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Abstract: To combat the COVID-19 pandemic, many countries have adopted digital contact 

tracing apps. Various technologies exist to trace contacts that are potentially prone to different 

types of tracing errors. Here, we study the impact of different proximity detection ranges on the 

effectiveness and efficiency of digital contact tracing apps. Furthermore, we study a usage stop 

effect induced by a false positive quarantine. Our results reveal that policy makers should adjust 

digital contact tracing apps to the behavioral characteristics of a society. Based on this, the 

proximity detection range should at least cover the range of a disease spread, and be much wider 

in certain cases. The widely used Bluetooth Low Energy protocol may not necessarily be the 

most effective option in its current setting. 

 

Main Text: 

Caused by the SARS-CoV-2 virus, the Coronavirus disease 2019 (COVID-19) has rapidly spread 

to a global pandemic with more than 56 Million infections and 1.3 Million deaths worldwide, as 

of November 2020. Only few countries have managed to minimize the number of infections, and 

many countries struggle to control the epidemic, some facing a second, even more severe wave 

of infections (1). A widely accepted means to better control the epidemic is the isolation of 

infectious individuals. To do this effectively, researchers and governments around the globe have 

discussed and subsequently introduced digital contact tracing (CT) apps. Once such a CT app is 

installed on someone’s personal device, it automatically tracks and records information about the 

individual’s proximity to other individuals that have the same CT app installed on their device. If 

one individual is diagnosed with COVID-19, this information can be entered into the CT app, 

which then automatically notifies other individuals that were in physical proximity to the 

infected person. The notified individuals thus are informed that they have been exposed to the 

risk of possible infection and may self-quarantine, test, or take other preventive measures to limit 

the spread of the disease (2, 3). 

Many countries have developed and implemented their own CT solutions (4). An 

important aspect of any CT app implementation is the technique to detect individuals in 

proximity. Bluetooth Low Energy, for example, is used by many countries (4). However, extant 

research has opposing views about its suitability for CT. On the one hand, it is among the most 

accurate technologies for CT (5). On the other hand, lab experiments suggest that a wider 

distance between smartphones does not necessarily decrease the received signal strength, and 

Bluetooth Low Energy may register contacts within a relatively wide distance that exceeds the 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 11, 2020. ; https://doi.org/10.1101/2020.12.08.20246140doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

mailto:sunyaev@kit.edu
https://doi.org/10.1101/2020.12.08.20246140
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

2 

 

distance in which infections actually happen (6, 7). Beyond Bluetooth Low Energy, extant 

research on CT has discussed many other technologies to detect the proximity between 

individuals such as GPS, QR codes (4), or RFID (8, 9) (see Table 1). These technologies vary in 

several characteristics, like their energy consumption, the time interval of physical distance 

measurement, or the amount of required user action. With regard to epidemic control, the most 

important differentiating characteristic of these technologies is the proximity detection range 

(PDR). While some technologies like RFID detect physical contacts only for small distances, the 

PDR of Bluetooth Low Energy is up to 10 meters (6), and sites-wide QR codes provide 

snapshots of which persons were at a certain place at a certain time. Given these different 

characteristics, research has recently called to assess and optimize the suitability of proximity 

detection technologies for CT apps (10).  

In an ideal scenario, CT apps help to detect a contact if an infection event occurred, and 

do not detect a contact if no infection event occurred. However, in reality no CT technology can 

achieve this ideal scenario. Instead, the different PDRs of different technologies yield their very 

own benefits and disadvantages. A PDR wider than a reasonable distance of infection risk may 

ensure a high recall (i.e., a large share of infectious contacts is registered). However, it may also 

lead to a low precision (i.e., many of the registered contacts were not actually infected). Such a 

registration of many contacts may cause large lockdowns. While large lockdowns may be 

effective to control epidemics, they also yield substantial negative effects such as high economic 

costs (2, 11), constraints on personal freedom, and harming the populations’ mental health and 

well-being (12). Furthermore, high shares of false positive contacts that unnecessarily (self-

)quarantine may lead to low initial adoption rates of CT apps, and even usage stops, thereby 

potentially decreasing the overall effectiveness of CT. In contrast, a small PDR may lead to the 

registration of contacts at risk with a high precision, but it may also miss some relevant contacts, 

and therefore be less effective in controlling the epidemic. Furthermore, a small PDR enables the 

localization of individuals more accurately and, thus, potentially opens the door to deducing 

highly precise movement profiles that impede individuals’ privacy. In some regions, reflections 

on privacy play a key role in the adoption of CT apps. For example, Norway, has stopped its CT 

app due to public privacy concerns (13). Given these different considerations, it is not a trivial 

task for decision makers to decide on the most suitable PDR for CT apps in order to fight the 

COVID-19 epidemic in their country. Here, we report on a spatial simulation with the aim to 

analyze how different PDRs implemented in CT apps might influence the course of the COVID-

19 epidemic. We thereby also take into account how a usage stop induced by false positive 

quarantine affects the effectivity of CT apps for different PDRs.  

Our work contributes to the scientific knowledge base on COVID-19 and the fight 

against global pandemics via digital technologies in three ways. First, we evaluate the 

effectiveness of different PDRs for CT in being able to help bringing the pandemic under control 

under different initial adoption levels. Second, we study the effect of a usage stop, which may 

occur once individuals stop using CT due to a false positive quarantine. Third, we demonstrate 

that spatial simulations can provide valuable insights when studying the effectiveness of CT for 

combating epidemics.  

Simulation approach  

The core of our research method is the spatial simulation of an epidemic where 

individuals move in a two-dimensional space and thereby can spread the disease. The parameters 

of the simulated society are set to closely match the German society and are described in detail in 
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the supplementary materials. We chose Germany as a model country for our simulations since it 

is a country where privacy discussions in general and around CT in particular are very prevalent 

(14). The severity of the COVID-19 epidemic in Germany falls somewhat medium in 

international comparison (it does not have the highest infection rates internationally, but 

COVID-19 is a prevalent health threat there, as of today). Furthermore, Germany has relatively 

early released a non-mandatory CT app – along with other important measures (e.g., obligations 

to wear a mask at certain places) – and was able to drastically reduce the number of COVID-19 

cases during the summer of 2020. However, as in many other countries, Germany is currently 

confronted with increasing case numbers (commonly referred to as ‘second wave of infections’) 

and faces the challenge of how existing measures must be adapted in order to fight the epidemic 

more effectively. The effectiveness of the German CT app has recently been questioned in the 

public discourse, due to its number of downloads of ca. 20.3 Million (as of October 2020) (15), 

resulting in a relatively low estimated adoption rate of ca. 24.5%. Following prior epidemiologic 

research and evidence where infections are likely to occur (16), we implemented four types of 

places in order to obtain a mixture of everyday social situations: households, schools, 

workplaces, and supermarkets. The parameters of our simulation are set such that the base 

reproduction number R0 of the pandemic, without contact tracing measures, has a median of 

2.792, which is close to a median value of 2.79 that extant research has identified for the 

COVID-19 pandemic (17). 

