance depends on racial composition and case rates, and forecasts in the short-term outperform 
forecasts in the medium-term on all criteria. The performance-weighted ensembles also outperformed the 
equal-weighted ensemble on all criteria.  

The ability of models to accurately and precisely predict mortality and the ability of the modelers to 
provide meaningful characterizations of the uncertainty in their estimates are potentially important to 
model developers and to those using model output to inform decisions.   
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1. Background 

Effective non-pharmaceutical interventions (NPIs), or community mitigation strategies, are crucial in 
combating the spread of contagious illnesses like coronavirus disease 2019 (COVID-19).2 Community 
NPIs, such as social distancing guidelines, restrictions, closures, and lockdowns, can effectively delay and 
diminish an epidemic peak, also known as flattening the epidemic curve.2,3,4 However, these NPIs can 
also have immediate educational and economic consequences.5,6,7 To make decisions on the 
implementation of community NPIs amidst the COVID-19 pandemic, the relevant stakeholders (e.g. 
government officials, community leaders, school administrators etc.) may desire estimates of the number 
of coronavirus cases, hospitalizations, and deaths likely to occur in their region of interest within the 
coming weeks. 

Information about, and forecasts from, dozens of COVID-19 forecasting models are currently available 
via the University of Massachusetts Amherst Reich Lab’s COVID-19 Forecast Hub.8 All of the 
participating modeling groups provide central estimates, and most also quantitatively characterize the 
uncertainty in their predictions – often giving an interquartile range (25% LCL to 75% UCL) and a 90% 
confidence interval (5% LCL to 95% UCL) for each prediction.9 

Unfortunately, little peer-reviewed information about the accuracy or precision of the estimates is widely 
available. Thus, stakeholders lack a scientific basis for deciding which models to trust and how much 
confidence to place in the forecasts they provide. Quite recently, one study has become available.10 It 
compares the median absolute percent error of eight models stratified across world region, month of 
model estimation, and weeks of extrapolation.10 Collectively, the 8 models released in July over a twelve 
week forecasting range had a median average percent error of about 25%, with errors tending to increase 
with longer forecasts and the best performing model varying by region.10 While this information is quite 
useful and provides a sense of the typical bias of model predictions, other aspects of model performance 
may also be of interest. Users may also care about the precision of estimates and about the modeler’s self-
knowledge (i.e., their ability to properly characterize the uncertainty in their estimates).  

Some may wonder whether better forecasts might be obtained by averaging the forecasts of two or more 
individual models. One such ‘ensemble’ model has been created by the aforementioned Reich Lab.11 It 
involves an equal-weighted combination of individual model forecasts and is not performance-weighted.11 
In the expert judgment literature it has been clearly demonstrated that performance-weighted 
combinations of expert opinion consistently outperform equally weighted combinations.12,13 This deserves 
consideration in the analysis of COVID-19 model projections. 

The analysis presented below compares model forecasts with subsequent observations using several 
measures of model performance – reflecting ‘knowledge’ (bias and precision) and ‘self-knowledge’ 
(calibration and information). We also construct three ensemble models, one equal-weighted and two 
performance-weighted, and compare their performance with each other and with the best performing 
individual models. Lastly, we aim to explore whether the available models tend to provide better forecasts 
under certain circumstances (i.e., case rates, racial demographics, and forecast periods). 
 

2. Methods 

2.1. Data 

Our analysis involves a comparison of model forecasts with subsequent observations of weekly deaths 
from COVID-19 in four states (Idaho, Louisiana, New York and Maine) over an eight-week period. 
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The states considered in our analysis were selected on the basis of recent case rates of COVID-19 
(cases/100,000 population within the previous week) and racial composition (majority non-Hispanic 
Black vs. majority non-Hispanic White). Racial composition was of interest as the COVID-19 mortality 
rate for non-Hispanic Black Americans is 2.1 times that of non-Hispanic White Americans.14 With these 
two domains in mind, our goal was to assess two states with relatively high case rates (Idaho and 
Louisiana); two with relatively low case rates (Maine and New York); two with a relatively high fraction 
of population reported as non-Hispanic Black (Louisiana and New York); and two with a relatively high 
fraction of population reported as non-Hispanic White (Idaho and Maine). This was done to assess how 
models perform forecasting for states under varying circumstances. More detail on how the case rates and 
racial composition for states were determined, as well as how states were selected, is available in the 
supplemental material (S.1.1.). 

