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Abstract 

Objectives – To assess 1) differences in the hemodynamic response to the active stand test in 

older adults with a clinical diagnosis of vasovagal syncope compared to age-matched controls2) if 

the active stand test combined with machine learning approaches can be used to identify the 

presence of vasovagal syncope in older adults.  

Approach – Adults aged 50 and over (Vasovagal Syncope N=46 Age=66.9±10.3; Control N=86 

Age=65.3±9.5) completed an active stand test. Multiple features were extracted to characterize the 

hemodynamic responses to the active stand test and were compared between groups. Classification 

was performed using machine learning algorithms including linear discriminant analysis, quadratic 

discriminant analysis, support vector machine and an ensemble majority vote classifier.  

Main Results – Subjects with vasovagal syncope demonstrated a higher resting (supine) heart rate 

(69.8±13.1 bpm vs 63.3±12.1 bpm; P=0.007), a smaller initial systolic blood pressure drop (-

20.2±20.1% vs -27.3±17.5%; P=0.005), larger drops in stroke volume (-14.7±24.0% vs -

2.7±23.3%; P=0.010) and cardiac output (-6.4±18.5% vs 5.8±22.3%;P<0.001) and a larger increase 

in total peripheral resistance (8.1±30.4% vs -6.03±22.8%; P=0.002) compared to controls. A 

majority vote classifier identified the presence of vasovagal syncope with 82.6% sensitivity, 76.8% 

specificity, and average accuracy of 78.9%.  

Significance – Older adults with vasovagal syncope display a unique hemodynamic and 

autonomic response to active standing characterized by relative autonomic hypersensitivity and 

larger drops in cardiac output compared to age-matched controls. With suitable machine learning 

algorithms, the active stand test holds the potential to be used to screen older adults for reflex 

syncopes and hypotensive susceptibility potentially reducing test time, cost, and patient discomfort. 

More broadly this paper presents a machine learning framework to support use of the active stand 

test for classification of clinical outcomes of interest.   

Keywords: Active stand test, hemodynamic response, older adults, vasovagal syncope, orthostatic hypertension 
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1. Introduction  

The head up tilt test (HUTT), (Kenny et al. in 1986), is used to confirm the diagnosis of reflex syncopes, such as 

vasovagal syncope (VVS). More recently it has been considered a test of hypotensive susceptibility in patients with a history 

of syncope (Moya et al. 2009). The test provokes a syncopal event in a controlled setting. However, it has moderate 

repeatability, is uncomfortable for patients, is difficult to perform in the very young or older frailer patients, is resource 

intensive, and is restricted to specialized clinics (Matsushima, Tanaka, and Tamai 2004; Benditt et al. 1996).  

Previous research has explored methods to shorten the duration of the HUTT through early prediction algorithms or by 

replacing the test with an alternative. The best performing algorithms have been developed by Mereu et al. (2013), Stewart et 

al.(1996), Ebden (2006), and Virag et al. (2007; 2018), which combine parameters of heart rate (HR), blood pressure (BP), 

and heart rate variability (HRV) measured during the pre-syncopal stages of a HUTT for VVS prediction, achieving an 

accuracy of 86% to 94% (Virag et al. 2007; 2018; Mereu et al. 2013; Stewart, Erb, and Sorbera 1996; Ebden 2006). However, 

these algorithms still require significant time (up to 40 minutes) undergoing a HUTT and have not focussed on identifying 

patients with a clinical diagnosis of VVS.   

Carmody et al. (2014) investigated the use of the active stand (AS) test for identification of those with a clinical diagnosis 

of VVS (as compared to HUTT outcomes) and achieved promising results in a young cohort with a multivariate classifier 

achieving a sensitivity of 84.3%, specificity of 72.9%, and accuracy of 80.2%. However, it was hypothesized that these 

results may not generalise well to all ages, since it is well known that the AS test and HUTT responses vary according to age. 

Older adults tend to exhibit blunted hemodynamic responses to orthostatic stress compared to age matched norms (Folino et 

al. 2010; Kurbaan et al. 2003; Laitinen et al. 2004; O’Dwyer 2011; Imholz et al. 1990; Dambrink and Wieling 1987; van 

Wijnen et al. 2017), which would be at odds with previous work suggesting a relative hypersensitivity in VVS in younger 

adults (Carmody et al. 2014). Most prediction algorithms, with the exception of Ebden (2006) and Virag et al. (2007; 2018), 

have not focussed on the older adult population, while only Carmody et al [8] has focussed on identifying a clinical diagnosis 

of VVS.   