The epidemic in the simulation builds on the SEIR model, which states that an individual 

can be in one of four states: susceptible, exposed, infectious, or recovered (18). Initially, almost 

all individuals are in an exposed state, and few are exposed to the infectious disease. Exposed 

individuals then transition into the infectious state after a certain time, in which they can infect 

other susceptible individuals. After some time, an infectious individual recovers and stays 

immune to the infectious disease. Prior research showed that the SEIR model is well applicable 

for COVID-19 (19). At the start of a simulation, ten individuals are exposed, whereas the rest of 

the population is susceptible. An exposed individual then develops symptoms after the 

incubation period, which we modeled through a triangular distribution with a mode of 5.5 days, 

representing a realistic value for COVID-19 (20). However, individuals already transmit 

COVID-19 around two days before they develop symptoms (21). Accordingly, individuals in the 

exposed state transition into the infectious state two days before they develop symptoms in our 

model. Once individuals develop symptoms, we presume that they and their household members 

go in quarantine for 14 days, the household structure thereby is similar to the German household 

structure ((22), see supplementary material for detailed information on the household structure). 

Since the COVID-19 infectiousness typically declines within seven days after symptom onset 

(21), individuals remain in the infectious state for nine days, before transitioning into the 

recovered state. Infectious individuals can infect susceptible individuals within a 2-meter 

distance. The likelihood of an infection event depends on the distance between an infectious and 

a susceptible individual and follows a half normal distribution (i.e., the smaller the distance, the 

more likely an infection event). Within households, we presume that an infectious family 

member always infects other members, as individuals within a household typically are within 

less than 2-meters distance for an extended period of time. 
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Table 1. Simulated proximity detection methods and their possible realization with widespread 

sensors for wearable devices. 

Proximity detection range Possible technological realization with personal 

devices 

Exemplary studies or initiatives 

0.2 m Near field communication protocol (23) (24), No country deployed as of today 

1 m  Radio-frequency identification techniques (25) (8), Hospital study in Singapore (26) 

Bluetooth class 3 (27) - 

2 m Bluetooth Low Energy (varying statements in 

literature, around 2 meters (28, 29) to up to 10 

meters(6)) 

CT solutions based on the interface 

provided by Apple and Google (30), 

for example, the Corona-Warn-App 

from Germany 
10 m 

Bluetooth class 2 (27) (31) 

GPS (32) HaMagen (Israel), Private Kit (USA) 

(4) 

Sites-wide QR Codes (33) (33), China, ZeroBase (USA) (4), 

England and Wales (34) 

 

We also simulated the epidemic when CT solutions are applied. Overall, we simulated 46 

different scenarios. These scenarios differ in the CT adoption level, the PDR for CT, and the 

probability of individuals stopping to use the CT app after a false positive quarantine. The initial 

CT adoption levels in our simulation scenarios are 20%, 40%, 60%, 80%, or 100% of the 

simulated population. Within each of these initial adoption levels, we simulated five different 

PDRs for CT apps. For four of the CT apps to register a contact, individuals need to be within a 

certain range for at least 15 seconds, specifically of 0.2, 1, 2, or 10-meters. For the fifth 

simulated CT app, individuals scan a sites-wide QR code provided at a location (i.e., workplace, 

school, supermarket) which changes once a day. In practice, each of these PDRs can be realized 

with sensors built-in in widely available smartphones. Table 1 provides an overview of possible 

realizations. We did not trace contacts within households, as we presume that household 

members communicate and quarantine in case another household member shows symptoms. To 

account for possible usage stops in case of false-positive quarantine, we conducted simulations 

with individuals stopping CT usage with a probability of either 25%, 50%, 75%, or 100% in case 

they were falsely quarantined. We simulated each scenario 30 times with different random seeds 

to obtain averaged results. Each simulation contained a society of 10,000 individuals per 

scenario and a time step of 100 ms. The code and random seeds we used for our simulation are 

available on GitHub, thus allowing other researchers to verify and build on our results (35). 

Figure 1 exemplifies typical 2-day routines within our spatial simulation when an infection 

occurs on day one. Two example scenarios (short PDR and wide PDR) are illustrated. In both 

scenarios, the presence of a CT app potentially leads to wrong conclusions about individuals’ 

health status. In the short PDR scenario, the individuals D and H are potentially infectious but 

not tracked by CT (false negative) and in the wide PDR scenario, the individuals E and I are 

healthy but tracked by CT and subsequently quarantined (false positive). 
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Fig. 1. Illustration of the simulation. Illustration of CT apps with a small PDR, and a wide 

PDR. On day one, individual A is infectious but does not yet show symptoms. Therefore, 

individual A follows a daily routine and infects other individuals. Depending on the PDR of the 

CT apps, different contacts with other individuals are traced. At the end of day one, individual A 

develops symptoms and, thus, contacts are notified. On day two, individual A and the contacts 

go into quarantine, while non-contacts follow their daily routine. 

Effectiveness of contact tracing 

A major goal of controlling the COVID-19 epidemic is to keep the maximum share of infectious 

people low, commonly referred to as ‘flattening the curve’. To analyze how different PDRs of 

different CT apps might influence the course of the COVID-19 epidemic, we simulated several 

CT solutions for each adoption level. The course of the average share of infectious individuals 

over time is illustrated in Figure 2. In this first simulation, we did not account for usage stops of 

individuals due to false positive quarantine. 
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Fig. 2. Average share of infectious individuals. For each curve, the mean from 30 simulations, 

and the 90% confidence intervals (displayed as colored shades behind each curve) are plotted. 

The characteristics of the individual curves depend highly on the PDR and the adoption rate. 

The course of the simulated COVID-19 epidemic without any CT is illustrated in Figure 

2A. The average maximum share of infectious individuals within the 30 simulations is 55.80%. 

With any CT solution adopted, this maximum decreases. In general, larger PDRs lead to a lower 

maximum share of infectious individuals than smaller PDRs. The reason for this is that large 

PDRs are more sensitive and cause more susceptible and infectious individuals to go into 

quarantine. The susceptible individuals then cannot get infected for the time of the quarantine, 

whereas the infectious individuals are prevented from infecting others (except for household 

members). Furthermore, the initial adoption rates of CT apps have a substantial impact on the 

course of the COVID-19 epidemic. Thereby, higher initial adoption rates lead to lower average 

maximum shares. For example, for CT based on a 10 m PDR, the average maximum is 50.20% 

at a 20% adoption rate (see Figure 2B) and 1.06% at a 100% adoption rate (see Figure 2F). The 

lowest maximum average of infectious individuals was 0.79% for the sites-wide PDR with a 

100% adoption rate. 

