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Abstract 12 

This paper present simple method to study and to compare the infection dynamics between countries 13 

based on curve fitting to the publicly shared data of COVID-19 confirmed  infections reported by 14 

them. Presented method was tested using data from 80 countries from 6 regions. We found that 15 

Johnson Cumulative Distribution Functions (CDF) are extremely well fitted to the data (R2>0.99) and 16 

that Johnson CDF is much better fitted to the data at its tails than both commonly used Normal and 17 

Lognormal CDF.  Fitted Johnson CDFs can be used to obtain basic parameters of the infection wave, 18 

such as  the percentage of the population infected during the infection wave, day of the start, peak and 19 

the end of the infection wave, as well as the duration of the infections wave and the duration of the 20 

wave increase and decrease. These parameters may be easily biologically interpreted and used both in 21 

describing the infection wave dynamics and in further statistical analysis. The usefulness of the 22 

obtained parameters was demonstrated on two examples: the analysis of the relation of the Gross 23 

Domestic Product (GDP) per capita and the analysis of the population density on the percentage of the 24 

population infected during infection wave,  the day of the start, and the duration of the infection wave 25 

in analyzed countries. We found that all of the abovementioned parameters were significantly 26 

dependent on the GDP per capita, while only the percentage of population infected was significantly 27 

dependent on the population density in analyzed countries. Also, if used with caution, presented 28 

method has some limited ability to predict the future trajectory and parameters of the ongoing 29 

infection wave. 30 

 31 

Introduction 32 

COVID-19 is a highly contagious disease, caused by the SARS-CoV-2 coronavirus. The virus was 33 

first detected in Wuhan (Central China) in December 2019, but as early as mid January, the virus 34 

quickly spread throughout China. On 13 January 2020, the first case outside China was confirmed and 35 

on 24 January, the first case in Europe was reported. In the second half of February 2020, outbreaks 36 

with hundreds of cases erupted in South Korea, Italy and Iran (Skórka et al., 2020)  and COVID-19 37 
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was declared as a pandemic by the World Health Organization on March 11, 2020 (Ducharme, 38 

2020).To date, globally, over 64 million infections and almost 1.5 million death cases were reported 39 

(WHO, 2020). 40 

 Since the very beginning of the pandemic, many models have been proposed to understand the 41 

outbreak dynamics of COVID-19 (e.g. IHME, 2020; UGSDSC, 2020; LANL, 2020; Ferguson et al., 42 

2020; Kissler et al., 2020; Aleta et al.; Hellewell et al., 2020) and were used by policymakers (e.g. US 43 

Government) to allocate resources or plan interventions. Some of them, such as early IHME model 44 

received fair amount of criticism (Jewell et al., 2020). COVID-19 modelling studies generally follow 45 

one of two general approaches: forecasting models and mechanistic models; although there are hybrid 46 

approaches (Holmdahl and Buckee, 2020). Forecasting models are often statistical in nature, fitting a 47 

line or curve to data and extrapolating from there, without incorporating the process that produces the 48 

pattern (Holmdahl and Buckee, 2020), while mechanistic models simulate the outbreak through 49 

interacting disease mechanisms by using local nonlinear population dynamics and global mixing of 50 

populations (Hethcote, 2000). Purely statistic models are reliable only within a short time window and 51 

may be useful to make rapid short-term recommendations, whereas mechanistic modelling can be 52 

useful to explore how the pandemic would change under various assumptions and political 53 

interventions (Kuhl, 2020). 54 

 Since its beginning, COVID-19 pandemic generated huge amount of data and probably is the 55 

best documented disease in history. New cases, active cases, death cases, number of tests performed 56 

data are usually daily published by official sources (e.g. governments), gathered and publicly shared as 57 

freely accessible datasets (e.g. Hasell, et al. 2020). This makes a possibility for researchers to focus on 58 

analyzing the pandemic and its dynamics also in other fields than epidemiology. However, 59 

abovementioned models provide many pandemic parameters, useful in predicting different scenarios 60 

of future infections, day, probability and duration of future pandemic peaks, which is extremely useful 61 

for policymakers in planning interventions, however they may not be very useful  in other fields than 62 

epidemiology. Thus the urgent need of developing methods of describing the trajectory of pandemic 63 

waves arose. Such methods should be easy to apply, and should provide parameters describing 64 

trajectory and dynamics of the epidemic, which are easy to interpret and to use in further statistical 65 

analysis by researchers from other fields (e.g. sociology, biology, ecology, etc.) which can deepen our 66 

understanding of the COVID-19 pandemic. 67 

 The aim of this paper is to present a new simple method based on curve fitting to the reported 68 

data on confirmed cases of infection, to study and compare the infection dynamics between countries 69 

