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ABSTRACT 38 

Breast cancer is a polygenic disorder and is the leading cause of cancer related mortality among 39 

women. Early-onset breast cancer (EOBC) is diagnosed in women prior to 45 years-of-age and is 40 

associated with worse clinical outcomes, a more aggressive disease phenotype, and poor prognosis 41 

for disease-free survival. While substantial progress has been made in defining the genetics of 42 

breast cancer, EOBC remains less well understood. In the current study we perform a retrospective 43 

analysis of data derived from The Two Sister Study. The use of alternate strategies for handling 44 

age-at-diagnosis in conjunction with haplotype-based methods yielded novel findings that help to 45 

explain the heritability of EOBC. These findings are validated through comparison against 46 

discordant sibs from The Two Sister Study as well as using data derived The Cancer Genome Atlas 47 

(TCGA).  48 
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INTRODUCTION 49 

Breast cancer is the most frequently diagnosed oncogenic malignancy and a leading cause 50 

of cancer-related mortality among women worldwide (1, 2). Early-onset breast cancer (EOBC) 51 

accounts for approximately 5-10% of all new female breast cancer cases and young age at 52 

diagnosis correlates with worse clinical outcomes (3, 4). Germline variants play a prominent role 53 

in the etiology of breast cancer and an estimated 10-15% of women who develop breast cancer 54 

report a familial history of the disease. Germline variants in BRCA1 or BRCA2 are observed in 15-55 

20% of familial breast cancer cases (5). Direct evidence for genetic modifiers of breast and ovarian 56 

cancer risk for BRCA1 and BRCA2 mutation carriers has been provided through genome-wide 57 

association study (GWAS) (6). Patients affected by EOBC exhibit shared patterns of gene 58 

expression that differ from their older counterparts (7). These combined observations suggest a 59 

genetic component contributes to EOBC although only a fraction of the heritability of EOBC has 60 

been explained. 61 

Deciphering the genetic basis for phenotypic heterogeneity in complex diseases remains a 62 

major challenge. Single marker association studies often lack sufficient statistical power to support 63 

the discovery of rare variants or epistatic interactions within a polygenic architecture. Haplotype-64 

based analysis is thought to have greater power than single marker association tests in the study of 65 

complex disease (8-10). Haplotypes, which consist of a series of sequentially ordered single 66 

nucleotide variants (SNVs), are a potentially more informative format for association testing than 67 

single markers and may have improved sensitivity and specificity for discovery (11, 12). 68 

Haplotype-based analysis has been used to gain insight in a wide array of complex disease models 69 

including mood disorders, multiple sclerosis,  orofacial clefting, and cancer (13-18). Moreover, 70 
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haplotype-based analysis has been effectively applied to investigate age-of-onset in human disease 71 

although relatively few studies have specifically addressed EOBC (19-23). 72 

Several approaches have been used to investigate the genetic regulation of breast cancer 73 

age-of-onset. The Two Sister Study made use of a familial case-control design with affected cases 74 

diagnosed ≤ 50 years-of-age and discordant sibs of EOBC patients defining a control population. 75 

Parental samples were included in The Two Sister Study to allow for the identification of 76 

maternally-mediated effects and Mendelian errors in transmission (24-26). Other studies have 77 

instead used categorical thresholding with diagnosis at 35, 40, 45, and 50-years-of-age to define 78 

EOBC populations contrasted against either unaffected familial controls or unrelated age-matched 79 

controls (3, 27-29). Age-of-onset has further been evaluated in terms of phenotypic extremes by 80 

comparing individuals diagnosed at ≤ 35 years-of-age against cancer-free controls at age ≥ 60 or 81 

against an age-specific cohort diagnosed with breast cancer at ≥ 65 years-of-age (30, 31). Still 82 

others have investigated breast cancer in terms of age-stratified risk or using quantitative trait 83 

analysis to support discovery. Internally consistent logic has justified the use of these and other 84 

study designs. Yet the genetic basis for EOBC remains poorly understood and more recent studies 85 

have turned towards meta-analyses aimed at achieving sufficient statistical power to identify rare 86 

variants with small effect size (32-34). 87 

Design considerations for the study of complex polygenic disorders have been evaluated 88 

across a range of disease models. For example, Peyrot and colleagues have convincingly argued 89 

against familial trio designs when investigating complex disease traits with a polygenic 90 

architecture or a lifetime risk ≥ 1% (35). Reasons given included a potential for reduced statistical 91 

power, ascertainment bias, and a significant underestimation of SNV heritability. Additional 92 

considerations in sib pair study design include the potential for misclassification and/or 93 
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overmatching (36). Misclassification of discordant sibs presents a challenge primarily in cases 94 