Another metric of interest is the duration of the epidemic, which is illustrated in Figure 3 

A. Without CT, the average duration was 72.50 days. By flattening the curve, the adoption of CT 

apps generally led to a prolongation of the epidemic, with a higher adoption rate leading to an 

increase in the duration. The highest average duration was 164.47 days for a 1 m PDR at a 100% 

adoption rate. For CT based on PDRs of 2 m or larger, however, higher adoption did not 

necessarily lead to a prolonged epidemic. CT based on a sites-wide PDR, for example, had the 

shortest epidemic duration with an average of 41.73 days, followed by CT based on a 10 m PDR 

with an average of 56.20 days. Both values are shorter than the average duration of the epidemic 
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without CT. The 2 m PDR CT solution adopted at 100% comes with an average epidemic 

duration of 95.77 days, which is more than the epidemic without CT, but less than the 2 m PDR 

adopted at 80 % (132.97 days).  

 

Fig. 3. Quarantine time and efficiency measures. Each subfigure illustrates the mean 

values and 90% confidence intervals based on the used PDRs for CT and the adoption of CT 

averaged over 30 simulations. A shows the duration of the epidemic. For this, Figure 2 is not 

representative, as the curves are averaged and, therefore, take the value of the simulation with the 

longest duration. B shows the share of susceptible individuals at the end of the epidemic, C 

shows the average quarantine time per individual, and the average time individuals spend this 

quarantine time in a susceptible disease state. 

We further analyzed the share of susceptible individuals at the end of the epidemic, 

illustrated in Figure 3B. A high share is preferable, since individuals that never get infected with 

the disease do not suffer from potential long-term consequences of an infection and will not 

succumb to the disease. Without any CT, almost all of the individuals in our simulation get 

infected over time, with the average share of susceptible individuals at the end of the simulation 

being 7.51%. Conversely, the higher the adoption rate of CT and the larger the PDR for CT, the 

higher the share of susceptible individuals at the end of the epidemic get. However, the effect of 

CT with small PDRs (i.e., 0.2 m, 1 m), is limited: With a 1 m PDR CT adopted at 100%, an 

average of 21.73% of the simulated population is susceptible at the end of the epidemic, whereas 

a rest (78.27%) has been infected over time. Contrary, a PDR of 2 m at a 100% adoption rate 

already reaches an average of 89.89% individuals susceptible at the end of the epidemic, and CT 

with the 10 m PDR reaches even an average of 97.68% susceptible individuals at the end of the 

epidemic. However, the value of the 10 m PDR CT is only 43.88% when adopted at 80%. With 

CT based on a sites-wide PDR, the value at 80% adoption rate is 82.57% and 98.82% at 100% 

adoption rate. 

A major cost of CT is quarantine time, which can have significant negative effects, such 

as economic losses (2, 11), strains on mental health (12, 36), untreated medical conditions (37), 

or increases in domestic violence (38). Therefore, we analyzed the average quarantine time per 

person, which is illustrated in Figure 3C. Without CT, the average quarantine time per person 

was 14.69 days, due to quarantined infectious individuals, and their household members. In 

general, the average quarantine time per person increased with a higher CT adoption rate and 
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larger PDRs. It reaches its maximum at 94.28 days for the sites-wide PDR with a 80% adoption 

rate. However, with adoption rates above 80%, CT based on a 2 m PDR, a 10 m PDR, or sites-

wide PDR showed less quarantine time. At an adoption rate of 100%, the average quarantine 

time thereby is the lowest for CT based on a 10 m PDR with 7.55 days. CT based on a 2 m PDR 

resulted in 13.40 days, and CT based on sites-wide PDR resulted in 18.32 days of average 

quarantine time, which is slightly higher than the epidemic without any CT. Based on the 

average quarantine duration per person, we also analyzed what share of this time was spent in a 

susceptible state. In general, quarantine measures aim to target infectious individuals. It also 

seems reasonable to quarantine exposed individuals, as they may become infectious any time, 

and in practice it may be challenging to diagnose whether an individual is exposed but not 

infectious. However, one could consider a quarantine of susceptible individuals as false positive 

quarantine. The results of our analysis are illustrated in Figure 3C as hatched bars. Without CT, 

there are no susceptible individuals in quarantine, since only individuals with symptoms, which 

are also infectious, and their exposed household members go in quarantine. With CT, also 

susceptible individuals go into quarantine. For all PDRs, a higher adoption rate of CT leads to a 

higher share of susceptible individuals in quarantine. Furthermore, CT based on PDRs with a 

wider detection radius generally lead to a higher share of quarantine time spent in a susceptible 

state, as they register contacts at a relatively far away distance, where an actual infection event is 

unlikely to occur. The highest share of time spent in quarantine by susceptible individuals was 

98.49% with CT based on the sites-wide PDR adopted at 100%. With a 2 m PDR based CT 

adopted at 100%, the share was still 85.15%. 

Contact tracing with a usage stop 

After being in a quarantine and not feeling symptoms of sickness, an individual may perceive 

their quarantine as unnecessary. Eventually, quarantines perceived as unnecessary may, among 

other reasons (e.g., privacy concerns, general mistrust in a CT app or the government), lead to 

individuals stopping to use the CT app and a lower overall adoption rate of CT apps, thus 

impeding the effectiveness of CT. To account for this effect, we simulated usage stops after a 

false positive quarantine with different probabilities (25%, 50%, 75%, or 100%). In these 

simulations, we assumed an initial CT adoption rate of 60%. This is the recommended minimum 

adoption rate in other extant research (2). At the same time, it appears as realistic in western 

societies, as a 2015 US-based survey revealed that 58.23% of mobile phone users had 

downloaded a health-related mobile app (39) and it is likely to assume that the smartphone 

adoption and health app usage has increased since then.  