This retrospective cross-sectional study aims to address this gap by investigating the hypothesis that older adults with a 

clinical diagnosis of VVS exhibit multivariate hemodynamic differences during the AS test as compared to age-matched 

controls (CON) that can be used to predict a positive clinical diagnosis of VVS using machine-learning approaches. 

2. Methods 

2.1 Subjects 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Summary of data utilized in study 

Subjects from FABU and O'Dwyer

N = 93

EXCLUDED:

Subjects with insufficient data
N=12

EXCLUDED:

Subjects under age 50
N=35

VVS Subjects 

N=46

Subjects from TILDA 

N = 8504

EXCLUDED:

Subjects under age 50

N=341

EXCLUDED:

Subjects medicated for hypertension 

N=2627

EXCLUDED:

Subjects not matched for sex, age, 
BSA, RBP

N=5454

CON Subjects 

N=82
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A retrospective analysis of VVS cases and controls 

(CON) aged 50 and over was collated from: 1) VVS patient 

data from the Falls and Syncope Unit (FASU) at St James's 

Hospital Dublin (O’ Dwyer et al, 2011); and 2) CON data 

from the Irish Longitudinal Study on Ageing (TILDA); the 

contributions from each source are summarized in Figure 1. 

Approval for this study was obtained from the local research 

ethics committee.  

VVS cases were recruited from the FASU between 

August 2008 and December 2014 (O’Dwyer 2011). This 

group included patients clinically evaluated (by HUTT), and 

reviewed by two independent, consultant geriatricians, who 

had a history consistent with VVS (denoted VVS+) (i.e. 

syncope precipitated by prolonged standing, fear, severe pain, 

emotional distress and associated with prodromal symptoms). 

Patients that were diagnosed with a form of syncope other 

than VVS were excluded.  All patients in these groups had 

completed an AS test. The cause of syncope was based on 

history, and exclusion of other known causes of syncope in 

accordance with the European Society of Cardiology’s (ESC) 

guidelines.    

A sample of CON subjects aged 50 and over were 

selected from TILDA who had completed an AS test as part 

of a health assessment and had no self-reported history of 

falls, unexplained falls or faints, and were not on medications 

for hypertension. These subjects did not however complete a 

HUTT or clinical assessment to confirm absence of diagnosis 

of syncope. CON subjects were matched to the VVS cases 

based on age, sex, body surface area (BSA), and resting BP. 

Matching between VVS subjects and CON subjects was 

confirmed using a two-tailed t-test on the matched 

parameters.   

2.2 Experimental Protocol 

Data collected for each VVS and CON subject included 

the responses of hemodynamic parameters generated during 

an AS test. The test involved 10 minutes of supine rest 

followed by 2 minutes of upright standing in a quiet, 

temperature controlled (21 to 23 °C), dimly lit room. This 

protocol is in line with the current protocol for the AS test 

where cardiovascular responses are seen within the first 2 to 3 

minutes of standing (Finucane et al. 2019). Continuous 

measurements of systolic blood pressure (SBP), diastolic 

blood pressure (DBP), mean blood pressure (MBP), heart rate 

(HR), cardiac output (CO), stroke volume (SV), and total 

peripheral resistance (TPR) responses were collected using 

the Finometer® (200 Hz sampling frequency; 12 bit A/D). 

BP and HR measurement were obtained using the volume 

clamp method for measuring continuous finger arterial 

pressure and CO, SV, and TPR were estimated using the 

Modelflow method (Jellema 2005). 