We were also interested in the models’ ability to forecast COVID-19 deaths in both the near-term and the 
medium-term. Near-term performance was gauged using projected COVID-19 deaths in the week 
immediately after the forecast was made. Medium-term performance was gauged using projected 
COVID-19 deaths in the week ending four weeks after the forecast was made. 

Our evaluations of model performance for the four states and the two forecast periods of interest (week 
ending one week in the future and week ending four weeks in the future) were examined twice – once for 
forecasts made on June 13th, 2020, and a second time for forecasts made on July 11th, 2020 (no overlap in 
forecasts). In total, 16 comparisons of model forecasts with observed deaths were made for each model. 

Of the many models providing data to the Reich Lab’s data repository, only those for which all 16 
forecasts were available were included in our analysis. These include: OliverWyman-Navigator (Model 
A)15, MOBS-GLEAM_COVID (Model B)16, JHU_IDD-CovidSP (Model C)17, UMass-MechBayes 
(Model D)18, UCLA-SuEIR (Model E)19, YYG-ParamSearch (Model F)20, UT-Mobility (Model G)21, 
USACE-ERDC_SEIR (Model H)22, and Covid19Sim-Simulator (Model I)23.  

2.2. Performance Criteria 

Two aspects of model performance were evaluated – (i) the accuracy and precision of the model’s central 
estimates; and (ii) the uncertainty of a model’s estimates reflected by their reported confidence intervals.  

First, to evaluate ‘knowledge’ (i.e., the performance of the models’ central estimates), each observation, 
Oi,j , was divided by the corresponding prediction, Pi,j  – where i is an index indicating the model and j is 
an index reflecting the date, state, and time interval: 

Ri,j  = Oi,j / Pi,j 

The distribution of the resulting ratios was then examined. For each model, i, the geometric mean (GM) 
and geometric standard deviation (GSD) of the distribution of Ri,j  were computed and used as measures 
of the observed bias and precision of the model’s estimates. 

Second, to evaluate ‘self-knowledge’ (i.e., the modelers’ ability to characterize the uncertainty of their 
forecasts), the performance of each model was assessed using Cooke’s Classical Method (CM).1 This 
method was initially designed for evaluation of the performance of formally-elicited structured expert 
judgment (SEJ) – where an expert’s ability to meaningfully characterize the uncertainty in his or her 
estimates is arguably as important as the predictions they provide – and has been employed in many 
studies.24,25 We believe the CM is also applicable to the forecasts given by the models, as the true 
observations are unknown at the time of forecasting and the modeling groups may act as the ‘expert’ 
while their forecasts may serve as their ‘judgment’.  
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Cooke’s CM assesses ‘calibration’, C, using Shannon’s relative information statistic, Is, which compares 
the assessed and observed probabilities of calibration variables falling within various ranges. 

C = 1 – Χm
2 (2m * Is), where Is = Σk=1,m+1 (sk * ln(sk / pk)) 

Where sk = Oi,k / m is the number of realizations falling within the kth of m quantiles given by the ith 
model and pk is the probability given by the model (the ‘stated probability’) that observations will fall 
within that quantile and Χm

2 is the Chi-squared statistic with m degrees of freedom. If s = p for all k then 
Is = 0 and C = 1. As the divergence between stated and observed probabilities increases, I increases and C 
moves toward 0. 

Cooke’s CM assesses ‘information’, I, by comparing the width of the confidence intervals given by each 
model with the ‘intrinsic range’ of each calibration variable. The intrinsic range for a variable is defined 
as the difference between the largest forecasted or observed value and the smallest forecasted or observed 
value. This range is expanded slightly by multiplying it by a user-defined expansion factor, 1+ F, where F 
is typically a small fraction (for our data, the default 10% was used). Using this framework, the 
information of each expert, Ie, on each variable is defined as: 

Ie = Σk=1, m+1 (pk * ln(pk / rk)) 

Where pk are the probabilities given by the model, e, and rk are the probabilities from a uniform (or log-
uniform) probability density function over the intrinsic range. Models which concentrate their forecasts in 
a narrow range will have high information scores. 