The results of these simulations are illustrated in Figure 4. Similar to the analysis 

conducted for Figure 2, we focus on the average share of infectious individuals over time. For 

CT with small PDRs (0.2 m, 1 m), the effect of this usage stop is almost non-existent. Without 

any usage stop, the average maximum was 54.71%, respectively 44.28%. With a 100% 

probability of a usage stop, these maxima are 54.72% and 44.26%. The small increase for the 

0.2m PDR is likely due to a statistical variation and well within the 90% confidence interval. For 

CT based on a 2 m PDR with no usage stop, the average maximum is 32.49%. This value only 

slightly increases to up to 33.54% with a 100% probability usage stop. One reason for this 

observation may be that CT based on short PDR produces only very little false positives, and, 

thus, only very few individuals stopped using the CT app in our simulation. For CT based on 

larger PDRs, however, the usage stop has a severe effect on the average maximum share of 

infectious individuals. Without a usage stop, the values are 30.68% for a 10 m PDR and 19.48% 
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for sites-wide PDR at 60% initial adoption. When studying a 25% probability of a usage stop, the 

10 m PDR and the sites-wide PDR come with a 33.50% respectively 35.85% average maximum, 

thus being similarly effective than the 2 m PDR with 32.54%. This trend intensifies with an 

increasing probability of the usage stop, where especially the 10 m PDR and the sites-wide PDR 

become less effective. At a 100% probability, the CT based on sites-wide PDR comes with an 

average maximum share of 52.27% and is, thus, higher than CT based on a 2 m PDR with 

33.54% and even higher than CT based on a 1 m PDR at 44.26%. CT based on a 10 m PDR lies 

in the middle of the latter two with 38.55%.  

 

Fig. 4. Usage stop of CT after being in a false positive quarantine. For each curve, the mean 

from 30 simulations, and the 90% confidence intervals are plotted. Thereby, the initial adoption 

rate of CT is 60%. The probability of stopping CT after a false positive quarantine varies in the 

subfigures. 

Discussion 

With the simulation, we studied how various CT solutions based on different PDRs affect the 

course of an epidemic. Generally, the adoption of CT helped in all simulations to control the 

epidemic in the sense of decreasing the maximum share of infectious individuals, and increasing 

the share of susceptible individuals at the end of the epidemic. In doing so, introducing a CT app 

also helped to decrease the R0 value of the infectious disease within our simulation (see Table S2 

in the supplementary materials for detailed information on R0 values). Our results are in line with 

previous research suggesting that high adoption rates of CT are beneficial (33). While our results 

confirm prior results that a certain adoption rate is necessary to effectively stop an epidemic right 

from the beginning (2), our research also suggests that there is no minimum threshold of CT to 

be effective, but that instead every participation can help to better control the epidemic and 

increase the effectiveness of CT itself. 
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The results of our spatial simulations show that each of the different PDRs yields its own 

advantages and disadvantages when it comes to fighting the COVID-19 epidemic. We 

summarize these advantages and disadvantages in Table 2. In general, a 0.2 m or 1 m detection 

range appear to only have limited effectiveness, illustrated, for example, by the share of 

susceptible individuals at the end of the pandemic, which is only 36.60% on average for the 1 m 

PDR even at 100% adoption rate. The 2 m, 10 m, and sites-wide PDR are all very effective in 

controlling the epidemic at 100% adoption rate. The sites-wide PDR is even highly effective at 

only 80% adoption rate. However, this effectiveness comes with several disadvantages such as 

very long quarantine duration, and high shares of susceptible individuals in quarantine (false 

positives). For 100% adoption rate of CT with a 10 m or sites-wide PDR, the average R0 value 

was actually below 1, meaning an infectious individual on average infects less than one other 

individual. Thus, both CT solutions enabled a declining epidemic right from the beginning. In all 

other simulation settings, the average R0 value always was above the critical threshold of 1, 

meaning not only CT, but also a growing herd immunity enabled an eventual decline of the 

epidemic. When simulating a usage stop with an initial adoption of 60%, the advantages and 

disadvantages of different PDRs for CT substantially changed. PDRs with a short detection range 

(0.2 m, 1 m) were unaffected, however, PDRs with a wide detection range (10 m, sites-wide) 

performed much worse. Under this scenario, our simulations demonstrated that the most 

effective CT was based on a 2 m PDR since the 10 m and the sites-wide PDR showed higher 

average maximum shares of infectious individuals and, thus, were less effective in ‘flattening the 

curve’. 

Table 2. Simulated PDRs and their advantages and disadvantages for CT. 

PDR Advantages Disadvantages 

0.2 m • Lowest risk of detecting false positives • Almost no positive impact on maximum share of 

infectious individuals, or share of susceptible 

individuals at the epidemic end 

1 m • Noticeable decrease of the maximum share of 

infectious individuals at high adoption rates  

• Relatively little quarantine time required 

• Little share of susceptible individuals in 

quarantine 

• Relatively low share of susceptible individuals at the 

end of the epidemic, even at 100% adoption rate 

• Long epidemic duration at 100% adoption rate 

2 m • Highly effective for epidemic control at 

100% adoption rate 

• Relatively little quarantine time required 

• The most effective PDR for a 60% adoption 

rate with a usage stop 

• Relatively high share of susceptible individuals in 

quarantine at 100% adoption 

• Much less effective at lower adoption rates compared 

to sites-wide CT 

10 m • Highly effective for epidemic control at 

100% adoption rate 

• The least amount of quarantine time required 

of all PDRs at 100% adoption rate 

• Relatively high share of susceptible individuals in 

quarantine at an 80% adoption rate or higher 

• Loses effectivity under a scenario of a usage stop 

because of false positive quarantines, even at just 

25% probability 

Sites-wide • Highly effective for epidemic control, when 

considering the maximum share of infectious 

individuals and the share of susceptible 

individuals at the end, even at 80% adoption 

rate 

• Out of all PDRs, the lowest epidemic 

• Highest share of quarantine time by susceptible 

individuals of more than 50% at only 60% adoption 

rate or higher 

• Relatively long quarantine times at an adoption rate 

of 60% or 80% 

• Strongly loses its effectivity at 60% initial adoption 
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duration at 100% adoption rate and a usage stop effect 

Our results imply that there is no silver bullet CT technology. Instead, choosing the right 

CT technology always means finding a compromise between various factors such as 

effectiveness in controlling the epidemic, false positive quarantine, share of susceptible people, 

and privacy concerns. In this regard, our work can help decision makers to assess the advantages 

and disadvantages of the different technologies and, thus, make more informed decisions. 

Different countries with different cultures have shown widely varying acceptance rates of 

COVID-19 measures in general (e.g., lockdown, mask requirements), and varying adoption rates 

of CT apps in particular. Factors influencing the adoption rates may include privacy concerns, 

the perception of the CT app’s effectiveness, and the perceived quarantine time required to 

comply with CT apps. Furthermore, some CT technologies may be easy to enforce (e.g., 

scanning a QR code before entering places of everyday life), which could increase the adoption 

rate and effectivity of a CT app, compared to other CT technologies. In some countries, CT 

based on wide PDRs (i.e., 10 m, sites-wide) may have higher adoption rates than CT based on 

narrower PDRs due to their higher effectiveness, high acceptance of false positive quarantine, or 

their absence of causing highly precise movement profiles. Bluetooth Class 2, GPS, wider 

versions of Bluetooth Low Energy, or sites-wide QR codes may be appropriate technologies for 

CT apps in such countries (see Table 1). In other countries, however, there may be a high chance 

of a usage stop after a false positive quarantine. In such cases, our results support the adoption of 

PDRs that have at least a range of a typical disease spread, but not much more. Bluetooth Low 

Energy may be an appropriate technology for CT apps in such countries. The results of our 

simulations also show that technologies with very short PDRs such as NFC are not suitable for 

CT in the case of the COVID-19 epidemic since they resulted in almost no positive impact on the 

maximum share of infectious individuals, or share of susceptible individuals at the end. 