2.3 Analysis 

Figure 2. Summary of analysis. LDA = Linear discriminant 

analysis; QDA = Quadratic discriminant analysis; SVM = Support 

vector machine; MVC = Majority vote classifier; LOOCV = Leave 

one out cross-validation; MWU = Mann Whitney U Test 

Data Collation 
Combine 3 data sets  

(See Figure 1)  

Data Pre-processing 
Stand detection 

Moving average filter  

Feature Extraction 
Calculate features  

(see Table 1)  

Feature Selection 
MWU test 

Backward/Forward feature 

selection   

Classifier  

LDA QDA SVM 

Classifier Performance 
Misclassification Rate  

Optimum Classifier 

and Feature Set    

MVC 

Feedback 
Misclassification 

Rate  

Cross-Validation 
10 fold cross-validation 

LOOCV 
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The steps involved in this analysis are outlined in Figure 2. Data analysis was completed using MATLAB v17.0 by 

MathWorks (MathWorks, 3 Apple Hill Drive, Natick, MA 01760-2098, United States). Text files from the Finometer® were 

imported to MATLAB and interpolated from a beat-to-beat to a second-by-second scale to ensure comparability across 

individuals. The signal from the Finometer height correction unit data was used to identify the start-time of the stand. 

2.4 Feature Extraction 

The median response of the following signals were compared between older adult VVS and CON subjects: SBP, HR, rate-

pressure product (RPP), SV (normalized by baseline mean), CO (normalized by baseline mean), TPR (normalized by baseline 

mean), heart rate variability (HRV) and blood pressure variability (BPV). Features of each signal were extracted based on 

trends previously identified in younger adults by Carmody et al. (Carmody et al. 2014) and newly identified trends to account 

for age-related differences in AS responses. Values of baseline and steady-state mean, trough and peak width, percentage 

increase and decrease from baseline, percentage change from baseline to steady-state, and the steady-state slope were 

calculated from each hemodynamic response signal resulting in a total of 72 candidate features. Baseline and steady-state 

values were defined as 60 to 30 seconds pre stand and 80 to 120 seconds post stand, respectively. These parameters and their 

method of computation are summarized in Table 1. For the HRV and BPV signals, total power in low (0.04 Hz to 0.15 Hz) 

and high frequency (0.15 Hz to 0.4 Hz) bands were computed at baseline and during standing (i.e. steady-state). The ratio of 

these values, along with the root mean square and standard deviation of successive differences were computed. 

Table 1. Summary of parameters  

Parameter Abbreviation Units Definition 

Baseline mean B - 𝐵 =
1

50
∑ 𝑥𝑖

−10
𝑖=−60   

Steady state mean SS - 𝑆𝑆 =
1

40
∑ 𝑥𝑖

120
𝑖=80   

Trough width TW S 𝑇𝑊 = 𝑖𝑃𝐾+ − 𝑖𝑃𝐾−  

𝑖𝑇𝑅  is index of first trough > 0s 

𝑖𝑃𝐾+ is index of first peak > 𝑖𝑇𝑅 

𝑖𝑃𝐾− is index of last peak < 𝑖𝑇𝑅 

Peak width PW S 𝑃𝑊 = 𝑖𝑇𝑅+ − 𝑖𝑇𝑅− 

𝑖𝑃𝐾  is index of first trough > 0s 

𝑖𝑇𝑅+ is index of first peak > 𝑖𝑃𝐾 

𝑖𝑇𝑅− is index of last peak < 𝑖𝑃𝐾 

Percentage increase from 

baseline 

%I % 
%𝐼 = (

𝑀𝑎𝑥(𝑥𝑖)−𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒
) × 100   

Percentage decrease from 

baseline 

%D % 
%𝐷 = (

𝑀𝑖𝑛(𝑥𝑖)−𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒
) × 100  

Percentage difference from 

baseline to steady state 

B2SS % 𝐵2𝑆𝑆 = (
𝑆𝑡𝑒𝑎𝑑𝑦𝑆𝑡𝑎𝑡𝑒−𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒
) × 100  

Steady state slope SSS - 𝑝(𝑥) = 𝑝1𝑥 where p1 is the SSS 

Baseline low frequency BLF mV2/Hz 𝐵𝐿𝐹 = ∑ 𝑝𝑥𝑥
0.15
𝑖=0.04   between -10s to -60s 

Steady state low frequency SLF mV2/Hz 𝑆𝐿𝐹 = ∑ 𝑝𝑥𝑥
0.15
𝑖=0.04   between 80s to 120s 
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Baseline high frequency BHF mV2/Hz 𝐵𝐻𝐹 = ∑ 𝑝𝑥𝑥
0.4
𝑖=0.15   between -10s to -60s 

Steady state high frequency SHF mV2/Hz 𝑆𝐻𝐹 = ∑ 𝑝𝑥𝑥
0.4
𝑖=0.15   between 80s to 120s 

