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Abstract 

Objectives To determine whether data captured in electronic medical records (eMR) is sufficient 

to serve as a clinical data source to make a reliable determination of ST elevation myocardial 

infarction (STEMI) and non-ST elevation myocardial infarction (NSTEMI) and to use these 

eMR derived diagnoses to validate ICD-10 codes for STEMI and NSTEMI. 

Design Retrospective validation by blind chart review of a purposive sample of patients with a 

troponin test result, ECG record, and medical note available in the eMR. 

Setting Two local health districts containing two tertiary hospitals and six referral hospitals in 

New South Wales, Australia. 

Participants N = 897 adult patients who had a hs-troponin test result indicating suspected AMI. 

Primary outcome measures Inter-rater reliability of clinical diagnosis (κ) for ST-elevated 

myocardial infarction (STEMI) and Non-ST elevated myocardial infarction (NSTEMI); and 

sensitivity, specificity, and positive predictive value (PPV) of ICD-10 codes for STEMI and 

NSTEMI. 

Results The diagnostic agreement between clinical experts was high for STEMI (κ = 0.786) but 

lower for NSTEMI (κ = 0.548). ICD-10 STEMI codes had moderate sensitivity (Se = 88±6.7), 

very high specificity (Sp = 99±0.7) and high positive predictive value (PPV = 91±6). NSTEMI 

ICD-10 codes were lower in each case (Se = 69±6.4, Sp = 96.0±1.5, PPV = 84±6). 

Conclusions The eMR held sufficient clinical data to reliably diagnose STEMI, producing high 

inter-rater agreement among our expert reviewers as well as allowing reasonably precise 

estimates of the accuracy of administrative ICD-10 codes. However the clinical detail held in the 

eMR was less sufficient to diagnose NSTEMI, indicated by a lower inter-rater agreement. Efforts 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 9, 2020. ; https://doi.org/10.1101/2020.12.08.20245720doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.08.20245720
http://creativecommons.org/licenses/by-nc-nd/4.0/


should be directed towards operationalising the clinical definition of NSTEMI and improving 

clinical record keeping to enable an accurate description of the clinical phenotype in the eMR, 

and thus improve reliability of the diagnosis of NSTEMI using these data sources. (302 words) 

 

Article Summary 

Strengths and limitations of this study 
• Expert chart review provided a robust evaluation of the reliability and sufficiency of data 

directly extracted from the EMR for the diagnosis of AMI 

• Computational interrogation and extraction of the eMR (via SPEED-EXTRACT) allowed us to 

use a wide selection for inclusion in the sample on the basis of clinical data independent of ICD-

10 code, enabling the capture of missed cases (i.e., uncoded AMI) and so determine estimates 

for the false negative rate and sensitivity 

• Results were necessarily based on the subset of patients with sufficient clinical data in the 

eMR. Inferences from this subset to the wider patient pool will be biased when the availability 

of records varies with diagnosis 

• At least two sources of uncertainty in the gold reference standard we used are 

indistinguishable: uncertainty due to poor clinical detail in the eMR, and uncertainty due to a 

weak operational definition of the diagnosis (e.g., NSTEMI). 

 

 

Introduction 

Acute myocardial infarction (AMI) is a major cause of mortality and health system burden in 

Australia and other developed countries. The major source of data on the incidence and mortality 

of AMI is provided by routinely collected data in hospital separations or admissions, using the 

World Health Organizations International Classification of Diseases codes such as the ICD-10 

(Innes et al., 1997; World Health Organization, 1992). The accuracy of such administrative 

codes is critical since research-based reporting, health policy decisions, and ultimately 

government and hospital budgets rely heavily on the sensitivity and specificity of ICD-10 codes. 
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However ICD-10 codes for AMI do not represent a clinical reference standard and have limited 

clinical validity beyond their administrative context. For instance, there are strict rules defining 

allocation of ICD-10 codes. Trained coders can only report diagnoses entered into the medical 

record by treating clinicians. These clinicians are commonly the most junior members of the 

clinical team, usually in training, and errors or omissions in diagnoses are rarely reviewed or 

corrected (Nicholls et al., 2017; Tang et al., 2017). Despite this, medical records have 

traditionally been the clinical reference standard against which ICD-10 codes are validated 

[Welk and Kwong (2017); Wiegersma et al. (2020);]. Furthermore as more than one recent 

review has pointed out (McCormick et al., 2014; Metcalfe et al., 2012; Rubbo et al., 2015), for 

practical reasons most validation studies are restricted to cases with an ICD-10 code for AMI. As 

a result missed AMI cases are not reviewed, and so the results do not/cannot provide an estimate 

of the omission rate or false negative rate for AMI in ICD-10 coding. Due to these limitations of 

the administrative record, there is growing interest in using clinical data sources to generate a 

comprehensive diagnostic record (Nissen et al., 2019; Rubbo et al., 2015; Spratt et al., 2017). 