With our work, we follow a recent call for research on the technical design of CT apps 

(10) and open multiple opportunities for future research. However, our work is limited by some 

factors as the real world is always more complex than a simulation. For example, our simulation 

especially accounted for droplet infection, where CT can be highly effective. Recent research 

suggest that aerosol transmission or fomite transmission are another plausible mode of SARS-

CoV-2 transmission (40). As these modes of transmission do not directly depend on the physical 

proximity between individuals, CT may likely be less effective for epidemic control in such 

scenarios. Furthermore, contact patterns in the real world are likely to be more complex than in 

our simulations. Future research could, therefore, aim to develop more accurate measures for 

contact patterns and incorporate these into simulations; we made our simulation source code 

publicly available for such purposes. In general, the research on SARS-CoV-2 transmission is 

still ongoing. For our simulations, we required a probability distribution which tells us the 

likelihood of an infection, depending on the distance between the infectious and a susceptible 

individual. Our most likely choice was a half normal distribution which we parametrized such 

that we obtained an R0 value realistic for COVID-19. While we believe our choice is reasonable, 

future research could aim to further quantify this probability distribution with real-world 

evidence. However, such viral experiments may be challenging to conduct. Finally, recent 

research suggests that already recovered individuals can get infected with SARS-CoV-2 for a 

second time. Therefore, another interesting extension of our work would be the usage of a SEIRS 

model instead of a SEIR model, where individuals can transition to the susceptible state from the 

recovered state. 
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Extant research has demonstrated that the economic and societal consequences of large 

lockdowns with many quarantined people are highly severe. In this regard, we demonstrate that 

choosing the right CT technology with a suitable PDR can play a key role in determining 

whether large lockdowns become necessary or not. On the one hand, short PDRs are limited in 

their effectiveness of fighting the epidemic since they potentially miss to track important 

contacts. On the other hand, wide PDRs should also be selected with care since they lead to high 

shares of false positive quarantine. Our results suggest, that for many scenarios, the most 

promising CT solutions are based on a PDR that roughly corresponds to the infection range. 

However, this finding is dependent on various different factors such as initial adoption, and 

potential usage stops. Consequently, we recommend further exploration of reasons for such 

usage stops and means to ensure extensive continuous use of CT apps. 
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Materials and methods 

General simulation model 

Our simulation model consists of a population of 10,000 individuals living in households. 

The household size distribution follows the German household size distribution (22) and is 

illustrated in Table S1. We assume that individuals return to their household every day. 

Table S1. Household sizes and their share of the total number of households within the 

simulation. 

Household size [number of individuals] Share of total number of households [%] 

1 42.3 

2 33.2 

3 11.9 

4 9.1 

5 3.5 

 

Following prior work on the spread of infectious diseases (16), individuals can meet at four 

different types of places. In our simulation, these places are workplaces, schools, supermarkets, 

and households. Similar to the German society, we assumed that 70.1% of the population 

regularly visit a workplace or school (including universities and kindergartens). This estimated 

share is based on ca. 44.7 million individuals working (41), ca. 8.3 million pupils in school (42), 

ca. 2.8 million university students (43), and 2.4 million kindergarteners (44), out of a German 

population of 83 million individuals. In our simulation, these workplaces or schools have a 

quadratic shape (as illustrated in Figure S1 B) with a row capacity between 2 and 8, thus, the 

total capacity of the specific location is between 4 and 64. When visiting a workplace or school, 

an individual randomly selects one seat, which ensures a mixing of different contacts in our 

simulation. The distance between each row and column for a workplace or school are randomly 

sampled between 1.5 and 2-meters. Thereby, individuals can move along aisles in order to go to 

their seats with a constant speed of 1 
𝑚

𝑠
. Individuals arrive between 8 AM and 8:30 AM and stay 

there for 8 hours.  
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Fig. S1. Illustration of the spatial simulation locations. Besides households, infectious 

individuals can infect other individuals at supermarkets, workplaces, and schools. This figure 

shows individuals at these places, some of the shown individuals are moving, illustrated by a 

speed component in x and y direction. Specifically, A shows a supermarket scenario, where 

individuals move along an aisle. B shows a workplace or school scenario in quadratic shape, 

where an individual moves to a randomly assigned seat when arriving, and may get infected 

while doing so. 

If an individual is not at their workplace or school, they can visit a supermarket once a day 

with a daily probability of 20%. These are open Monday through Saturday from 8 AM till 8 PM. 

For the 10,000 individuals in the population, there are three supermarkets, resulting in a 

comparable distribution of supermarkets per capita to Germany (45). A supermarket is simulated 

as one long aisle, as illustrated in Figure S1 A. Individuals can go in both directions, forward, 

and backward, which increases the mixture of contacts. To do so, each individual has a constant 

base speed in y direction, which is determined such that the planned duration of the visit is a 

random number between 15 and 45 minutes. To allow individuals walking backwards, an 

individual walks with an acceleration in y direction which takes a sinusoidal form. The period 

duration is three minutes, the amplitude is determined such that the maximum additional speed 

gain from this sinusoidal function is the difference to the maximum speed of 1 
𝑚

𝑠
. However, this 

maximum additional speed gain is divided by a random integer between 1 and 10. As a result, 

some individuals occasionally walk backward (meaning they walk with a negative speed), 

whereas others walk almost with a straight speed. The x acceleration is determined randomly, but 

capped such that the maximum total speed (consisting of a speed in x direction and a speed in y 

direction) is 1 m/s. Furthermore, the individuals always stay within the physical boundaries. 