(or regions). The method is based on the Johnson Cumulative Distribution Function (CDF) fitting, and  70 

was tested using data from 80 countries from 6 regions (Africa, Asia, Europe, Oceania and both North 71 

and South America).  Also, Johnson CDFs were used to calculate basic parameters of the infection 72 

wave dynamics, such as the percentage of the population infected during the infection wave, day of the 73 

start, peak and end of the infection wave, as well as the duration of the infections wave and the 74 
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duration of the wave increase and decrease. This parameters are easy to interpret and may be used in 75 

further statistical analysis of epidemic dynamics, which was demonstrated on the examples of the 76 

influence of Global Domestic Product (GDP) per capita and the influence of population density on the 77 

percentage of infections and the day of the start and the duration of  the first infection wave in 78 

analyzed countries. Both the presented method and techniques employed are all straightforward and 79 

well known and the purpose of the paper is to illustrate how simple techniques can be used to solve 80 

otherwise difficult problems, such as description of the epidemic wave. 81 

 82 

Materials and methods 83 

The data used in this study was obtained from Our World in Data COVID-19 dataset (Hasell, et al. 84 

2020) from December 2019 to 19 November 2020. Presented method was tested on 80 countries from 85 

6 Regions: 1) Africa (Democratic Republic of Congo, Egypt, Ethiopia, Kenya, Morocco, Nigeria, 86 

Somalia, South Africa, South Sudan, Sudan and Zimbabue), 2) Asia(Afghanistan, Bangladesh, 87 

Cambodia, China, India, Indonesia, Iran, Iraq, Israel, Japan, Lebanon, Myanmar, Pakistan, Philippines, 88 

Saudi Arabia, Singapore, South Korea, Sri Lanka, Syria, Taiwan, Thailand, Turkey, Vietnam), 3) 89 

Europe (Austria, Belgium, Bosnia and Herzegovina, Bulgaria, Croatia, Cyprus, Czechia, Finland, 90 

France, Germany, Greece, Hungary, Ireland, Italy, Netherlands, North Macedonia, Norway, Poland, 91 

Portugal, Romania, Russia, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Ukraine, United 92 

Kingdom), 4) North America (Canada, Jamaica, United States of Mexico, United States of America) 93 

5) Oceania (Australia, Fiji, New Zealand, Papua New Guinea), and 6) South America (Argentina, 94 

Bolivia, Brasil, Chile, Colombia, Paraguay, Peru, Uruguay, Venezuela). 95 

 In order to make the data comparable between countries, for each country, number of 96 

infections in each day of the pandemic, was standardized, and were presented as a percentage of the 97 

population of a given country infected (number of confirmed infections in a given country/country 98 

population*100%). Also, a five-days moving average was calculated using percentage of infections to 99 

smooth the data and to minimize the effect of lower number of tests performed and lower number of 100 

confirmed infections during some short periods (e.g. weekends).This makes the loss function more 101 

regular i.e. it has less relative extrema, which makes it easier to find global extremum. Nevertheless, 102 

all presented R2for obtained Johnson CDFs are calculated using raw (not smoothed) data. 103 

 104 

Fitting Johnson CDF by moments 105 

Johnson (1949) described a system of frequency curves that represents transformations of the standard 106 

normal curve (detailed description in Hahn and Shapiro, 1967). Applying these transformations to a 107 

standard normal variable allows a unique distribution to be derived for whatever combination of mean, 108 

standard deviation, skewness, and kurtosis occurs for a given set of observed data. The standard 109 

method of fitting Johnson curves is to use four coefficients defining a Johnson distribution: two shape 110 

(γ, δ), a location (ξ), and a scale (λ) coefficient: 111 
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,where Φ is cumulative distribution function of standard normal distribution.  However, this method is 113 

not intuitive (i.e. it is difficult to set starting points from the data to perform numerical fitting). Thus 114 

alternative method for fitting Johnson curves, using first four moments (mean, variance, skewness and 115 

kurtosis) of an empirical distribution was selected (detailed description in Hahn and Shapiro,1967 and 116 