The primary repository of clinical data across an increasing number of healthcare services in 

Australia (and worldwide) is the electronic medical record (eMR). However the primary data 

contained in clinical records in the eMR are relatively inaccessible to clinicians, reporting 

agencies and researchers. For instance, persistent electrocardiographic (ECG) ST-segment 

elevation is a defining characteristic of STEMI-type AMI, but one recent meta-analysis of 33 

validation studies found none that validated against ECG records (Rubbo et al., 2015). A second 

type of AMI is non-ST segment elevation myocardial infarction (NSTEMI), whose diagnosis 

depends upon elevation of cardiac markers documenting myocardial injury, such as troponin test 

results. The same meta-analysis found very few validation studies have used this information to 
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validate NSTEMI ICD-10 codes. Thus an outstanding question is whether the eMR contains 

sufficient clinical detail in an accessible form to diagnose STEMI and NSTEMI. 

We have recently developed and reported a new data extraction platform that interrogates a wide 

range of clinical sources within the eMR called SPEED-EXTRACT (Tam et al., 2020). As such, 

it identifies and provides bulk access to episodes-of-care that may potentially represent an AMI 

diagnosis. The specific sources of clinical data were: the presence of AMI-related symptoms as 

free-text in 1) the “Reason-for-visit” field, or 2) the presenting information from emergency 

department (ED) triage; 3) an order or result recorded in the eMR for a high-sensitivity cardiac 

troponin test (hs-troponin), 12-lead ECG, coronary angiogram, or other tests relevant to AMI; 4) 

placement of the patient on a cardiac pathway care plan; 5) a scanned image from a 12-lead 

ECG; 6) or an ICD-10 code recorded starting with I21-I25 (for a complete description of the 

clinical criteria see Tam et al., 2020). Consequently, SPEED-EXTRACT allows us to determine 

whether the eMR contains sufficient clinical detail to diagnose STEMI and NSTEMI. 

The aims of this study were to 1) determine whether the eMR provided sufficient data to reliably 

diagnose STEMI and NSTEMI and 2) use these eMR derived diagnosis to validate ICD-10 codes 

for STEMI and NSTEMI. If the eMR contains insufficient clinical detail then expert chart review 

will not provide a primary diagnosis for each presentation. Conversely if the eMR is sufficient 

then we expect to see a high rate of primary diagnosis for each presentation, and importantly, a 

high level of inter-rater agreement for each diagnosis. If these criteria are met, then these 

extracted data can serve to validate ICD-10 codes for STEMI and NSTEMI with precise 

estimates of sensitivity and specificity (i.e., within ±5 percent). To our knowledge, this is one of 

the first studies to validate AMI against clinical data extracted directly from the eMR. 
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Method 

Ethics statement 

Approval for SPEED-EXTRACT and this project was obtained from Northern Sydney Local 

Health District (NSLHD) Human Research Ethics Committee (HREC), reference: 

HREC/17/HAWKE/192 

Study Population 

The cohort selection process is shown in Figure 1. 

Figure 1 

Figure 1. Selection of the episodes of care from the three-month eMR data extract. Note: not to 

scale 
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The SPEED-EXTRACT project represents an extract of 25,984 episodes-of-care from the eMR 

of Northern Sydney Local Health District and Central Coast Local Health District between April 

1st to June 30th 2017. Geographically this represents two tertiary hospitals with 24-hour 

percutaneous coronary intervention (PCI)-capability and six referral hospitals in New South 

Wales, Australia. The study population for this report were adult patients within SPEED-

EXTRACT who had a hs-troponin test result indicating a suspected AMI on the basis of the 

Universal Definition of Myocardial Infarction (UDMI) (Thygesen et al., 2019, 2012). As per the 

