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Abstract—Goal: The COVID-19 pandemic has emerged as the
most severe public health crisis in over a century. As of January
2021, there are more than 100 million cases and 2.1 million
deaths. For informed decision making, reliable statistical data
and capable simulation tools are needed. Our goal is to develop
an epidemic simulator that can model the effects of random
population testing and contact tracing. Methods: Our simulator
models individuals as particles with the position, velocity, and
epidemic status states on a 2D map and runs an SEIR epidemic
model with contact tracing and testing modules. The simulator is
available on GitHub under the MIT license. Results: The results
show that the synergistic use of contact tracing and massive testing
is effective in suppressing the epidemic (the number of deaths
was reduced by 72%). Conclusions: The Particle-based COVID-
19 simulator enables the modeling of intervention measures,
random testing, and contact tracing, for epidemic mitigation and
suppression.

Index Terms—Contact tracing, COVID-19, epidemic simulator,
particle-based simulation, random testing.

Impact  Statement—Our  particle-based  epidemic
simulator, calibrated with COVID-19 data, models
each individual as a unique particle with a location,
velocity, and epidemic state, enabling the consideration of
contact tracing and testing measures.

I. INTRODUCTION

OVID-19 has emerged as the most threatening health

care crisis in over a century, spreading rapidly throughout
the world. The first cases were identified in Wuhan, China
(December 2019), and within months the World Health Or-
ganization declared the disease to be a pandemic (March 11,
2020) [1]. The propagation of the virus has increased rapidly
in spite of unprecedented government interventions intended to
suppress and mitigate the spread; as of January 26, 2021, more
than 100.3 million cases with 2.15 million deaths have been
reported [2]. However, the actual number of cases is likely,
significantly higher because of limited testing and the high
percentage of asymptomatic cases [3]].

The propagation was accelerated by multiple convergent
factors, led first by the fact that it is a novel coronavirus
to which neither is there existing resistance amongst the
population, nor an effective vaccine against. Different vaccines
against COVID-19 are being developed at a historic rate, but
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their effectiveness and safety are still an open question [4].
Until a vaccine that can be distributed on a massive scale
emerges, the only recourse to retard the spread of the disease
is what is known as non-pharmaceutical interventions (NPIs),
such as quarantines, travel restrictions [3f], online education
[6]], and large-scale virus testing with comprehensive contact
tracing of infected individuals [7], [8].

The lockdown policies slow down the propagation of the
disease, but they also inflict substantial social and economic
damage [9]], [[10]], and, when done indiscriminately, the negative
effects are non-trivial; interdiction measures should be enacted
in ways that mitigate disease spread while minimizing negative
effects. One way to achieve a more nuanced approach, with
less collateral damage, is the use of computer models and
simulations.

One of the earliest epidemic models, Susceptible-Infected-
Recovered (SIR) [11]], divides the population into three com-
partments. In the first compartment, susceptible (S) individuals
are vulnerable but not infected. In the second compartment,
infected (I) individuals are infected and capable of transmitting
the disease to the susceptible individuals. The last compart-
ment, recovered (R) contains individuals who have overcome
the disease. The recovered individuals are assumed to have
acquired some level of immunity to the disease, thus they have
a lower probability of reinfection, compared to the susceptible
individuals.

The compartmental models have been widely used in model-
ing the spread of COVID-19 [12[|-[14]. Despite their popular-
ity, the compartmental models have several limitations because
of the simplifying assumptions that do not represent the actual
viral propagation. For instance, the compartmental models do
not consider each individual separately. Therefore, the mobility
and current epidemic state of each individual, the moments
of getting infected and recovered are omitted. As a result,
the contact tracing and testing policies at the individual level
cannot be implemented.

A number of works on epidemic simulation at the individual
level can be found in the literature. For instance, a particle-
modeling approach based on the Monte Carlo algorithm was
developed to simulate the spread of COVID-19 [15]. The
results show that periodic lockdown, and strict social distancing
might help to keep the infection rate under control. A stochastic
agent-based model was employed for simulating COVID-19 in
France [[16]. An SEIR agent-based model was implemented
to analyze different social distancing interventions in [[17]. An
agent-based simulation was implemented by Bicher et al. [18]
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to estimate the effectiveness of contact tracing policies.