Ratio of baseline low to high 

frequency 

BLF/BHF Ratio 𝐵𝐿𝐹

𝐵𝐻𝐹
=

∑ 𝑝𝑥𝑥
0.15
𝑖=0.04

∑ 𝑝𝑥𝑥
0.4
𝑖=0.15

   between -10s to -60s 

Ratio of steady state low to 

high frequency 

SLF/SHF Ratio 𝑆𝐿𝐹

𝑆𝐻𝐹
=

∑ 𝑝𝑥𝑥
0.15
𝑖=0.04

∑ 𝑝𝑥𝑥
0.4
𝑖=0.15

  between 80s to 120s 

Ratio of baseline to steady 

state low frequency  

BLF/SLF Ratio 𝐵𝐿𝐹

𝑆𝐿𝐹
=

∑ 𝑝𝑥𝑥
0.15
𝑖=0.04  𝑏𝑒𝑡𝑤𝑒𝑒𝑛−10𝑠 𝑡𝑜 −60𝑠

∑ 𝑝𝑥𝑥
0.15
𝑖=0.04  𝑏𝑒𝑡𝑤𝑒𝑒𝑛 80𝑠 𝑡𝑜 120𝑠

  

Ratio of baseline to steady 

state high frequency 

BHF/SHF Ratio 𝐵𝐻𝐹

𝑆𝐻𝐹
=

∑ 𝑝𝑥𝑥 0.4
𝑖=0.15 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 −10𝑠 𝑡𝑜 −60𝑠

∑ 𝑝𝑥𝑥
0.4
𝑖=0.15  𝑏𝑒𝑡𝑤𝑒𝑒𝑛 80𝑠 𝑡𝑜 120𝑠

  

Ratio of baseline low 

frequency to steady state high 

frequency 

BLF/SHF Ratio 𝐵𝐿𝐹

𝑆𝐻𝐹
=

∑ 𝑝𝑥𝑥
0.15
𝑖=0.04  𝑏𝑒𝑡𝑤𝑒𝑒𝑛 −10𝑠 𝑡𝑜 −60𝑠

∑ 𝑝𝑥𝑥
0.4
𝑖=0.15  𝑏𝑒𝑡𝑤𝑒𝑒𝑛 80𝑠 𝑡𝑜 120𝑠

  

Ratio of steady state low 

frequency to baseline high 

frequency 

SLF/BHF Ratio 𝑆𝐿𝐹

𝐵𝐻𝐹
=

∑ 𝑝𝑥𝑥 0.15
𝑖=0.04 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 80𝑠 𝑡𝑜 120𝑠

∑ 𝑝𝑥𝑥
0.4
𝑖=0.15 𝑏𝑒𝑡𝑤𝑒𝑒𝑛−10𝑠 𝑡𝑜 −60𝑠

  

Baseline root mean square BRMS S 

𝐵𝑅𝑀𝑆 = √
1

𝑁 − 1
∑((𝑅 − 𝑅)𝑖+1 − (𝑅 − 𝑅)𝑖)2

𝑁−1

𝑖=1

 

Where N=number of pulse intervals (PI) 

Steady state root mean square SSRMS S 
𝑆𝑆𝑅𝑀𝑆 = √

1

𝑁−1
∑ ((𝑅 − 𝑅)𝑖+1 − (𝑅 − 𝑅)𝑖)2𝑁−1

𝑖=1   

Where N=number of pulse intervals (PI) 

Baseline standard deviation 

of successive differences  

BSD S 

𝐵𝑆𝐷 = √(
∑ (𝐷𝑖 − 𝐷𝑚𝑒𝑎𝑛)2𝑁−1

𝑖=1

𝑁 − 1
) 

𝐷1 = 𝑅𝑅1 − 𝑅𝑅2 

𝐷𝑁−1 = 𝑅𝑅𝑁−1 − 𝑅𝑅𝑁 

Steady state standard 

deviation of successive 

differences 

SSSD S 

𝑆𝑆𝑆𝐷 = √(
∑ (𝐷𝑖 − 𝐷𝑚𝑒𝑎𝑛)2𝑁−1

𝑖=1

𝑁 − 1
) 

𝐷1 = 𝑅𝑅1 − 𝑅𝑅2 

𝐷𝑁−1 = 𝑅𝑅𝑁−1 − 𝑅𝑅𝑁 
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2.4.1 Feature subset selection.   