From these two scores, Cooke calculates performance weights as the product of calibration and 
information and then normalizes these so that they sum to 1 across all models. 

2.3. Ensemble Models 

It is possible that better performance might be obtained by producing an ensemble based on weighted 
combinations of the forecasts given by the individual models. Two approaches of potential interest are – 
(i) equal-weighted combinations, and (ii) performance-weighted combinations. In addition to an equal-
weighted model, two performance-weighted ensembles are considered, based on – (a) inverse-variance 
weights and (b) Cooke’s weights.  

For inverse-variance performance weighting, each random variable is weighted in inverse proportion to 
its variance (i.e., proportional to its precision). This weighting method is commonly used in meta-
analysis.26 

The equal-weighted model is established by equally weighting the probability densities given by the 
individual model forecasts. The inverse-variance-weighted model and the Cooke’s-weighted model both 
use performance-weighted averaged densities of the individual model forecasts.  
 

3. Results 

3.1. Individual Model Performance 

First, in order to visualize how accurate each model’s predictions (i.e., central estimates) are, we plotted 
each prediction by its corresponding realization. Our results in Figure 1 illustrate substantial differences 
in model accuracy. 
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Figure 1. Observed COVID-19 mortality vs. the corresponding model central estimates in each of the 
four states (Idaho, Louisiana, Maine, New York) for the two forecast periods (week ending one week in 

the future and week ending four weeks in the future) and two forecast dates (June 13th and July 11th). The 
axes are on the logarithmic scale. 

 
Each model was then assessed for all performance measures: bias (geometric mean; GM), precision 
(geometric standard deviation; GSD), calibration (C), information (I), and unnormalized Cooke’s weight 
(C*I). GM and GSD are computed in regards to Ri,j. Our results for each model are summarized in Table 
1. This table suggests that there are substantial differences in performance among these models.   
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Table 1: Individual model performance assessed on bias (GM), precision (GSD), calibration, information, 
and unnormalized Cooke’s weight. 

Model Bias - GM 
 Precision - 

GSD 
Calibration Information 

Cooke's Weight 
(Unnormalized) 

A 1.01 1.57 0.44 0.94 0.42 

B 2.36 2.31 << 0.01 1.68 << 0.01 

C 0.61 1.75 0.01 0.50 << 0.01 

D 1.11 1.71 0.54 1.06 0.57 

E 1.78 2.04 << 0.01 3.23 << 0.01 

F 1.35 1.70 0.29 1.38 0.40 

G 1.33i 3.88i 0.04 1.41 0.06 

H 1.15 2.88 << 0.01 2.10 << 0.01 

I 1.09 1.47 << 0.01 2.59 << 0.01 

 
Focusing initially on the central estimates, we see that – (i) typically, model predictions have little bias (≤ 
35%), but (ii) for models B, C and E, bias is substantial. All models, except model C, have a bias score of 
> 1 indicating systematic underprediction of observed COVID mortality. Looking at the precision of 
model central estimates, we see that – (i) typically, model predictions are within a factor of ~ 2 of the 
observed values, but (ii) model G and H yield much less precise predictions (within factors of ~ 4 and ~ 3, 
respectively), and (iii) models A and I appear to offer the most precise predictions (1.57 and 1.47, 
respectively). Thus, if judged by the performance of their central estimates, models A and I would seem 
to be the most attractive – with bias < 10% and precision of < 1.6.  

When we look instead at the performance of model predictions in the context of their uncertainty 
intervals, a different picture emerges. From this perspective, only three (or perhaps, four) of the nine 
models considered perform at all well – models A, D, F, and to a lesser extent, G. The calibration scores 
of all the other models are quite low (<< 0.01) indicating ‘overconfidence’ – i.e., that their stated 
confidence intervals are far too narrow while simultaneously poorly capturing the true value. The 
information scores vary from 0.5 to 3.2, suggesting substantial differences in the width of the stated 
confidence intervals.  However, the models that have the highest information scores (models E, I, G and 
B) all have extremely low calibration scores (<< 0.01), suggesting that their self-confidence is misplaced. 

                                              

i
 This value relies on treating model G’s four-weeks ahead prediction of 0 for the week ending on July 11th in Idaho as 0.1. If instead this model 
G prediction is dropped from the analysis, then the GSD becomes 2.19 and the geometric mean becomes 1.00. 
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When calibration and information are considered simultaneously (i.e., the unnormalized Cooke’s weight), 
models D, A and F appear to perform admirably.  