In this work, we have developed a particle-based simulator
which models each individual as a unique particle with a
location, velocity, and epidemic state. We provide a demo video
in the supplementary materials that illustrates the particles’
motion, transitions between epidemic states, and effects of
the contact tracing and testing modules. To the best of our
knowledge, it is the first particle-based SEIR model with
contact tracing and testing, that was calibrated with actual
COVID-19 data. The particles move randomly on a square 2D
map, and become infected if they enter the proximity of an
infectious particle closer than a predefined physical distance.
The contact tracing module is based on the use of a mobile
app and stores the list of contacts for each particle such that
if a particle is determined to be infected, then all particles
on the list are quarantined or isolated. The testing module
simulates the massive random testing of the population. The
module considers test sensitivity and specificity [19]]. This way,
the simulator is able to yield different scenarios and mitigation
policies.

The rest of the paper is organized as follows: in Section [II}
we introduce our method of implementing the particle simula-
tor. We calibrate the particle simulator using real COVID-19
data in Section Afterward, we simulate scenarios, using
different contact tracing ratios and the daily number of tests
per thousand people. In Section we discuss the simulation
results, and the Section [V] concludes our work.

II. MATERIALS AND METHODS
A. Particle Model

In this work, each individual is considered as a particle p
and modeled as
p= [x,v,e,t,a,ts] 1)

where x € R? is the position of a particle on the map; v € R? is
the particle velocity; e is the epidemic state of the particle (i.e.,
susceptible, exposed, infected, recovered, dead, quarantined,
isolated, or severely infected); ¢ is the time of the particle
in the current epidemic state, and it is incremented by the
sampling time At at each iteration of the simulation; a denotes
the availability of the contact tracing application; ts is the
COVID-19 test result of the particle.

The current position and velocity of n particles are stored
in matrices X € R"™? and V € R"™?, and constrained by —1 <
Xij £ 1, =Viax £ Vij < Vipax for all particles i = 1, ..., n and
two dimensions j = 1, 2. The initial values are set randomly
by taking into account the imposed constraints. The velocity
matrix V € R™2 ig updated at each iteration x (1 < x <T/Ar)
in the simulation as

Vi = Ve +A(R¢—0.5) )

where R, € R™? is a matrix of uniformly distributed random
numbers in the interval [0, 1], and 2 is a momentum that
allows to control velocity change. Velocities are reset to zero
if they exceed the maximum allowed speed v;,4x. In addition,
dead, quarantined, isolated, and severely infected (hospitalized)
particles are considered to be stationary (i.e., their velocities

are set to zero). The R, is normalized to the [-0.5, 0.5] range.
Otherwise, the velocity keeps increasing until the maximum
velocity v,.x is reached. Also, it is important to note that
the maximum allowed speed of particles v,,4x impacts the
rate of the epidemic spread among the population. In order to
explore this relation, we have provided simulation results for
different values of the maximum velocity in the supplementary
materials.
Using (2), the position matrix X € R"*? is updated as

X = Xy—1+ VAt
o {xi,-, if il < 1 (3)
L] =
—Xij»

otherwise
such that if particles reach one of the borders of the map, they
appear on the opposite side. This is necessary to keep all the
particles inside the map.

B. PFarticle-Based SEIR Simulator

The particle-based simulator consists of four superstates:
Susceptible (S%), Exposed (E*), Infected (I¥), and Recovered
(R®). Transitions between states are shown in Fig. The
Exposed superstate (E°) is composed of Exposed (E) and
Quarantined (Q) states. The Quarantined (Q) state consists of
True Quarantined (TQ) and False Quarantined (FQ) substates.
Similarly, the Infected superstate (I*) consists of Infected (I),
Isolated (Iso), and Severely Infected (SI) states. The Isolated
(Iso) state has two substates: True Isolated (TIso) and False
Isolated (FIso). To avoid confusions between the superstates
(e.g., E%) and states (e.g., E), we will further refer to the states
only. Also, when particles transition from the current superstate
to another, their time ¢ in the current superstate is reset to zero
and starts over in the new superstate. The time is not restarted
if transitions occur between states of the same superstate.

At the beginning of the simulation, we randomly assign
a small number of n, particles to the Exposed state, while
other n—n, particles are in the Susceptible state. The list and
description of simulation parameters are given in Table [I] At
each iteration, susceptible particles become exposed when they
come into contact with contagious particles (I, E, TQ, TIso,
and SI). The contact occurs when the distance between the
particles becomes less than the contact threshold x;,. The
disease transmission probability for an infected particle is equal
to one while for other contagious particles are defined by the
parameters €.y, for E, €, for TQ and TIso, and €., for
SI (in the range from O to 1). The exposed particles transition
to the Infected state after t.., days. Then, some portion of
the infected particles become severely infected according to
the rate of daily transition to Severely Infected, sir, while the
others move to the Recovered state after ;,¢ days.