A Mann-Whitney U (MWU) test was used to rank and identify important features that showed significant differences 

between VVS and CON subjects in order to reduce the number of features used. A p-value ≤0.05 was considered significant. 

Once significant candidate features had been identified, forward and backward sequential feature selection was applied to 

determine optimal feature sets based on minimization of the misclassification rate: 

𝑀𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 =
𝑀𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠
       (1) 

Forward and backward selection were each performed three times, once for each of three classification algorithms: linear and 

quadratic discriminant analysis (LDA and QDA) and a support vector machine (SVM).  

2.5 Classifiers 

The performance of three classification algorithms were compared. An LDA classifier was first tested following the 

success of Carmody et al. (2014) in classifying VVS in younger adults. This approach creates a discriminant function that 

generates a linear boundary between group distributions that minimises the misclassification rate. Future samples are 

classified based on the relative position of these features to this linear boundary.  

In the LDA, the covariance (dispersion) matrix is assumed equal across groups. This assumption is most accurate when 

samples display approximate Gaussian distribution that can be easily separated by a linear boundary (Krzanowski 2000). 

Since it was observed that not all features could be separated by a linear boundary and were non-Gaussian, a QDA 

classification algorithm was also explored. In this classifier, the discriminant function takes on the form of a quadratic 

function (Krzanowski 2000).  

A third classifier was tested using a SVM, which uses more complex methods to separate data of different classes. This 

algorithm performs classification based on the use of hyperplanes created in higher dimensional spaces and is often used to 

classify samples that are not linearly separable (Cristianini 2000).   

Finally, to improve results further, an aggregating majority vote classifier was tested that combined the outputs of the 

three optimal classifiers by assigning the class ruled by the majority of the three classification algorithms.  

2.5.1 Classifier performance.   

Cross-validation was performed to evaluate classifier performance for the LDA, QDA, SVM, and majority vote classifier. An 

N-fold scheme was used that randomly segregates the data into N equally sized datasets which are subsequently used for 

training of the classifier (N-1 sets) and testing the classifier performance (1 set). This process is repeated based on the number 

of folds specified and results averaged across all trials. For this study, a 10-fold cross-validation scheme and leave-one-out 

cross-validation (LOOCV) scheme were used. The method uses the same process as the N-fold scheme but the number of 

folds is equivalent to the number of samples.  

Classifier performance was evaluated using sensitivity, specificity, positive predictive value (PPV), negative predictive 

value (NPV), and accuracy. These measures were calculated, as follows: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                               (2) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
                               (3) 

𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
        (4) 

𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑁
            (5) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                   (6) 

based on the number of true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN). 

3. Results 

3.1 Subject Demographics 

Subject characteristics used to match controls and subjects are detailed in Table 2.  
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Table 2: Summary of characteristics of matched older adult subjects and controls 

 
Units 

VVS 
N=46 

CON 
N=82 

P-Value 

Age Years (Mean ± SD) 66.9 ± 10.3 65.3 ± 9.5 0.387 

Number of Males N 33 34 0.861 

Height cm (mean ± SD) 166.7 ± 10.6 164.3 ± 7.9 0.180 

Weight Kg (mean ± SD) 74.9 ± 15.4 74.9 ± 14.4 0.997 

Body surface 

area 
m2 (mean ± SD) 1.9 ± 0.23 1.8 ± 0.20 0.744 

Resting BP mmHg (mean ± SD) 149.3 ± 20.1 145.7 ± 16.9 0.281 

3.2 Differences in the Hemodynamic Response  

3.2.1 VVS vs. CON    
Twenty-three parameters showed significant differences between VVS and CON. These results are summarized in Table 3. 

Subjects with VVS demonstrated a smaller drop in SBP (SBP-10s), a larger change in baseline to steady-state values in SV, 

CO and TPR (SV-B2SS, CO-B2SS, TPR-B2SS), and a smaller drop in TPR compared to CON subjects (TPR-%D). VVS 

subjects had a higher HR throughout the test (HR-B/HR-SS).    