 

In general, the next position of a person as a vector is determined by its current speed �⃗�, its 

acceleration �⃗�, and the simulation time step 𝛥𝑡: 

 

(
𝑋𝑛𝑒𝑤

𝑌𝑛𝑒𝑤
) = (

𝑋𝑝𝑟𝑖𝑜𝑟 + 𝑣𝑋 ∗ 𝛥𝑡 + 0.5 ∗  𝑎𝑋 ∗ 𝛥𝑡2

𝑌𝑝𝑟𝑖𝑜𝑟 + 𝑣𝑌 ∗ 𝛥𝑡 + 0.5 ∗  𝑎𝑌 ∗ 𝛥𝑡2
) 
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The speed vector of the person after the next time step is defined as follows:  

 

(
𝑣𝑥,𝑛𝑒𝑤
𝑣𝑦,𝑛𝑒𝑤

) = (
𝑣𝑥,𝑝𝑟𝑖𝑜𝑟 + 𝑎𝑋 ∗ 𝛥𝑡

𝑣𝑦,𝑝𝑟𝑖𝑜𝑟 + 𝑎𝑌 ∗ 𝛥𝑡
) 

 

The time step in our simulation 𝛥𝑡 is 100 ms, as this allows us to simulate walking speeds 

in the order of about 1 
𝑚

𝑠
 and measure distances in the order of decimeters at the same time. 

 

Epidemic simulation 

Another essential part of our simulation model is the infectious disease. We aim to model 

this infectious disease realistic to COVID-19 with a SEIR model, where individuals are either in 

a susceptible, an exposed, an infectious, or a recovered state. This flow of states is also illustrated 

in Figure S2. 

 
 

  

Fig. S2. A shows the disease states and flow of the SEIR model. B shows different cases 

(minimum, mode, and maximum of the triangular distribution) on a time line. 

 

 At the start of the simulation, ten individuals of the population are exposed and the rest of 

the population is susceptible. The transition of a susceptible state to an exposed state occurs 

when an individual gets infected. Afterwards, it takes a certain duration until the individual 

develops symptoms. In accordance with extant knowledge on COVID-19 (20), we model this 

duration as a random number sampled from a triangular distribution with a minimum of 1 day, a 

mode of 5.5 days, and a maximum of 14 days. Similarly, two days before an individual develops 

symptoms, its disease status transits from the exposed state to the infectious state. However, the 

duration in the exposed state cannot be negative. The duration in the infectious state is 9 days, 

effectively meaning 2 days before the symptoms and 7 days after the symptoms are noticed (21). 

We implemented the spatial simulation for the workplaces, schools, and supermarkets, but did 

not implement it for the households. Instead, we assume that household members typically have 

a close contact between each other, therefore, in the simulation model an individual infects other 

household members once they are infectious. Furthermore, an individual and their household 

members go into quarantine the day after an individual showed symptoms. 

A further important set of parameters determines the probability of an infection event. For 

such an infection event, an infectious and a susceptible individual need to be within a certain 
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distance and the closer they are, the more likely the infection event occurs. Specifically, an 

infection event can occur only if the two individuals are in proximity of 2 m or closer. In our 

simulation, each infectious individual is assigned a fixed random value 𝜎 from a triangular 

distribution with a minimum of 0, a mode of 0.5 m, and a maximum of 1 m. This value accounts 

for a varying infectiousness between individuals which is observed for COVID-19 (46). The 

higher it is, the more infectious an individual is, given it is in the infectious state of the disease. 

Once a susceptible individual is in proximity of an infectious individual, a random number from 

a half normal distribution is drawn. This half normal distribution has a standard deviation of 𝜎 

from the infectious individual. An infection event can then occur if the distance between the two 

individuals is smaller than this drawn random number. This mechanism alone, however, would 

lead many more infections if the simulation time step 𝛥𝑡 is small (it is 100 ms in our 

simulations). Therefore, another condition has to be met: a random event of 5% probability needs 

to be drawn to be true. The first condition ensures that an infection event is more likely, the 

closer two individuals are. A half normal distribution was chosen instead of a normal distribution 

because the distance between individuals is always a non-negative value. The second condition is 

necessary in order to adapt the likelihood of an infection to the simulation time step. Based on 30 

simulations without any CT, this setting results in in an average base reproduction number of R0 

= 2.799, a median of R0 = 2.792, and a 90% confidence interval between 2.787 and 2.811. The 

median value in our simulation was close to the median value of 2.79 that was identified for the 

SARS-CoV-2 pandemic by extant research (17). 

 

Measurement of the base reproduction rate 

As discussed above, we set a few parameters such that we obtain a reasonable value for the 

base reproduction number R0. This affects parameters that define the likelihood of an infection, 

given an infectious individual is in proximity of a susceptible individual. This section describes 

how we calculated the base reproduction rate 𝑅0 out of our simulation results. 

In a simplified SEIR model (18, 47) with a natural death rate of µ = 0, the base 

reproduction rate is given by 𝑅0 =
𝛽

𝛾
. Thereby, 𝛾 is the reciprocal of the infectious period and 𝛽 is 

the effective contact rate. The SEIR model is described by a system of differential equations, 

which themselves describe the change of four quantities. These four quantities are the number of 

susceptible individuals at a given time 𝑆(𝑡), as well as the number of exposed individuals 𝐸(𝑡), 

the number of infectious individuals 𝐼(𝑡), and the number of recovered individuals at a given 

time 𝑅(𝑡). The system of differential equations is as follows (𝑁 is the size of the population, the 

average incubation period is 𝑎−1): 

 
𝑑𝑆(𝑡)

𝑑𝑡
= −𝛽𝑆(𝑡)

𝐼(𝑡)

𝑁
 

𝑑𝐸(𝑡)

𝑑𝑡
= 𝛽𝑆(𝑡)

𝐼(𝑡)

𝑁
− 𝑎𝐸(𝑡) 

𝑑𝐼(𝑡)

𝑑𝑡
= 𝑎𝐸(𝑡) − 𝛾𝐼(𝑡) 

𝑑𝑅(𝑡)

𝑑𝑡
= 𝛾𝐼(𝑡) 
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By dividing 
𝑑𝑅(𝑡)

𝑑𝑆(𝑡)
, we obtain 

𝑑𝑅(𝑡)

𝑑𝑆(𝑡)
= −

𝛾𝑁

𝛽𝑆(𝑡)
= −

𝑁

𝑆(𝑡)𝑅0
 . We then integrate from the start of 

the simulation (𝑡 = 0) to the end of the simulation (𝑡 = ∞) and obtain 𝑅(∞) − 𝑅(0) =

[
−𝑁

𝑅0
𝑙𝑛(𝑆(𝑡))]

0

∞

=
−𝑁

𝑅0
𝑙𝑛(𝑆(∞)) +

𝑁

𝑅0
𝑙𝑛(𝑆(0)) =

𝑁

𝑅0
(𝑙𝑛(𝑆(0))  −  𝑙𝑛(𝑆(∞))). With 𝑅(∞) =

𝑁 − 𝑆(∞) and 𝑅(0) = 0, we obtain 𝑁 − 𝑆(∞) =
𝑁

𝑅0
(𝑙𝑛(𝑆(0))  −  𝑙𝑛(𝑆(∞))), and ultimately, 

we obtain 𝑅0 =
𝑁

𝑁−𝑆(∞)
(𝑙𝑛(𝑆(0) − 𝑙𝑛(𝑆(∞)). Thus, we can calculate 𝑅0 by the number of 

individuals in our simulated population 𝑁 = 10,000, the number of initially susceptible 

individuals 𝑆(0) = 9,990, and the number of susceptible individuals at the end of the simulation 

𝑆(∞).  