Hill et al.,1976).All statistical fits in the paper were performed using the Levenberg-Marquardt 117 

algorithm (Moré, 1978) to solve the corresponding non-linear least square optimization problem. 118 

Convergence criterion was set to 1.0E-10. 119 

 120 

Fitting Johnson CDF to the epidemic waves 121 

There is no strict definition for what is or is not an epidemic wave or phase. The intuitive definition of 122 

the pandemic wave traces the development of an epidemic over time and/or space. During an epidemic 123 

the number of new infected cases increases (often rapidly) to a peak and then falls (usually more 124 

gradually) until the epidemic wave is over.  125 

 The epidemic dynamics may highly differ between countries. Since the beginning of the 126 

pandemic, in some countries only one epidemic wave was observed (e.g. Afghanistan, Argentina), in 127 

some countries two epidemic waves were observed (e.g. Australia), while in others even more 128 

epidemic waves were observed, which also may overlap and interfere each other (e.g. Croatia, where 129 

four overlapping and interfering waves were observed). Also, in many countries, a range of various 130 

levels of the lockdown were applied to slow down or "flatten" the infection curve, the epidemic waves 131 

may not follow the Farr's law (which states that epidemics tend to rise and fall in a roughly 132 

symmetrical pattern or bell-shaped curve) and may be asymmetrical.  133 

 The basic assumption is that each epidemic wave W in a given country may be described by a 134 

five parameters scaled Johnson CDF: scale parameter (s), and abovementioned moments: expected 135 

value (mean; E), variance (V), skewness (S) and kurtosis (K) 136 

W(t)=s*FE,V,S,K(t) (1) 137 

, where t is the time measured since the day of the beginning of the pandemic and function FE,V,S,K is 138 

Johnson CDF with parameters γ, δ, ξ, λ assuring mean, variance, skewness and kurtosis equal to 139 

E,V,S,K respectively (see Hahn and Shapiro,1967; Hill et al.,1976). The S and K parameters were 140 

expected to improve the curve fit at the tails of the epidemic wave in case it was not symmetrical or 141 

heavy tailed. 142 

 143 

Obtaining basic epidemic wave parameters and their biological interpretation 144 

Once the Johnson CDFs were fitted to each pandemic wave in a given country, basic parameters 145 

obtaining the wave dynamics: (1) 2.5% quantile (Q2.5%), (2) 50% quantile (median; Q50%), (3) 97.5% 146 

quantile (Q97.5%) were calculated: 147 
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 The disadvantage of fitting Johnson curve by its moments is that it is not possible to 151 

determinate its mode analytically. Thus the mode of each Johnson CDF was determined numerically: 152 

� � argmax �
,�,,����    (5) 153 

, where �
,�,,� is Johnson Probability Density Function (PDF).  154 

The obtained parameters have an intuitive biological interpretation (Fig. 1): the scale parameter (s) 155 

indicate the total percentage of infections during a given epidemic wave (Pinf), Q2.5% indicate the day 156 

when infection wave starts, while Q97.5%indicate its end. Median (Q50%) indicate the day when the half 157 

of the total percentage of infected during a given wave was reached. Finally, the mode (M) indicate the 158 

day of the peak occurrence. Additionally, one can easily obtain the wave duration (T) 159 

T= Q97.5% - Q2.5% (5) 160 

the duration of wave increase (ti) 161 

ti= M- Q2.5% (6) 162 

and the duration of the wave decrease (td) 163 

td= Q97.5% - M (7) 164 

Also, the parameter measuring the asymmetry of the infection wave (A) can be easily obtained as a 165 

ratio 166 

A=ti/td (8) 167 

 All of the abovementioned parameters may be easily used in further statistical analysis, which 168 

was shown on examples: 1) the relationship between Gross Domestic Product (GDP)per capita and 169 

basic parameters describing the dynamics of the first wave of infections: M, T, and Pinf, and 2) the 170 

relation between population density and basic parameters describing the dynamics of the first wave of 171 

infections: M, T, and Pinf. Only first wave of infections in each country was taken into account, 172 

because in some countries, second (and consecutive) waves were not observed, and they would have 173 

been excluded from the analysis. 174 

 175 

Comparing curves: Johnson vs Normal and Lognormal CDF 176 

The differences between Johnson, Normal and Lognormal CDF were presented on the data from 177 