3.2. Ensemble Models 

Each ensemble model was also assessed for all performance measures. Performance measure results for 
each of the ensemble models is summarized in Table 2. 
 
Table 2: Ensemble model performance assessed on bias (GM), precision (GSD), calibration, information, 
and unnormalized Cooke’s weight. 

Ensemble Bias - GM 
 Precision 

- GSD 
Calibration Information 

Cooke's Weight 
(Unnormalized) 

Equal Weight 1.24 1.60 0.03 0.72 0.02 

Performance – 
Inverse-Variance  

0.98  1.41 0.04 0.61 0.02 

Performance -- 
Cooke’s Weight ii 

1.12 1.57 0.54 0.81 0.43 

 
The results make clear that both performance-weighted ensembles outperform the equal-weighted 
combination of models. There is no measure of performance for which the equal-weighted combination 
outperforms both of the performance-weighted ensembles.  

The inverse-variance-weighted ensemble demonstrates substantially less bias (0.98) than the equal-
weighted combination (1.12). The Cooke’s-weighted ensemble reflects somewhat less bias (1.12) than the 
equal-weighted combination but does not match the performance of the inverse-variance-weighted 
ensemble in this regard. In terms of precision, again the inverse-variance-weighted combination performs 
best (1.41), with the Cooke’s-weighted ensemble (1.57) reflecting no better precision than the equal-
weighted combination (1.60). 

The differences in performance are more noticeable when self-knowledge (calibration, information, and 
Cooke’s weight) is of interest. The Cooke’s-weighted ensemble far outperforms the other two models in 
both calibration (0.54) and Cooke’s weight (0.43), suggesting that it better quantifies uncertainty in its 
predictions (i.e., it is more accurate and provides more concentrated forecast intervals). 

3.3. Performance by Domain 

It is also interesting to compare these models’ performance across the three domains of interest – (i) race 
(i.e., states which are heavily non-Hispanic White vs. states with relatively-large non-Hispanic Black 
populations), (ii) COVID-19 case rates (i.e., states with a relatively low amount of weekly cases per 
100,000 population vs. states with a relatively high amount of weekly cases per 100,000 population), and 

                                              

ii
 A hypothesis rejection significance level of 0.05 was used for this ensemble. 
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(iii) forecast period (i.e., forecasts of mortality for the upcoming week vs. forecasts of mortality for the 
week ending four weeks from the date on which the forecast was made).  

Table 3 evaluates the performance of equal-weighted combinations of the nine models stratified by 
different domains (eight forecasts per domain).  
 
Table 3: Equal-weighted ensemble performance stratified by different domains assessed on bias (GM), 
precision (GSD), calibration, information, and unnormalized Cooke’s weight. 

Sub-Domain Bias - GM 
 Precision – 

GSD 
Calibration Information 

Cooke's Weight 
(Unnormalized) 

High % non-
Hispanic White 

(ID, ME) 

1.30 1.86 0.60 0.86 0.52 

High % non-
Hispanic Black 

(LA, NY) 

1.19 1.34 0.05 0.59 0.03 

      

High Case Rate 

(ID, LA) 
1.42 1.77 0.32 0.67 0.21 

Low Case Rate 

(ME, NY) 
1.09 1.39 0.14 0.78 0.11 

      

One Week 
Ahead 

0.95 1.41 0.27 0.53 0.14 

Four Weeks 
Ahead 

1.62 1.56 0.05 0.92 0.05 

 
There appear to be systematic differences in the ability of these models to forecast COVID-19 mortality 
depending on whether they are being used to – (i) project deaths in the near or medium-term, (ii) project 
deaths in states which are largely non-Hispanic White or in those which have substantial non-Hispanic 
Black populations, and (iii) project deaths in states with low or high COVID-19 case rates. 

The largest differences are seen in calibration. Model calibration is much better in states with large non-
Hispanic White populations (0.60) than in states with large non-Hispanic Black populations (0.05). It is 
also somewhat better when making forecasts of deaths for the next week (0.27) than the week ending four 
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weeks in the future (0.05), and in states with high case rates (0.32) than in those with low case rates 
(0.14). 