The testing module randomly tests particles in the Sus-
ceptible, Exposed, and Infected states at each iteration of
the simulation and changes their test status ts accordingly.
The number of daily tests per thousand people is set by the
parameter 6. The test sensitivity and specificity are defined by
parameters sn and sp, respectively. The exposed and infected
particles that were correctly detected by the test are sent to the
True Quarantined and True Isolated states, respectively. The
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Fig. 1. The statechart of the particle-based SEIR epidemic simulator.

TABLE L. List of simulation parameters and their descriptions.

Parameter | Description
n Total number of particles
ne Initial number of exposed particles
T Simulation length in days
Xthr Minimum distance to transmit the disease
Vinax Maximum allowed speed of particles
A Speed gain
sir Daily rate of Infected/Isolated particles getting Severely In-
fected
Ymor Severely Infected to Dead transition probability
€oxp Transmission probability of Exposed
€qua Transmission probability of Quarantined
Esev Transmission probability of Severely Infected
toxp Exposure period in days
tinf Infection period in days
B Ratio of the population using a contact tracing app
[4 Number of daily tests per thousand people
sn Sensitivity of tests
sp Specificity of tests

susceptible particles that were tested false positive are sent
to the False Isolated state. The infected particles in the True
Isolated state transition to the Severely Infected state according
to the sir rate, while the other particles in this state recover
after t;,r days. The False Isolated particles do not transition to
the Severely Infected state (since they are actually not infected)
and, therefore, transition back to the Susceptible state after #;, ¢
days. Particles in the Severely Infected state die according to
the mortality rate y,,,,. The rest transfer to the Recovered state.

The proportion of the population using a contact tracing app
is defined by the parameter 5. With the help of the app, the
contact tracing module stores a list of contacted particles for
each particle and the corresponding contact instant. If a certain
particle is determined to be infected (i.e., the test result is

positive), then its list of contacted particles in the last ;¢
days is extracted and tested. If a contact of the true positive
tested particle is in the Exposed state, then the contact is sent
to the True Quarantined state. If the contact is in the Infected
state, then it is sent to the True Isolated state. The contacts
of the false positive tested particle can only be susceptible
particles. Therefore, they are sent to the False Quarantined
state. Then, particles in the True Quarantined state move to
the True Isolated state after 7., days. Particles in the False
Quarantined state go back to the Susceptible state. A detailed
explanation, in the form of equations, for the epidemic state
transitions can be found in the supplementary materials.

III. RESULTS
A. Particle-Based SEIR Simulation of Lecco

In this section, we simulate the epidemic in the province of
Lecco, Italy. Lecco is located in the Lombardy region, which
was the epicenter of the COVID-19 outbreak in Italy. We chose
this province, because the epidemic timeline of Lombardy is
well-established, and official statistics of daily epidemic data
for the region and its provinces have been shared with public
since February 24, 2020 [20]. The timeline of important events
and NPIs listed in Table [l was used to calibrate the model
parameters and imitate the real pattern of epidemic spread.

The total number of particles n was set to 337,000 (the
population of Lecco). The other parameters of the simulation
are provided in Table [l According to the seroprevalence
survey results presented on August 3, 2020 by the Italian
Ministry of Health []2;1'[], it was estimated that 1,482,000 people
had encountered the virus in Italy, which is six times greater
than the officially registered cases. Therefore, we assumed
that the actual number of total cases in Lecco are also six
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TABLE II. Major events and NPIs in Lecco province during the
COVID-19 epidemic.

Event
Start of the simulation.
The COVID-19 data repository
was launched [20].
Lockdown in the province.
Bars, restaurants are closed.
Factories and all nonessential
productions are closed.
Unrestricted travel is allowed.
End of the simulation.

Day Date
0 1/1/2020
55 | 24/2/2020

71 | 11/3/2020

82 | 22/3/2020

154
200

3/6/2020
19/7/2020

times greater than the registered cases. Because the daily
deaths for the provinces are not available in [20]], we used
a proportional amount from the total deaths officially reported
for the Lombardy region.

We started the simulation on January 1, 2020, based on the
results in [22], with initially 10 exposed particles. The length of
the simulation was set to 200 days. Regarding the parameters
of the testing module, there were no official information on the
used test kits and on the number of daily tests per thousand
people for Lecco. Therefore, we estimated the daily tests per
thousand people 6 at 0.5 for the considered period in the
simulation, based on the testing data for the whole Italy [23]].
For the test sensitivity sn and specificity sp, we used the values
of most commonly manufactured tests kits [24]. In order to
imitate the lock-down in Lecco, we decreased the maximum
speed of particles v,,5x and A according to the timeline of
events, and when the lock-down was lifted on June 3, 2020,
we returned them to their initial values, assuming that people
started traveling as usual. However, the contact threshold x;,,
was decreased slightly considering that the population started
wearing masks and keeping physical distancing.