UDMI, for inclusion in the suspected AMI cohort the troponin levels of each episode had to meet 

the following criteria: A test result above the 99th percentile of the normal reference group 

according to the UDMI, and a change between two consecutive hs-troponin measurements of at 

least 30 percent. To capture AMI in situations in where only one troponin level was measured (a 

common situation encountered in clinical practice), we implemented an additional condition: A 

single test result greater than 1000ng/L. This resulted in N = 1,144 episodes-of-care in the study 

population with suspected AMI. Note that our study population was selected independently from 

the primary ICD-10 code to be validated, and so it potentially captured AMI cases which were 

otherwise missed by the ICD-10 code. It allowed us to provide an estimate of sensitivity, and 

specificity, which are both critical for valid inference when reporting AMI incidence (or 

prevalence). 

Study Design and Sampling 

In addition to at least one hs-troponin test result, validation required at least one ECG recorded 

during the episode and a medical note (e.g., either the first medical note or a discharge letter, or 

both). Thus a further subset of episodes from the suspected AMI cohort, which met the troponin 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 9, 2020. ; https://doi.org/10.1101/2020.12.08.20245720doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.08.20245720
http://creativecommons.org/licenses/by-nc-nd/4.0/


criteria (above) as well as our stringent clinical record requirements, were taken for validation; 

resulting in n = 897 episodes-of-care in the final validation sample. 

As shown in Figure 1, the validated sample represents a large fraction of the suspected AMI 

cohort (78 percent, 897 / 1,144). Power analyses (see Supplementary material) indicated this 

strategy would produce precise estimates of the diagnostic performance of ICD-10 codes in the 

suspected AMI cohort, within ±5 percent. 

Chart review, adjudication, and validation 

The n = 897 cases selected for validation were divided evenly between four cardiologists (SR, 

RH, CY, DY), such that 40 cases with similar class composition of the complete validation 

dataset were commonly shared among all raters to determine inter-rater reliability. This resulted 

in each rater reviewing approximately 233 cases. For each case, the reviewer was provided with 

up to the first four ECGs for the episode-of-care, the first five medical progress notes, pathology 

results and the angiogram report and discharge summary if available. Patient name, medical 

record number, and any administrative ICD-10 codes were redacted, in order to ensure blind 

review (and privacy). On the basis of each review, the cardiologist provided a diagnostic class 

from four options: STEMI, NSTEMI, unstable angina, or “other”. Importantly for our purposes, 

they were also required to indicate if a diagnosis could not be made if “other” was selected. Due 

to the low numbers of unstable angina (n = 10, or 1 percent of the sample), the unstable angina 

group was collapsed into “other” for the analysis (the slightly larger group will be referred to as 

“Other”) resulting in three ultimate diagnostic classes: STEMI, NSTEMI and Other. 

Inter-rater agreement among the four cardiologists was determined by the percentage of cases (n 

= 40) for which there was agreement among the three diagnostic classes (STEMI, NSTEMI and 

Other). To adjust for the chance level of agreement among our four cardiologists, the Fleiss’ 
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kappa was also calculated — this can be interpreted as equivalent to Cohen’s kappa for more 

than two raters (where agreement due to chance � = 0 and perfect agreement � = 1). 

Disagreements were adjudicated by a fifth senior cardiologist (DB) and the final diagnosis was 

compared to the Australian Modification of ICD-10, which provides distinct codes for STEMI 

(I21.0, I21.1, I21.2, I21.3) and NSTEMI (I21.4) (National Centre for Classification in Health 

(Australia), 2004). 

To assess diagnostic performance, we determined sensitivity, specificity and positive predictive 

values for each of the diagnostic classes. In-sample results were calculated for the validation 

sample (n = 897) using an objective Bayesian procedure, drawing k = 10,000 samples from a 

beta distribution for each parameter with uniform priors (Mossman and Berger, 2001). The mean 

and 95% credible interval of the posterior distribution is presented for each parameter. To 

extrapolate our results to the larger suspected AMI cohort (N = 1,144), we also simulated the 

experiment design with fixed test characteristics (e.g., disease prevalence in the larger sample), 

and the disease process was a random binomial draw accordingly. In this manner, diagnostic 

performance was evaluated over the wider out-of-sample distribution, from which we calculated 

mean and 95% CI. Using this method, the half-width of the credible interval represents the 

obtained uncertainty in our estimates (i.e., precision), rather than the expected uncertainty at a 

theoretical limit (as provided by frequentist estimates). Thus we can appropriately summarize the 

diagnostic performance (and its uncertainty/precision) in the validation cohort as well as the 

wider suspected AMI cohort. 
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Results 

Demographics and incidence 

The demographic characteristics of the validation sample are shown in Table 1 below. 