The baseline low frequency (BLF) HRV values were also significantly greater in VVS. As a result, ratios to the baseline 

high frequency (HRV-BLF/BHF) and steady-state low and high frequency (HRV-BLF/SLF, HRV-BLF/SHF) also were 

significantly different. In the BPV signal, the median SLF was significantly higher in VVS subjects leading to significant 

differences in the BPV ratios BPV-SLF/SHF and BPV-SLF/BLF in VVS and CON older adults. 

Table 3. Median and inter-quartile range for each derived parameter with MWU significance for VVS and CON subjects 

  VVS CON VVS vs. CON 

Parameter Units Median (IQR) Median (IQR) P-Value 

SBP-10s  % -20.2 (20.1) -27.3 (17.5) 0.005 

HR-B Bpm 69.8 (13.1) 63.3 (12.1) 0.007 

HR-SS Bpm 76.5 (15.6) 70.9 (15.7) 0.026 

HR-%I % 31.7 (19.3) 43.6 (38.9) 0.012 

RPP-B mmHg·bpm 1.0e+04 (2.8e+03) 9.5e+03 (2.0e+03) 0.012 

SV-%I % 26.8 (36.9) 36.0 (41.2) 0.048 

SV-B2SS % -14.7 (24.0) -2.7 (23.3) 0.010 

SV-SSS ml/sec -0.031 (0.22) 0.06 (0.14) 0.022 

CO-%I % 54.2 (40.1) 71.4 (48.5) 0.018 

CO-B2SS % -6.4 (18.5) 5.8 (22.3) <0.001 

CO-SSS l/min -1.1e-3 (18e-3) 1.6e-3 (9.6e-3) 0.039 

TPR-%D % -46.8 (15.1) -57.8 (17.7) <0.001 

TPR-B2SS % 8.1 (30.4) -6.03 (22.8) 0.002 

HRV-BLF mV2/Hz 6.0e-3 (0.01) 0.01 (0.03) 0.007 

HRV-BLF/BHF Ratio 1.6 (2.9) 3.0 (4.0) 0.036 

HRV-SLF/SHF Ratio 3.4 (7.1) 1.6 (2.6) 0.016 
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HRV-BLF/SLF  Ratio 0.57 (2.5) 2.6 (5.9) <0.001 

HRV-SLF/BHF Ratio 2.8 (7.4) 1.0 (2.2) 0.010 

HRV-BRMS S 0.9 (0.2) 0.9 (0.2) 0.006 

HRV-SRMS S 0.8 (0.2) 0.8 (0.2) 0.024 

BPV-SLF mV2/Hz 509.3 (812.1) 298.8 (531.0) 0.021 

BPV-SLF/SHF Ratio 4.3 (10.0) 2.9 (4.1) 0.035 

BPV-BLF/SLF  Ratio 0.5 (0.9) 1.0 (2.2) 0.009 

VVS = Subjects with diagnosis of vasovagal syncope 

CON = Control subjects 

SBP = Systolic blood pressure 

HR = Heart rate 

RPP = Rate pressure product  

SV = Stroke volume 
CO = Cardiac output 

TPR = Total peripheral resistance 

HRV = Heart rate variability 
BPV = Blood pressure variability  

B = Baseline 

SS = Steady state 

10s% = 10 s percentage from baseline 

%I = Percentage increase from baseline 

%D = Percentage decrease from baseline 

B2SS = Percentage difference from baseline to 
steady state 

SSS = Steady state slope  

 

BLF = Baseline low frequency 

BHF = Baseline high 

frequency 

SLF = Steady state low 

frequency 

SHF = Steady state high 
frequency 

BRMS = Baseline root mean 

square 
SRMS = Steady state room 
mean square 

 

3.3 VVS Classification  

3.3.1 Feature selection.    

The feature sets identified using forward and backward sequential feature selection for the LDA, QDA, and SVM classifiers 

are as follows: 

• LDA: RPP-B; CO-B2SS; HRV-BLF/SLF; HRV-SSRMS; BPV-SLF/SHF 

• QDA: SBP-10s%; HR-SS; RPP-B; SV-B2SS; CO-B2SS; TPR-%D; TPR-B2SS; HRV-BLF/BHF; HRV-BLF/SLF; HRV-BRMS; 

HRV-SSRMS; BPV-SLF/SHF; BPV-BLF/SLF 

• SVM: SBP-10s%; HR-SS; CO-B2SS; HRV-BLF/BHF; HRV-BLF/SLF; HRV-SLF/BHF; BPV-SLF/SHF   

3.3.2 Classification results.   

Results for cross-validation of the majority vote classifier and each of the constituent classifiers are summarized in Table 4. 