The averaged results of ten simulations are shown in Fig.
] with the standard deviations for the total cases and deaths.
According to the reported data for the province of Lecco [20],
new daily cases increased significantly starting from the middle
of March and remained high until the middle of April. This
is also observed in our simulation results. Thus, we conclude
that our simulator predicted the peak of the epidemic correctly.
Also, in the simulation results, the average number of total
cases were approximately five times higher than the reported
numbers, which is similar to the results of the seroprevalence
test for the whole Italy.

B. Simulations with Contact Tracing and Testing Modules

In this section, we analyze the impact of randomly testing the
population and tracing contacts of positive tested individuals

TABLE III. Simulation Parameters for Lecco.

Vmax (Days) A (Days) Xenr (Days) €exp | €qua | Esev | lexp
0.02 (0-55) 0.002 (0-55)
0.012 [55-71) | 0.0012 [55-71) 8.6e-5 (0-154)
0.006 [71-82) 0.0006 [71-82) | 6.9e-5 [154-200) | 0.7 0.3 0.3 5
0.004 [82-154) | 0.0004 [82-154)
0.02 [154-200) | 0.002 [154-200)
ing sir Yoo B 8 | o |
14 0.02 0.15 0 0.5 | 0.95 | 0.99

in reducing the spread of the epidemic. First, we considered
the case of massive testing the population without the contact
tracing policy. Thus, we set 8 to zero and conducted simula-
tions for different values of 6 = {0,5, 10, 15,20}. The results of
the simulations are shown in the top row of Fig. [3] According
to the results in Figs. Bp and 3p, the number of particles in the
Isolated and Quarantined states increases with the increased
value of 6. Consequently, the number of infected particles, at
the peak of the epidemic, reduced gradually from 4,925 (6 =0)
to 3,633 (8 =5), 2,926 (6 =10), 2,428 (0 = 15), and to 1,841
(6 =20) (see Fig. Bp).

Similarly, we examined the effect of the contact tracing
policy without the randomized testing of the population. We
set 8 to zero and simulated with different values of 8 =
{0.0,0.25,0.5,0.75,1.0}. In this case, we traced particles that
were in contact only with severely infected particles (i.e.,
hospitalized) because infected and exposed particles can be
found by randomly testing the population. The results of the
simulations are shown in the bottom row of Fig. 3] According
to Figs. Bl and 3, the number of particles in the Isolated and
Quarantined states increased with the increased value of 8. As
a result, the number of infected particles at the peak of the
epidemic, decreased from 4,925 (8 =0) to 4,487 (8 =0.25),
4,019 (8 =0.5), 3,030 (8=0.75), and to 2,273 (8 =1.0) (see
Fig. B3p.

Next, we considered the utilization of concurrent contact
tracing and massive testing. The considered numbers of daily
tests per thousand people and the contact tracing ratios were
0 ={0,10,20} and 8 ={0,0.5, 1.0}, respectively. The results in
Figs. @ and[p for 6 = 10 show that the enabled contact tracing
module increases the number of isolated and quarantined
particles. However, for 6 = 20, the numbers decrease with the
increased contact tracing ratios. The reason is that a higher
number of tests allow to find infected and exposed particles at
the beginning of the epidemic faster, and additional contact
tracing accelerates this even further. Therefore, at the peak
of the epidemic, we get a lower number of infected and
exposed particles, and, as a result, lower number of isolated and
quarantined particles. Nevertheless, in both cases, the contact
tracing module decreased the number of infected and exposed
particles further, as shown in Figs. @t and [4d. The number of
infected particles, at the peak of the epidemic, dropped from
2,926 (0 =10, p=0) to 2,360 (8 =10, g=0.5) and 2,071
(0 =10, B =1.0). The effect became more pronounced with
increased daily testing. Specifically, the number of infected
particles reduced from 1,841 (6 =20, 8 =0) to 1,547 (8 =20,
£ =0.5) and to 1,004 (6 =20, §=1.0).