Table 1. Patient characteristics in the validation cohort 

Demographics STEMI % NSTEMI % Other % 

N 92 10.3 203 22.6 602 67.1 

Primary ICD-10 code 89 9.9 168 18.7 640 71.3 

Age (Mean ±SD) 66 ±14 77 ±14 75 ±16 

Female 24 24.7 121 45.0 277 52.2 

 

The overall proportion of AMI in the validation sample was 32.9 percent (i.e., STEMI + 

NSTEMI). STEMI was 10.3 percent of the validation sample, while the ICD-10 coded STEMI 

was 9.9 percent. The ratio of NSTEMI to STEMI was approximately 2:1, consistent with 

previous cohorts (Chew et al., 2016; Nedkoff et al., 2017). 

The remaining 247 episodes (1,144 - 897, i.e., 21.9%) from the suspected AMI cohort could not 

be validated due to missing ECG records or medical notes in the eMR. Of these missing cases, 

the distribution of missing cases was very similar across diagnostic classes: STEMI = 24/121 

(19.8 percent); NSTEMI = 75/344 (21.8 percent); and Other = 148/679 (21.8 percent). The 

evenly distributed missingness across diagnostic classes indicated no diagnosis was more likely 

to be missing records than the other diagnoses, consistent with the MAR (missing-at-random) 

assumption - an important prerequisite for valid inference in the out-of-sample estimates. 
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Inter-Rater Agreement 

Among the three diagnostic classes: STEMI, NSTEMI, and Other (where most diagnoses are 

“Other”), the overall inter-rater agreement was 67.5 percent, which represents the percentage of 

cases from N = 40 for which there is agreement among the four clinician reviewers. The Fleiss’ 

� = 0.66 (p < .001), which is a moderate level of agreement among all three diagnostic classes 

after adjusting for chance (i.e., chance = 0). The � within each STEMI and NSTEMI subtype 

indicated that among the four cardiologists there were high levels agreement for the STEMI 

diagnosis (� = 0.79, p < .001), and moderate levels of agreement for the NSTEMI diagnosis (� 

= 0.55, p < .001). 

 

Overall Classification Results 

Once the disagreements (n = 9) were adjudicated by our fifth expert (DB), the classification 

results for all cases in the validation sample were calculated and are shown in Table 2 below: 

Table 2. ICD-10 (row) by clinical diagnosis (column) 

  

STEMI NSTEMI Other 

ICD-10 

STEMI 81 4 4 

NSTEMI 0 140 28 

Other 11 59 570 

 

Table 2 is a confusion matrix which summarizes the types of errors by ICD-10 that occurred in 

each diagnostic class. The majority of ICD-10 STEMIs were confirmed by clinical review (n = 

81), although a small number of STEMI patients were miscoded as “Other” (n = 11); and none 

were miscoded as NSTEMI. Likewise, the majority of ICD-10 NSTEMIs were confirmed by 
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clinical review (n = 140), and among the errors most were miscoded as “Other” (n = 59) and 

very few miscoded as STEMI (n = 4). Among the “Other” ICD-10 codes, most of the errors were 

more likely to be miscoded as NSTEMI (n = 28) than STEMI (n = 4). Thus, the pattern of errors 

shown in Table 2 indicate NSTEMI and “Other” were more difficult to distinguish from each 

other than STEMI. 

There were no cases indicated as unable to diagnose by our clinical experts, confirming that 

within our selected validation sample there was sufficient clinical detail to provide an AMI 

diagnosis. 

Diagnostic performance of ICD-10 coding 

The detailed in-sample diagnostic performance of the ICD-10 STEMI and NSTEMI coding 

among our n = 897 cases in the validation sample is shown in Table 3 below. For comparison 

with previous literature, we also report the result of collapsing both STEMI and NSTEMI into a 

single AMI class. 