 

Simulation process  

We simulated on a high-performance computing cluster with nodes consisting of an Intel 

Xeon Gold 6230 CPU at 2.1 GHz frequency. In total, we simulated 46 different types of 

scenarios (composed of different CT adoption rates, different PDRs, and varying probabilities of 

a usage stop) Each scenario type was simulated 30 times (with different random seeds), in order 

to obtain smoothed means and confidence intervals. Each simulation ran on one CPU core, 

therefore, we computed with 1,380 CPU cores in total. Depending on the simulation parameters 

and random influences, the simulation time varied, most of the simulations finished within 1 and 

2 days, the longest one took ca. 7.8 days. In order to decrease the required simulation time, one 

could increase the simulation time step 𝛥𝑡 (e.g., to 1 s instead of 100 ms), and one could reduce 

the size of population. However, this can lead to less accurate results, and a higher variance; this 

is the reason we set the simulation time step to 100 ms. The source code to simulate and 

visualize the results is available at (35). 

 

Simulation results 

Table S2 shows the main results of our study with the mean value and 90 % confidence 

intervals based on 30 simulations. Most of these results are also visualized in Figure 2, 3, and 4 

within the main article. 
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          Table S2. Results of the different simulations, and 90 % confidence intervals. 
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 R

0
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0 0 
No 

CT 

55.796 ± 

0.145 

27.367 ± 

64.173 

72.500 ± 

1.415 

14.690 ± 

0.025 

0.000 ± 

0.000 

7.511 ± 

0.103 

2.799 ± 

0.012 

20 0 0.2 m 
55.659 ± 

0.232 

26.633 ± 

55.641 

74.800 ± 

1.798 

14.722 ± 

0.028 

0.084 ± 

0.006 

7.585 ± 

0.095 

2.790 ± 

0.011 

20 0 1 m 
54.545 ± 

0.229 

26.900 ± 

57.692 

76.200 ± 

1.524 

15.019 ± 

0.028 

1.046 ± 

0.032 

8.165 ± 

0.084 

2.728 ± 

0.009 

20 0 2 m 
52.069 ± 

0.267 

27.167 ± 

66.745 

76.533 ± 

1.547 

15.432 ± 

0.031 

3.209 ± 

0.067 

9.130 ± 

0.109 

2.634 ± 

0.010 

20 0 10 m 
50.169 ± 

0.210 

27.533 ± 

73.458 

77.467 ± 

1.604 

15.818 ± 

0.032 

5.722 ± 

0.099 

9.979 ± 

0.118 

2.560 ± 

0.010 

20 0 
Sites-

wide 

46.565 ± 

0.278 

29.667 ± 

90.212 

81.667 ± 

2.232 

21.899 ± 

0.199 

23.636 ± 

0.499 

14.500 ± 

0.155 

2.258 ± 

0.008 

40 0 0.2 m 
55.301 ± 

0.235 

26.733 ± 

60.532 

73.433 ± 

1.556 

14.829 ± 

0.028 

0.366 ± 

0.018 

7.793 ± 

0.090 

2.767 ± 

0.010 

40 0 1 m 
50.846 ± 

0.277 

27.500 ± 

62.879 

80.567 ± 

1.501 

15.837 ± 

0.030 

4.478 ± 

0.086 

9.823 ± 

0.122 

2.573 ± 

0.011 

40 0 2 m 
43.738 ± 

0.303 

28.333 ± 

83.640 

84.500 ± 

2.153 

17.111 ± 

0.035 

11.499 ± 

0.151 

12.227 ± 

0.132 

2.394 ± 

0.009 

40 0 10 m 
40.453 ± 

0.310 

30.233 ± 

94.238 

86.167 ± 

2.085 

18.173 ± 

0.045 

17.736 ± 

0.227 

14.291 ± 

0.154 

2.269 ± 

0.008 

40 0 
Sites-

wide 

34.066 ± 

0.333 

33.767 ± 

128.989 

87.767 ± 

2.356 

31.920 ± 

0.584 

44.787 ± 

0.734 

26.254 ± 

0.255 

1.813 ± 

0.007 

60 0 0.2 m 
54.714 ± 

0.285 

26.867 ± 

57.892 

74.133 ± 

1.208 

15.030 ± 

0.031 

0.979 ± 

0.037 

8.187 ± 

0.122 

2.726 ± 

0.013 

60 0 1 m 
44.276 ± 

0.317 

27.767 ± 

53.548 

92.100 ± 

3.621 

17.206 ± 

0.039 

10.676 ± 

0.123 

12.306 ± 

0.151 

2.389 ± 

0.010 

60 0 2 m 
32.488 ± 

0.277 

32.267 ± 

145.062 

100.533 ± 

3.211 

19.700 ± 

0.070 

24.091 ± 

0.210 

17.828 ± 

0.194 

2.098 ± 

0.008 
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0
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60 0 10 m 
30.678 ± 