IV. DISCUSSION

The simulation results showed that random testing is more
efficient compared to the contact tracing module in reducing
the number of infected particles when they are used separately.
When we use contact tracing without random testing, we trace
the contacts of only severely infected particles. The exposed
and infected particles continue infecting susceptible particles
until they transition to the Severely Infected state. Therefore,
the contact tracing module has a limited effect alone. Also, if
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Fig. 2. The averaged results of ten simulations for the province of Lecco. The upper plot shows the states of the epidemic simulation versus
time. The dates of important NPIs are shown by vertical dashed lines and listed in Table [} One standard deviation around the average Total
case curve is shaded in blue. The bottom plot compares the average number of deaths in the simulation with the actual number of deaths
due to COVID-19. This plot also shows the simulation results for the number of severely infected particles as well. One standard deviation

around the average Dead state curve is shaded in grey.

we observe the zoomed subplots in Figs. Bk and [3f, we see
that neither method prevents the second wave of the epidemic
after the lifting of restrictions on June 3, 2020.

On the other hand, the synergistic use of two modules
showed the most effective results. Namely, the massive testing
strategies with (8 =10, 8=0) and (6 =20, S =0) reduced the
total number of deaths from 630 (6 =0, 8=0) to 440 (30%) and
294 (53%), respectively. Then, in the simulations with half of
the population using the contact tracing app (8 = 0.5), massive
testing 8 = 10 and 6 =20 reduced the total number of deaths up
to 40% (374 deaths) and 60% (249), respectively. The reduction
in the number of deaths reached its maximum with ubiquitous
contact tracing (8 = 1.0). The simulations return 323 deaths
(48% reduction) for (6 =10, 8 =1.0) and 177 deaths (72%
reduction) for (6 =20, 8 =1.0). Also, the zoomed subplots
in Fig. @, d, and e illustrate that the synergistic use of the
two modules prevents the second wave of the epidemic. These
results reveal the importance of the immediate isolation of
contacts of positive tested particles in preventing the spread
of the epidemic.

Even though the modeling of individuals as particles enables

the implementation of contact tracing and massive testing,
our simulator has several limitations. Firstly, our map is a

unit square with the individuals distributed randomly and
moving freely without obstacles. In the real world, there are
obstacles, for example, buildings and geographic objects such
as rivers and mountains. Moreover, the population density
differs substantially in different regions of a city or province.
The probability of infection is also lower in open spaces than
in confined ones. Secondly, the mortality rate for COVID-19
is age and gender dependent [25]]. Our particles are iden-
tical; demographics properties such as age and gender are
not considered. Presumably, the simulator can be enriched by
adding demographic profiles and associated risk probabilities
for more realistic transitions from the Severely Infected to Dead
state. However, this would increase the number of simulation
parameters significantly and make the model calibration harder.
Thirdly, the simulator does not consider the interaction net-
works of individuals. Though, in reality, individuals have a
number of contacts with whom they interact regularly (e.g.,
family members, colleagues, and close friends).

V. CONCLUSION

We developed a particle-based SEIR simulator with contact
tracing and testing. The main advantage of our simulator,
as compared to the compartmental SEIR model, is that it
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Fig. 4. Simulation results for the different combinations of random testing and contact tracing modules.

models each individual as a particle, thus enabling a more
realistic simulation of disease propagation, and the impact
of intervention strategies for suppression and mitigation. We
demonstrated that the simulator can model a real epidemic in
accordance with the actual timeline of events and deployment
of intervention strategies. We also investigated the impact of
contact tracing and testing strategies on the propagation of the
disease; the results showed that the most effective approach
is an aligned strategy of testing and contact tracing. In future
works, the particle-based simulator can be used to simulate the
spread of the disease in more confined settings, such as inside

buildings (e.g., airports, schools, malls, etc.) by modeling
the moving particles according to the specific building layouts.

SUPPLEMENTARY MATERIALS
We implemented the simulator in MATLAB R2020. The
source code was uploaded to GitHulﬂ under MIT license.
We also provide a video that illustrates a random motion
of a single particle, and also the visualization of particles
motion on a 2D map with the corresponding epidemic state

Unttps://github.com/IS2Al/Particle-Based-COVID 19-Simulator
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transitions for three different scenarios. The first scenario
for 8 =0, =0 shows that the epidemic was suppressed in
Lecco only because of the complete lock-down. The second
scenario for 8 =20, B =0 illustrates that the lock-down with
the additional random testing strategy can reduce the number
of infected particles. However, the previous two scenarios also
show that neither method ensures the prevention of the second
wave of the epidemic. The third scenario with 6 =20, =1
shows the efficiency of the additional contact tracing strategy.
It significantly reduces the number of infected particles and
also allows to prevent the second wave of the epidemic.

As an additional example, we have performed a simulation

for

the canton of Geneva, Switzerland. In this way, we

illustrated that the model calibrated for the province of Lecco
can be used to predict the epidemic of a different region by
adjusting the region-specific parameters such as population,
timeline of policies, and COVID-19 statistics.
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