Afghanistan, where only one epidemic wave was observed. The differences were shown by comparing 178 

the R2,Pinf, Q2.5%, M, and Q97.5% parameters. Both 2.5% and 97.5% quantiles for normal and lognormal 179 

distributions, were obtained using inverse Normal and inverse Lognormal PDF respectively. 180 

 181 

Fitting Johnson CDF to the ongoing wave and possibility of prognosis 182 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 7, 2020. ; https://doi.org/10.1101/2020.12.05.20244178doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.05.20244178
http://creativecommons.org/licenses/by/4.0/


6 

 

Fitting Johnsons curve to the ongoing wave result in obtaining parameters, which can also be 183 

interpreted as a prognosis of the future shape and dynamics of infection wave. In such case, Pinf, M and 184 

Q97.5% indicate predicted percentage of infections, predicted day of the peak and predicted day of the 185 

end of the ongoing wave respectively, which also can be used to calculate predicted time of increase, 186 

decrease and duration of the ongoing infection wave. Because presented method is intended to 187 

describe infection dynamics rather than predicting its future outcome, the accuracy of the prognosis 188 

was presented only on the data on the first wave of infection observed in the United Kingdom in the 189 

Supplementary Materials. 190 

 191 

Examples of application 192 

The relation between Gross Domestic Product (GDP) per capita and the relation between 193 

population density and the dynamics of the first wave of COVID-19 infections 194 

The data on the GDP per capita and population density in 80 analyzed countries were obtained from 195 

Our World in Data COVID-19 dataset (Hasell, et al. 2020).  196 

 The relationship between GDP per capita and the relation between population density and 197 

basic parameters describing the dynamics of the first wave of infections (M, T, and Pinf) obtained using 198 

presented method of Johnson CDF fitting was tested using the quantile dependence function method, 199 

which was described in detail in Ćmiel and Ledwina (2020).This method was designed for measuring, 200 

visualizing the dependence structure, and testing of independence of two random variables. It exploits 201 

a recently introduced local dependence measure (quantile dependence function q), which gives a 202 

detailed picture of the underlying dependence structure and provides a means to carefully examine the 203 

local association structure at different quantile levels (Ćmiel and Ledwina 2020). 204 

 205 

Results 206 

The examples of fitted Johnson curves to the data from countries where one ongoing infection wave 207 

(Argentina), one infection wave (Afghanistan), two infection waves (Australia) and four overlapping 208 

and interfering infection waves (Croatia) were observed was presented at Fig. 2.Fitted four Johnson 209 

CDFs to the four waves of infections observed in Croatia, with areas where waves are overlapping and 210 

interfering was presented in detail at Fig. 3A. 211 

 Johnson CDF fitting tested using data obtained from 80 different countries showed that all 212 

curves were extremely well fitted: the lowest R2 obtained was  0.995 (Fiji), while the highest R2 was 213 

0.99997 (Iraq), while the mean and median R2 was 0.9995 and 0.9997 respectively. Fitted functions 214 

with R2 and COVID-19 trajectory plots with fitted functions for each country were presented the 215 

Supplementary Materials (Table S1; Figure S1-S6).  216 

 Fitting Johnson, Normal and Lognormal distribution curves to the single wave of infection 217 

observed in Afghanistan showed, that the best fitted was the Johnson CDF (R2=0.9998), while both 218 

Normal (R2=0.9980) and Lognormal (R2=0.9989) distributions were worse fitted, mainly at the tails of 219 
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the infection wave (Fig. 3B). Obtained parameters Q2.5%, M, Q97.5% for the infections wave in 220 

Afghanistan using Johnson CDF fitting were 59, 100, 209 respectively, while the same parameters 221 

obtained using Normal CDF fitting and Lognormal CDF fitting were 57, 105, 152  and 65, 98,167 222 

respectively.Percent of confirmed population infected during the infection wave obtained using scale 223 

parameters (s) of fitted Johnson, Normal and Lognormal distributions were 0.1028%, 0.0984% and 224 