Table 3. In-sample estimates ±95% CI half-widths 

ICD-10 sensitivity +/- specificity +/- ppv +/- 

STEMI 88.0 6.6 99.0 0.7 91.0 5.9 

NSTEMI 69.0 6.4 96.0 1.5 83.3 5.7 

all AMI 76.3 4.9 94.7 1.8 87.5 4.0 

 

Table 3 shows the in-sample estimates of ICD-10 sensitivity, specificity and PPV. Generally, the 

specificity estimates were high (greater than 95 percent) with STEMI the highest, and with low 

uncertainty in each case (less than two percent in the +/- column) indicating a high level of 

precision. By comparison, the in-sample sensitivity estimates were lower (STEMI was highest at 
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88 percent) with more uncertainty (greater than 5 percent). The lowest estimate in Table 3 was 

NSTEMI sensitivity at 69 percent. 

Only after collapsing the diagnostic groups into a single class (all AMI) did we obtain the 

expected level of precision (5 percent or less uncertainty) across all metrics (sensitivity, 

specificity, and PPV). 

Note also that the low levels of ICD-10 sensitivity correspond to complementary high false 

negative rates (e.g., FNRSTEMI = 12 percent), which represent the proportion of cases missed by 

ICD-10 coding. 

Out-of-sample diagnostic performance among the suspected AMI cohort (N = 1,144) (of which 

our validation sample represents 78 percent) is shown in Table 4 below. 

Table 4. Out-of-sample estimates (±95% CI half-widths) 

ICD-10 sensitivity +/- specificity +/- ppv +/- 

STEMI 88.1 6.4 99.0 0.7 91.0 6.0 

NSTEMI 68.9 6.5 96.0 1.4 83.3 5.9 

all AMI 76.3 4.8 94.7 1.8 87.6 4.5 

 

The out-of-sample estimates for the target_suspected AMI cohort were very similar to the in-

sample estimates from the validation cohort, with slight variations in precision of the estimates. 

Some variation (i.e., increased uncertainty) is expected since we are extrapolating from our 

validation sample, which represents 78 percent (897/114) of the suspected AMI cohort. 

The complete posterior distribution of each parameter is shown in Figure 2. 
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Figure 2. Out-of-sample distributions (density) 

 

For each diagnostic performance metric, the mass of the STEMI distribution (dark grey) almost 

never overlaps the mass of the NSTEMI distribution (white). Thus, Figure 2 makes clear that the 

diagnostic performance of ICD-10 STEMI is almost certainly greater than ICD-10 NSTEMI for 

specificity, sensitivity and PPV. 

 

e 
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Discussion 

Principal findings 

The incidence and outcomes following AMI are reportable metrics for governments and health 

services throughout the developed world, where they are used to evaluate performance of a 

healthcare system. However administrative codes for AMI (e.g., ICD-10) are an imperfect 

representation of the true diagnoses, and better methods are required. We used the data sources 

in SPEED-EXTRACT to determine whether the eMR contains sufficient clinical detail to 

diagnose the subcategories of AMI. Expert chart review using these data sources was able to 

reliably diagnose STEMI, indicated by high inter-rater agreement among our clinical experts, 

however the clincal detail held in the eMR was less sufficient to reliably diagnose NSTEMI, 

which had lower inter-rater agreement. Furthermore, using these eMR determined diagnoses as 

gold standards, we found ICD-10 codes identified STEMI with acceptable sensitivity and 

excellent specificity, but were less sensitive and marginally less specific for the diagnosis of 

NSTEMI. 

Among the N = 1,144 suspected AMI cases, 78 percent (n = 897) had the clinical records in the 

eMR required for diagnosis. Validation demonstrated that among the 78 percent of cases with 

available records, the precision of our in-sample estimates of specificity and PPV were within 

our acceptable limit (±5%), however the precision of our sensitivity estimates were either on the 

boundary or exceeding the ±5% limit. Furthermore, the sensitivity, specificity, and PPV of the 

out-of-sample estimates of ICD-10, and their precision, did not greatly change when 

extrapolating to the entire cohort of suspected AMI cases (N = 1,144). This represents some 
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evidence that clinical data sources within the eMR are sufficient to monitor and track AMI in a 

large proportion of the target population, and inferences can be made to the wider population 

they represent without loss of precision. Finally, the validation of ICD-10 codes demonstrated 

that up to a quarter of cases may be missed in administrative records. In particular, we found a 12 

percent false negative rate for STEMI and a 31 percent false negative rate for NSTEMI. The high 

proportion of missed cases among ICD-10 codes adds weight to calls from other researchers to 

use routinely collected health care data for research and reporting, rather than rely on 

administrative data alone (Nissen et al., 2019; Welk and Kwong, 2017; Xu et al., 2020). 