Model forecasts are essentially unbiased (< 10% mean error) when making projections of deaths for the 
next week or deaths in states where case rates are low. However, these models appear to systematically 
underpredict deaths for the week ending four weeks in the future (GM = 1.62) and in states with high case 
rates (GM = 1.42). The racial composition of the state seems to have little effect on the bias of model 
projections.  

The precision of model estimates also differs by domain, with projections being substantially less precise 
in both – (a) states with large non-Hispanic White populations (GSD = 1.86) than those with substantial 
non-Hispanic Black populations (GSD = 1.34), and (b) states with high case rates (GSD = 1.77) than in 
those with low case rates (GSD = 1.39). Perhaps surprisingly, there are only small differences in the 
precision of near-term and medium-term projections. 
 

4. Discussion and Conclusions 

Our results suggest that there may be substantive differences in the performance of the models now 
available to predict COVID-19 mortality in the United States and that model performance may differ 
when judged by ‘knowledge’ (i.e., their bias and precision) and self-knowledge (i.e., their calibration and 
information). For example, when evaluated on the basis of the bias and precision of their central 
estimates, models A and I would seem to be the most attractive – with bias < 10% and precision of < 1.6.   

It should be noted that, although the bias of several of the models is relatively small, all but one of the 
models appear to systematically underpredict the true rates of COVID mortality.  

When evaluated in terms of the modelers’ ability to characterize the uncertainty in their estimates, a 
different picture emerges – models D, A and F look quite good, but model I does not.  The fact that all but 
3 of the 9 models considered have such low calibration scores indicates ‘overconfidence’ – i.e., the 
relatively narrow confidence intervals given by these models are unjustified and should not be relied on 
by users. 

We also find that model performance appears to depend on the racial composition and the COVID-19 
case rate for the population of interest, and that model projections of near-term mortality are better than 
projections of medium-term mortality. 

Due to differences in inclusion criteria, only one of the 9 assessed forecasting models, YYG, was also 
assessed by Friedman et al. (2020).10 Thus, it is difficult to compare performance results for the models. 
However, the authors do show increasing median error and median absolute error with longer forecasting 
periods, which is in agreement with the results shown in this analysis.10 

Finally, our results indicate that performance-weighted ensembles outperform equal-weight ensemble 
models and therefore may be of interest to decision makers. The Cooke’s performance-weighted 
ensemble outperforming the equal-weighted ensemble is in agreement with the expert judgment 
literature.12,13  

Our sense is that these results are more suggestive than conclusive, because – (i) they examine only nine 
models, (ii) they are based on model performance in one eight-week period in the summer of 2020, (iii) 
they are limited to four states; (iv) they consider only forecasts of mortality and not other outcomes, such 
as cases or hospitalizations, that may be of interest for decision-makers; (v) our performance comparisons 
are descriptive and lack any formal tests of the statistical significance of observed performance 
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differences; (vi) the performance of our ensembles has not been validated with independent data or 
subjected to cross-validation; and (vii) our analysis treats the models as ‘black boxes’ with no attempt to 
understand their internal structure, assumptions or data requirements. 

On the other hand, our analysis has several strengths – (i) it evaluates the performance of a set of leading  
models which currently are being used to project COVID-19 mortality in the US; (ii) it relies on a broad 
set of performance criteria – which assess both knowledge (i.e., bias and precision) and self-knowledge 
(i.e., calibration and information); and (iii) it considers performance in four states that were selected to 
reflect the differences in racial composition and COVID-19 case rate in the US at the time. 
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Availability of Data 

Model forecasting data was gathered from the COVID-19 Forecast Hub’s publicly available structured 
data storage repository on GitHub.9 Observed state COVID-19 mortality and case data was gathered from 
the Centers for Disease Control and Prevention (CDC).27 State population and racial composition data 
was collected from one-year estimates from the Census Bureau’s 2018 American Community Survey 
(ACS).28 

Table 4 in the supplemental material (S.2.1.) provides the racial composition statistics and case rate data. 
Table 5 in the supplemental material (S.2.2.) provides the model predictions, their uncertainty 
distributions, and the subsequent observations for COVID-19 mortality. Data was analyzed using 
Microsoft Excel and EXCALIBUR (a software package for using Cooke’s Classical Method).29 
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