0.0997% respectively. 225 

 Among analyzed countries, 17 (21.3%) countries were described by fitting one wave of 226 

infections, 35 (43.8%)  countries were described by fitting two waves of infections, 24 (30%) 227 

countries were described by fitting three waves of infections and 4 (5%) countries were described by 228 

fitting four waves of infections (Table S1). 229 

 The basic statistics for the obtained skewness parameters of Johnson distributions fitted to the 230 

first pandemic waves in 80 analyzed counties showed, that in majority of them, the first wave of 231 

infection was skewed (median S=1.5; minimum S=0; maximum S=141.5). First wave of infection was 232 

symmetrical in 16 countries (20%;A<1.05). Also, basic statistics for parameter A showed, that time of 233 

wave decreasing is longer than time of wave increase (mean A= 4.7; median A=2.9; minimum A=1.0; 234 

maximum A=22.4). 235 

 The results of the analysis of the associations between GDP per capita and M, T and Pinf 236 

parameters showed, that the percentage of confirmed infections during the first epidemic wave in 237 

analyzed countries was dependent on the GDP per capita (p=0.0147; Fig 4A), as well as the time of 238 

the peak occurrence (M; p=0.0002; Fig. 4B) and the duration of the first epidemic wave (T; p=0.0087; 239 

Fig. 4C).The relation between the percentage of infections and GDP per capita showed rather global 240 

positive dependence (Fig. 4A), which means that the higher GDP per capita, the higher percentage of 241 

infections during the first epidemic wave. The relation between the time of peak occurrence and GDP 242 

per capita showed local negative dependence for countries where peak occurs late (above median; Fig. 243 

4B) which means that the very early occurrence of peak is rather not correlated with GDP per capita 244 

but in case when the peak does not occur early the higher GDP per capita, the earlier peak occurs.  The 245 

similar relation was also observed for the relation between the duration of the infection wave and GDP 246 

per capita (Fig. 4C), i.e. the very short duration of the first epidemic wave is rather not correlated with 247 

GDP per capita but in case when the duration of the first epidemic wave is not short, the higher GDP 248 

per capita, the shorter first epidemic wave. 249 

 The results of the analysis of the associations between population density and M, T and Pinf 250 

parameters showed that the percentage of infections during the first epidemic wave in analyzed 251 

countries was dependent on the population density (p=0.0079; Fig 4D), while the day of the peak 252 

occurrence and the duration of the first epidemic wave were not dependent on population density (T: 253 

p=0.4243; Fig. 4E; M: p=0.5924; Fig. 4F).The relation between percentage of infections and 254 

population density showed local negative dependence (Fig. 4D) e.g. in case when population density is 255 
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not very high but the percentage of infections is rather high. In such case the higher population density 256 

the lower percentage of infections. 257 

 258 

Discussion 259 

 The method presented in this paper gives an indication of the spread of the COVID-19 disease 260 

in particularly any country, which provides daily numbers of infected cases. Both the presented 261 

method and techniques employed are all straightforward, well known and easy to use, since Johnson 262 

CDF fitting is available in many statistical/calculus packages, e.g. R, Statistica, MATLAB, MS Excel. 263 

Using alternative method of fitting using moments instead of shape, location and scale parameters 264 

makes it easier to set starting points for numerical fitting (e.g. by visual analyzing the scatter plot of 265 

number of infected in time). Obtained curves are extremely well fitted, which was shown on the 266 

example of 80 different countries from 6 regions. Also, obtained parameters are easy to interpret and 267 

ready to use in further analysis, such as finding associations between them and other variables which 268 

may be associated with COVID-19 dynamics, i.e. GDP per capita, population density. 269 

 To date, some research used curve-fitting with a Normal distribution to answer the real time 270 

request and applied it to COVID-19 in Wuhan (Tomie 2020) since it was known that flu epidemic 271 

followed a Normal distribution, whereas other researchers noticed the COVID-19 profile has a feature 272 

to leave a trail in an asymmetric and  applied a Lognormal distribution curve fitting (Nishimoto and 273 

Inoue 2020). The results presented in this paper showed, that in 79% of analyzed countries, first wave 274 

of infections were highly skewed, which suggest that unlike the flu, COVID-19 epidemic does not 275 

follow the normal distribution and should not be modelled in this manner. In such case log-normal 276 

distribution fitting seems to be better, however, as it was presented on the example of Afghanistan, the 277 

differences in R2 between Johnson, Normal and Lognormal CDFs seem to be small, but the difference 278 

is ca. 1 level of magnitude in favour of Johnson CDF. Moreover, one can see, that both Normal and 279 