0.386 

35.800 ± 

116.680 

102.300 ± 

2.536 

22.138 ± 

0.154 

35.126 ± 

0.497 

22.292 ± 

0.276 

1.931 ± 

0.009 

60 0 
Sites-

wide 

19.478 ± 

0.283 

42.567 ± 

216.113 

107.033 ± 

3.411 

51.062 ± 

1.541 

65.887 ± 

0.754 

45.340 ± 

0.299 

1.445 ± 

0.004 

80 0 0.2 m 
53.281 ± 

0.280 

26.900 ± 

53.360 

77.600 ± 

1.269 

15.380 ± 

0.036 

2.146 ± 

0.055 

8.843 ± 

0.105 

2.661 ± 

0.010 

80 0 1 m 
34.515 ± 

0.328 

27.933 ± 

67.127 

106.900 ± 

2.958 

19.229 ± 

0.066 

20.137 ± 

0.191 

16.458 ± 

0.261 

2.160 ± 

0.012 

80 0 2 m 
19.865 ± 

1.624 

38.667 ± 

235.762 

132.967 ± 

9.737 

23.486 ± 

1.825 

47.843 ± 

3.045 

33.764 ± 

5.273 

1.683 ± 

0.066 

80 0 10 m 
14.144 ± 

1.179 

41.867 ± 

323.817 

139.800 ± 

11.154 

30.284 ± 

2.369 

65.305 ± 

2.397 

43.879 ± 

4.518 

1.483 ± 

0.053 

80 0 
Sites-

wide 

2.810 ± 

0.421 

62.167 ± 

769.469 

150.200 ± 

16.753 

94.284 ± 

12.250 

90.813 ± 

1.178 

82.570 ± 

2.286 

1.070 ± 

0.033 

100 0 0.2 m 
52.227 ± 

0.292 

26.933 ± 

68.895 

81.033 ± 

1.803 

15.793 ± 

0.039 

3.627 ± 

0.076 

9.744 ± 

0.112 

2.580 ± 

0.010 

100 0 1 m 
21.385 ± 

0.396 

27.667 ± 

93.485 

164.467 ± 

6.733 

23.831 ± 

0.162 

36.597 ± 

0.341 

21.732 ± 

0.403 

1.951 ± 

0.014 

100 0 2 m 
2.391 ± 

0.386 

37.900 ± 

738.780 

95.767 ± 

13.384 

13.404 ± 

2.720 

85.156 ± 

0.757 

89.891 ± 

2.340 

1.026 ± 

0.025 

100 0 10 m 
1.059 ± 

0.190 

20.933 ± 

516.769 

56.200 ± 

6.819 

7.553 ± 

1.616 

93.846 ± 

0.369 

97.683 ± 

0.574 

0.928 ± 

0.022 

100 0 
Sites-

wide 

0.791 ± 

0.149 

13.900 ± 

43.419 

41.733 ± 

1.896 

18.326 ± 

1.421 

98.489 ± 

0.242 

98.823 ± 

0.224 

0.885 ± 

0.020 

60 25 0.2 m 
54.714 ± 

0.285 

26.867 ± 

57.892 

74.633 ± 

1.264 

15.031 ± 

0.031 

0.979 ± 

0.038 

8.156 ± 

0.128 

2.729 ± 

0.013 

60 25 1 m 
44.342 ± 

0.302 

27.800 ± 

55.052 

91.167 ± 

2.817 

17.141 ± 

0.040 

10.308 ± 

0.117 

11.901 ± 

0.148 

2.416 ± 

0.010 

60 25 2 m 
32.784 ± 

0.319 

32.733 ± 

145.475 

100.033 ± 

2.699 

19.507 ± 

0.053 

21.633 ± 

0.177 

14.079 ± 

0.165 

2.281 ± 

0.009 
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60 25 10 m 
33.499 ± 

0.390 

36.767 ± 

108.477 

103.767 ± 

2.251 

21.227 ± 

0.074 

28.903 ± 

0.277 

15.151 ± 

0.190 

2.224 ± 

0.010 

60 25 
Sites-

wide 

35.853 ± 

0.853 

41.500 ± 

177.638 

111.567 ± 

3.488 

33.797 ± 

0.260 

42.756 ± 

0.651 

16.801 ± 

0.341 

2.145 ± 

0.016 

60 50 0.2 m 
54.714 ± 

0.285 

26.867 ± 

57.892 

75.233 ± 

1.313 

15.034 ± 

0.032 

0.977 ± 

0.038 

8.145 ± 

0.134 

2.730 ± 

0.014 

60 50 1 m 
44.245 ± 

0.309 

27.700 ± 

51.526 

89.867 ± 

2.140 

17.088 ± 

0.045 

10.126 ± 

0.111 

11.687 ± 

0.161 

2.431 ± 

0.011 

60 50 2 m 
33.039 ± 

0.342 

32.867 ± 

141.664 

95.767 ± 

2.093 

19.269 ± 

0.047 

20.228 ± 

0.138 

11.959 ± 

0.149 

2.412 ± 

0.010 

60 50 10 m 
35.766 ± 

0.523 

37.100 ± 

97.273 

98.900 ± 

2.402 

20.572 ± 

0.048 

25.934 ± 

0.229 

11.857 ± 

0.120 

2.418 ± 

0.008 

60 50 
Sites-

wide 

44.312 ± 

0.790 

39.400 ± 

116.474 

96.800 ± 

2.635 

26.408 ± 

0.086 

37.088 ± 

0.431 

11.010 ± 

0.192 

2.480 ± 

0.015 

60 75 0.2 m 
54.717 ± 

0.286 

26.867 ± 

57.892 

75.100 ± 

1.496 

15.029 ± 

0.033 

0.976 ± 

0.038 

8.169 ± 

0.129 

2.728 ± 

0.013 

60 75 1 m 
44.278 ± 

0.312 

27.800 ± 

52.822 

90.167 ± 

2.324 

17.052 ± 

0.052 

9.931 ± 

0.099 

11.485 ± 

0.204 

2.445 ± 

0.014 

60 75 2 m 
33.203 ± 

0.367 

33.300 ± 

144.067 

96.467 ± 

1.749 

19.122 ± 

0.039 

19.418 ± 

0.147 

10.375 ± 

0.118 

2.528 ± 

0.009 

60 75 10 m 
37.526 ± 

0.614 

37.033 ± 

93.211 

91.567 ± 

1.598 

20.130 ± 

0.037 

24.541 ± 

0.185 

10.147 ± 

0.139 

2.546 ± 

0.011 

60 75 
Sites-

wide 

48.984 ± 

0.609 

38.033 ± 

111.968 

87.600 ± 

1.878 

23.205 ± 

0.057 

33.234 ± 

0.289 

8.807 ± 

0.098 

2.664 ± 

0.009 

60 100 0.2 m 
54.718 ± 

0.286 

26.867 ± 

57.892 

74.600 ± 

1.427 

15.026 ± 

0.032 

0.975 ± 

0.038 

8.192 ± 

0.126 

2.725 ± 

0.013 

60 100 1 m 
44.259 ± 

0.324 

27.700 ± 

54.365 

92.200 ± 

2.039 

17.044 ± 

0.037 

9.782 ± 

0.107 

11.175 ± 

0.164 

2.467 ± 

0.012 

60 100 2 m 
33.543 ± 

0.439 

33.033 ± 

148.047 

93.100 ± 

2.244 

18.970 ± 

0.037 

19.014 ± 

0.119 

9.903 ± 

0.129 

2.566 ± 

0.011 
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60 100 10 m 
38.548 ± 

0.731 

37.567 ± 

90.660 

90.233 ± 

1.596 

19.875 ± 

0.033 

23.780 ± 

0.177 

9.044 ± 

0.106 

2.642 ± 

0.010 

60 100 
Sites-

wide 

52.271 ± 

0.422 

37.233 ± 

113.356 

82.667 ± 

1.407 

21.641 ± 

0.041 

30.365 ± 

0.190 

7.834 ± 

0.077 

2.763 ± 

0.009 
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