SVM (79.2%) and QDA (72.7%) classifiers outperform LDA classifiers (70%). The majority vote classifier successfully 

improved overall classifier performance by 0.8-3.1% depending on the cross-validation scheme utilised. A maximum 

accuracy of 78.9% was achieved with the majority vote classifier when LOOCV was performed.   
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Table 4: VVS vs. CON older adults multivariate classifier cross-validation (k-fold and LOOCV)  

2-Fold Cross-Validation  

 Sensitivity Specificity PPV NPV Accuracy 

LDA 0.398 0.824 0.550 0.716 0.672 

QDA 0.620 0.740 0.563 0.793 0.711 

SVM 0.657 0.740 0.582 0.799 0.719 

Majority Vote 0.690 0.761 0.667 0.782 0.734 

Figure 3. Normalized  median response with standard 

error in older adults (OA) during the AS test of a) SBP 

(systolic blood pressure) b) HR (heart rate) c) SV (stroke 

volume) d) CO (cardiac output) e) TPR (total peripheral 

resistance) 

a) b) 

c) d) 

e) 
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5-Fold Cross-Validation 

 Sensitivity Specificity PPV NPV Accuracy 

LDA 0.598 0.861 0.755 0.779 0.760 

QDA 0.768 0.784 0.677 0.852 0.776 

SVM 0.871 0.630 0.587 0.893 0.720 

Majority Vote 0.615 0.822 0.660 0.816 0.752 

10-Fold Cross-Validation  

 Sensitivity Specificity PPV NPV Accuracy 

LDA 0.460 0.816 0.615 0.742 0.700 

QDA 0.635 0.748 0.626 0.802 0.717 

SVM 0.870 0.750 0.680 0.908 0.792 

Majority Vote 0.763 0.853 0.745 0.852 0.800 

LOOCV  

 Sensitivity Specificity PPV NPV Accuracy 

LDA 0.761 0.719 0.603 0.843 0.734 

QDA 0.717 0.781 0.647 0.831 0.758 

SVM 0.804 0.707 0.607 0.866 0.742 

Majority Vote 0.826 0.768 0.667 0.887 0.789 

 

4. Discussion 

The results of this study suggest that those with a clinical diagnosis of VVS exhibit significantly different responses to the 

AS test compared to age-matched CON subjects. In addition, machine-learning approaches were applied successfully to 

identify a positive clinical diagnosis of VVS. The hemodynamic differences identified allowed the AS to be used to classify 

those with VVS with sensitivity of 82.6%, specificity of 76.8%, and average accuracy of 78.9%.  

 The classifier in this study used SBP, HR, SV, CO, TPR, HRV, and BPV features in the identification of subjects with 

VVS. SBP and HR had been previously used by Mereu et al. (2013) to predict HUTT outcome with 86.2% sensitivity and 

89.1% specificity. Differences in our performance metrics are expected given the differences between a HUTT response and 

clinical diagnosis of VVS.  

Ebden (2006) investigated a multivariate LDA classifier on a dataset of 30 patients age 65 and older, using parameters of 

HRV, BP, HR trend, and instantaneous centre frequency variability (ICFV) taken from the first few minutes after tilting in a 

HUTT. With this combination of parameters, a PPV of 93%, a NPV of 88%, and an accuracy of 90% were obtained for 

predicting a positive or negative HUTT result (Ebden 2006). Since the algorithm was tested on older patients, it was expected 

that similar results might be obtained; however, the data set used by Ebden (2006) was longer in duration, with Ebden 

analyzing HRV from five minutes of supine rest and upright tilting. Furthermore, this work focussed on predicting HUTT 

outcomes from early tilting, not to identify a clinical diagnosis.  

Virag et al. (2007; 2018) developed a prediction algorithm for predicting HUTT outcome based on calculation of 

cumulative risk based on the RR and SBP trend, and the LF power of the RR interval (HRV) and the SBP (BPV). The 

algorithm was tested on a large sample of 1,155 patients and yielded a sensitivity of 95% and specificity of 93% (Virag et al. 