Lognormal CDFs are fitted worse at the tails of the infection wave than Johnson CDF (Fig. 3B), and 280 

both showed lower number of infections than it was observed  (raw data) and lower than obtained 281 

using Johnson CDF. Also, fitted Lognormal curve starts to increase later than Normal and Johnson 282 

distribution curves, which in consequence would led to incorrect estimation of the beginning of the 283 

wave (11 days later than it was obtained using Johnson distribution), whereas Normal distribution is 284 

far worse fitted at the right tail than Johnson and Lognormal distributions, because the wave of 285 

infections observed in Afghanistan was not symmetrical. Beside that using Normal distribution would 286 

unable estimating the true duration of the wave decrease (it is equal to the time of the wave increase by 287 

definition), it also leads to the much lower estimation of the day when the wave of infections ends (57 288 

days earlier than estimated using Johnson distribution), which is caused by "too fast" flattering of the 289 

Normal CDF (Fig. 3B). Extremely high R2 obtained for 80 analyzed countries (Supplementary 290 

Materials) suggest that Johnson curves class is flexible enough to almost perfectly follow the course of 291 

the epidemic in this countries. This results from the fact, that both skewness and kurtosis are estimated 292 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 7, 2020. ; https://doi.org/10.1101/2020.12.05.20244178doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.05.20244178
http://creativecommons.org/licenses/by/4.0/


9 

 

parameters during Johnson curve fitting procedure, whereas the shape of other commonly used curves 293 

(Normal, Lognormal, Weibull) is more or less imposed. This result also suggests that Johnson 294 

distribution should be preferred in curve-fitting approach for COVID-19 data. 295 

 Presented curve fitting method was designed primarily to obtain easy in interpretation 296 

parameters describing past trajectory of COVID-19 infection, but parameters describing actually 297 

ongoing wave of infection, especially in its early stage (before the peak),  may be interpreted as a 298 

forecast of future course of the pandemic. However, in such case, extreme caution is advised (see 299 

Jewell et al. 2020). Presented method is purely statistical model and it does not incorporate the process 300 

that produces the number of infections pattern, and does not account for any parameters governing 301 

transmission, disease, and immunity. Also, curve fitting techniques cannot predict the occurrence of 302 

future peaks. Thus, for long term prognosis and modelling the future scenarios of the pandemic, it is 303 

recommended to use more reliable methods, based on SEIR models. Nevertheless, some short term 304 

prognosis can be obtained using presented method, which may be useful for policymakers in rapid, 305 

short term intervention planning, however one must keep in mind the abovementioned limitations of 306 

presented method, as well as the limitations resulting from the data colleting and reporting, which are 307 

discussed later in this section. 308 

 The results obtained in the presented example of the application of parameters describing 309 

COVID-19 dynamics showed, that the higher the GDP per capita, the higher percentage of the 310 

population infected was observed. This is quite unexpected result, however consistent with the result 311 

which was very recently reported by Liu et al. (2020), who found the positive correlation between 312 

human development index (HDI) and risk of infections and deaths of COVID-19 in Italy. Other 313 

obtained results showed that, excluding countries where peak of infections occurred very early and its 314 

duration was short, the higher GDP per capita, the earlier peak occurs and the first epidemic wave is 315 

shorter. This result, in turn, is similar to another very recent paper, which reported that the date of first 316 

CoVID-19 cases co-varies positively with GDP across countries, most probably due to their more 317 

intensive participation of the global tourism and traffic industries (Jankowiak et al. 2020). The other 318 

example showed that the higher population density the lower the percentage of population infected 319 

during first wave of infections. This also seems to be unexpected, however, a negative dependence 320 

result from fact that the infections are presented as a percentage, which does not scale proportionally 321 

with the population density. Another possible explanation is that in countries with high population 322 

density (e.g. China, Singapore), very strict (full) lockdowns were immediately applied (China, 323 

Kretschmer and Yang, 2020; Singapore, Cheong 2020), which could result in lower percentages of 324 

infected population than in countries with lower population density, where partial lockdown or no 325 

lockdowns at all were applied. Moreover, some research report positive correlation between 326 

population density and number of infections and related mortality (e.g. in India; Bhadra et al., 2020), 327 

while other report no evidence that population density is linked with COVID-19 cases and deaths (e.g. 328 

in USA; Carozzi et al., 2020). Nevertheless, presented examples showed the usefulness of the 329 
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presented method, but also, the very recent papers of Liu et al. (2020) and Jankowiak et. al. (2020) 330 

showed that the field of research on COVID-19, other than purely epidemiological modelling of the 331 