Strengths and weaknesses 

Previous Australian validation studies of administrative AMI codes (ICD-9) have reported 

sensitivity estimates in the range of 79-86 percent (Boyle and Dobson, 1995; Dobson et al., 

1988), which is higher than the range we observed here (All AMI Se: 76.3±4.9 percent, see 

Table 3 & 4). However a relative strength of our study was validation by expert chart review of 

ECG records and pathology test results (e.g., hs-troponin) and medical notes, rather than the 

simple confirmation of a clinical diagnosis recorded in medical notes. Our independent 

validation against the original clinical sources is closer to the accepted gold standard, however it 

is rarely performed due to the historical inaccessibility of the complete medical record in the 

eMR (Rubbo et al., 2015). SPEED-EXTRACT shows the feasibility of using clinical sources 

within the eMR and these standards could be utilized in an automated pipeline to improve 

accessibility and accuracy of reportable outcomes such as AMI. 

Our results were necessarily based on the subset of patients in our suspected AMI cohort with 

sufficient clinical data to make a diagnosis (897 / 1,144). Inferences from this subset to the wider 

suspected AMI cohort will be biased when the availability of records varies with diagnosis. For 
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example, STEMI patients may be more likely than NSTEMI patients to have an ECG record in 

wider cohorts of suspected AMI patients because they were selected for ECG to obtain a 

diagnosis. This would result in overestimating the incidence of STEMI among the wider target 

cohort. Note the proportion of missing records among the AMI sub-types in our wider target 

cohort was approximately equivalent, and did not substantially vary with diagnosis, so we don’t 

think this was a factor in the present study. 

Implications 

The 4th UDMI (Thygesen et al., 2019, 2012) refers to a change in cardiac troponin levels with at 

least one measurement in the 99th percentile to diagnose AMI. However the diagnostic 

agreement among our clinical experts was high for STEMI (κ = 0.786) but lower for NSTEMI (κ 

= 0.548). While both these agreement estimates were greater than chance (where κ = 0), the 

difference suggests there is either insufficient clinical detail in the eMR, or in the operational 

definition of the UDMI [French and White (2004); chapman2020], to reliably diagnose NSTEMI 

with the same level of confidence as STEMI. The current results do not let us distinguish 

between these two sources of uncertainty. NSTEMI, unlike STEMI, is diagnosed primarily on 

hs-troponin results. The 4th UDMI refers to a change in cardiac troponin levels with at least one 

measurement in the 99th percentile. However elevated troponin occurs in many conditions other 

than myocardial infarction, including in critical illnesses such as sepsis, or after chemotherapy or 

some renal conditions. It is for these reasons the UDMI proposes additional criteria for the 

classification of AMI based on pathogenesis (Alpert and Thygesen, 2016; Thygesen et al., 2019). 

Our clinical reference group also developed additional critiera to define our suspected AMI 

cohort, including a change in troponin greater than 30 percent or a single troponin measurement 

greater than 1000ng/L. However these criteria were still insufficient to provide clarity in the 
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diagnosis of NSTEMI and unambiguously distinguish it from other forms of myocardial injury 

or “troponinemia”, as evidenced by the high proportion of cases without myocardial infarct 

captured in our suspected AMI sample (i.e., up to 70 percent, see also DeFilippis et al. (2019); 

Gronski et al. (2012)). One implication we take from this is that the operational definition of 

NSTEMI needs further development to provide similar levels of diagnostic confidence as 

STEMI. The second implication is that clinical record-keeping in the eMR must be improved to 

facilite accurate diagnoses for some conditions such as NSTEMI. 

Future research 

The eMR is a viable source of clinical data for diagnosis of well-defined clinical conditions, such 

as STEMI. Clinical test results, procedures and orders stored in the eMR can be used to define 

and select a clinical cohort at scale, and thus reduce the reliance on administrative codes and 

minimize the chance of inadvertently excluding missed cases. However the application to 

clinical conditions which depend heavily on the clinical context in which they occur (e.g., 

NSTEMI) is less clear. Success in such cases will depend upon how well the clinical context can 

be ascertained using the information already in the eMR. 
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