2007). This study (Virag et al. 2007) involved a significantly larger dataset allowing for more robust algorithm development; 

however the prediction times required 23.6 minutes of HUTT data. The algorithm was subsequently evaluated on 140 

subjects in a clinical setting and still yielded a sensitivity of 97.6% and specificity 88.2% proving clinical relevance (Virag et 

al. 2018). Nonetheless it targeted prediction of HUTT outcome before syncope occurred, rather than predicting a clinical 

diagnosis of VVS.  

Carmody et al.'s (2014) algorithm for predicting a clinical diagnosis of VVS in younger adults with the AS test achieved 

84.4% sensitivity and 72.97% specificity. However, the features used for classification are somewhat different due to age-

related differences in AS responses between younger and older cohorts. For example, the HR percent increase and CO 

percent increase were found significant for younger adults but not for older adults due to the blunted HR response. This 

unique hemodynamic response observed in older adults is not surprising. Previously, deviations in the BP and HR responses 

of healthy older adults compared to healthy younger adults have been observed during the active stand test in the form of 

slower BP recovery, an initial peak in BP with standing, and a blunted HR increase compared to younger adults (van Wijnen 
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et al. 2017; Wieling et al. 1992; Smith, Porth, and Erickson 1994; Finucane et al. 2019). These responses are characteristic of 

an aging autonomic nervous system and are evident here.  

Furthermore, the differences noted between VVS and age-matched CON in both older and younger cohorts are of interest 

from a mechanistic perspective. Subjects with VVS demonstrated a smaller initial drop in SBP, a larger decrease in baseline 

to steady-state values in SV, CO and TPR, and a smaller drop in TPR compared to age-matched CON subjects. VVS subjects 

had a higher HR throughout the test, as demonstrated by the features in Table 3. Although different in absolute values to the 

younger cohort, there remain similarities with previous work; i.e. evidence of autonomic hypersensitivity in VVS compared 

to age-matched controls combined with large drops in SV caused by presumably greater peripheral pooling of blood volume. 

Carmody et al. had previously identified differences in hemodynamic responses to orthostatic stress in younger adults with 

VVS compared to healthy younger adults (Carmody et al. 2014). Those with VVS were characterized by lower drops in SBP, 

and greater overshoot at 20 seconds post-stand, a greater percent increase in HR and CO from baseline, and greater drops in 

SV from baseline to steady state (Carmody et al. 2014).  

4.1 Strengths and Limitations 

This study used retrospective data. As a result, it was not possible to control for all factors that may influence group 

differences during data collection or make prospective predictions. The sample size, although the largest group of older adults 

used to date, was still relatively small and additional subjects would need to be analysed to confirm results in a prospectively 

designed study. Subtypes of VVS (Vasodepressor and Cardioinhibitory) were not accounted for in the current study and may 

require additional features to differentiate between subtypes. Since the controls were not clinically assessed for syncope it is 

was not possible to definitively rule out the presence of VVS in this group. Finally, the AS test analysed during this study is a 

short test lasting only 2 minutes, is less resource intensive and less stressful for patients making it practical for screening 

purposes in large populations and cohorts where a HUTT is not feasible or used prior to HUTT. Given previous results 

involving longer duration tests and higher classification accuracies, it is likely that there is a trade-off between classification 

accuracy and test duration.  

Despite these limitations, the study was the first to focus on an ageing population in the identification of VVS. A broad 

range of features were investigated and applied as part of a broader machine learning framework to classify a clinical 

diagnosis of VVS from the AS test. The results indicate the need for further research into the use of the AS test as a screening 

tool in the diagnosis of VVS and other clinical outcomes.   

5. Conclusion 
Older adults with a clinical diagnosis of VVS exhibit different hemodynamic and autonomic responses to AS 

characterised by relative autonomic hypersensitivity compared to age-matched controls (with and without VVS). Optimum 

VVS classification was obtained using a majority vote classifier combining LDA, QDA, and SVM classifiers to achieve 

82.6% sensitivity, 76.8% specificity, and 78.9% accuracy. This work highlights the potential value of the AS test as a 

convenient screening tool for identifying individuals with a clinical diagnosis of VVS. More broadly this paper presents a 

machine learning framework to support use of the AS to classify clinical outcomes of interest.   
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