future pandemic scenarios, is rising, which indicate that the simple methods of obtaining parameters 332 

describing the infection waves, such as presented in this paper, may be very useful and can help to 333 

deepen our understanding of the COVID-19 pandemic. 334 

 The last but not least issue which has to be addressed is a key limitation in understanding of 335 

the COVID-19 pandemic, that the true number of infections is not known and the only known 336 

infections are those confirmed by tests. Moreover, testing strategies differs between counties i.e. in 337 

some countries only symptomatic cases are tested, while in other mass testing is performed. Also, 338 

most COVID-19 cases are asymptomatic and remain unreported (Peirlinck et al. 2020). Because of 339 

that, mortality data are generally considered as more reliable than testing-dependent confirmed case 340 

counts and used in COVID-19 epidemic modelling (e.g. Chikobvu and Sigauke, 2020). However, 341 

some countries only report COVID-19 deaths occurring in hospitals, whereas other report COVID-19 342 

deaths when test has confirmed the infection  (this makes number of death data testing-dependent as 343 

well). On the other hand, when laboratory diagnosis is not required (e.g. United Kingdom, UK 344 

Guidance), it is possible that other diseases reassembling COVID-19 symptoms may be reported as 345 

COVID-19 cause of death. It may also be difficult to evaluate the cause of death in cases, when patient 346 

had other disease (e.g. advanced stage of cancer) together with COVID-19. Taking all of the above 347 

into account, it is very likely that real number of deaths is also higher than the reported number of 348 

deaths, which was noticed in some countries (e.g. Italy, Foresti 2020, Stancati and Sylvers, 2020; 349 

China, Long et al., 2020). It seems that both confirmed new cases and confirmed deaths may not be 350 

reliable, but on the other hand, no other data is available. Some models (e.g. IHME 2020) are able to 351 

estimate true number of infections, but it is related to a number of additional assumptions, and is partly 352 

based on the reported testing-dependent data. Also, the relation between true number of infections and 353 

number of death is not well studied to date and require a number of assumptions. Using the number of 354 

infections seems to be the easiest way of obtaining basic data on the COVID-19 infection dynamics in 355 

a given country, as long as one is aware that publicly shared data show number of confirmed cases 356 

instead of number of real infections and takes this into account when interpreting the results. 357 

 In conclusion, presented method based on Johnson CDF curve fitting to the cumulative 358 

number of confirmed cases is straight forward, well known and easy to use. It  provides curves which 359 

are extremely well fitted to the data, and obtained basic parameters of COVID-19 infection dynamics 360 

are easy to interpret and to use in further statistical analysis by researchers from other fields than 361 

epidemiology (e.g. sociology, biology, ecology, etc.), and can deepen our understanding of the 362 

COVID-19 pandemic. It also may be useful in short term prognosis, however, in such case caution is 363 

advised. 364 

 365 
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 466 

 467 

Figure 1. Graphical presentation of the interpretation of the obtained parameters from Johnson 468 

Cumulative Distribution Function fitting, describing the dynamics of the two infection waves observed 469 

in Australia. Pinf  indicate the total percentage of infections in a given infection wave, Q2.5% indicate 470 

the day when the infection wave starts, Q97.5%indicate the day when the infection wave ends Q50% 471 

indicate the day when the half of the total percentage of infected during a given wave was reached, M 472 

indicate the day of the peak occurrence, T indicate the wave duration, ti indicate the duration of the 473 

wave increase, td indicate the duration of the wave decrease, Pt indicate the total percentage of 474 

population infected after two waves of infections. 475 
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 477 

Fig. 2. Examples of fitted distributions in four scenarios of COVID-19 infection dynamics. A - one 478 

ongoing infection wave (before the peak), B - full one wave, C - two waves and D - four overlapping 479 

and interfering waves. Open dots indicate raw data, red lined indicate fitted Johnson Cumulative 480 

Distribution Functions. 481 
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483 

Fig. 3.A - the trajectory of four Johnson Cumulative Distribution Functions fitted to the four waves of 484 

infections observed in Croatia, with areas where waves are overlapping and interfering. B - the 485 

differences between fitted Johnson (red line) Normal (green line) and Lognormal Cumulative 486 

Distribution Functions to the raw data from Afghanistan (black dots).  487 
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 488 

Fig. 4. Heat maps showing the local association structure between variables at different quantile levels 489 

obtained using quantile dependence function q. 490 
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