associated with pronounced variation in age-of-onset. Overmatching presents a more significant 95 

challenge in complex disease models where discordant sibs are likely to share an indeterminate 96 

number of disease-related  alleles. As a result, allele-frequency differences between affected and 97 

unaffected sibs are generally underestimated relative to randomly selected affected and unaffected 98 

individuals (36).  Recent investigation of polygenic risk in multiplex melanoma families indicated 99 

that familial controls may carry a significantly elevated polygenic load relative to unrelated cases 100 

or healthy controls and thereby introduce bias (37). Kerber and colleagues likewise argued that 101 

familial studies should be approached with caution, particularly when investigating complex 102 

diseases such as cancer where variable onset, incomplete genetic penetrance, gene-environment 103 

interactions, and environmental phenocopies have a dramatic potential to impact disease 104 

occurrence and phenotype (38). The authors further argued in favor of a case-only analysis for an 105 

initial scan followed by more comprehensive analysis of regions surrounding initial hits using both 106 

affected and unaffected study participants. In keeping with this reasoning, we speculated that a 107 

comparison of younger and older patients diagnosed with breast cancer might provide insight into 108 

the genetic architecture of breast cancer age-of-onset.  109 

We performed a retrospective analysis of “The Two Sister Study: A Family-Based Study of 110 

Genes and Environment in Young-Onset Breast Cancer,” hereafter referred to as “The Two Sister 111 

Study.” The Two Sister Study is one of the longest standing and best characterized studies of early-112 

onset breast cancer and hence was chosen to establish proof-of-principle. Initial screening was 113 

performed using a case-only design and haplotype-based association testing while treating age-at-114 

diagnosis as a categorical variable. Candidate regions identified through this initial screen were 115 

subsequently evaluated against discordant sibs defined within The Two Sister Study by variance 116 
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partition analysis and haplotype-trend regression. Findings were validated using data derived from 117 

phase III of the 1000 Genomes Project and mutation and The Cancer Genome Atlas (TCGA). 118 

RESULTS 119 

Our objective in this study was to investigate the genetic basis for EOBC. Access to The 120 

Two Sister Study was obtained through the Database of Genotypes and Phenotypes (dbGAP; 121 

accession phs000678.v1.p1). The demographics of the study population have been described 122 

elsewhere (25, 26, 39). The original study compared patients affected by young-onset breast cancer 123 

(age-at-diagnosis ≤ 50) with familial controls using a case-control design and affected status as a 124 

binary outcome. Pertinent populations for the purpose of this study included 1,456 cases affected 125 

by breast cancer and 525 discordant sibs. 126 

For initial screening, the affected population was dichotomized by virtue of age-at-127 

diagnosis using statistical modules within the %findcut SAS macro. The %findcut macro 128 

calculates thresholds for the dichotomization of continuous variables and plots a local linear 129 

regression (LOESS) curve which may be used to determine whether dichotomization is appropriate 130 

for the variable in question (40). While a continuous trait would be expected to produce a linear 131 

trend line with a slope ≅ 0, the LOESS curve generated while analyzing The Two Sister Study case 132 

population failed to meet the assumption of linearity (Supplemental Fig S1). The observed slope 133 

and steep bend in the LOESS curve exhibited characteristics of a categorical variable justifying 134 

dichotomization of the affected population based upon age-at-diagnosis. Theoretical cutpoints 135 

were calculated using the %findcut macro and the mean value was used to distinguish between 136 

younger (diagnosis ≤ 45 years-of-age; N = 735) and older (diagnosis > 45 years-of-age; N = 721) 137 

populations. 138 
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Candidate prioritization initially involved a comparison of the younger and older affected  139 

populations using haplotype-based association testing with an expectation-maximization (EM) 140 

algorithm and a dynamic window size of 10 kilobases (kb) (Fig 1a). Quantile-quantile plotting 141 

verified that the resulting data was normally distributed (Supplemental Fig S2). Several peaks 142 

were observed by Manhattan plot (Fig 1a) with 6 haplotypes located at chromosome 6: 143 

111,936,275-111,964,664 surpassing the threshold for genome-wide significance (p ≤ 5 x 10-8). 144 

This preliminary analysis identified 762 haploblocks representing 4,126 haplotypes (Table 1). 145 

Upon filtering using p > 5 x 10-4 as a threshold for exclusion, 322 haplotypes within 282 146 

haploblocks spanning 64 discrete autosomal regions were retained. Of these 64 regions, 15 were 147 

associated with a single haploblock and 49 included two or more adjacent haploblocks with block 148 

clusters ranging from 2-14 haploblocks in length. 149 

 Fine mapping of the aforementioned chromosomal regions was performed using 150 

haplotype-based association testing and sliding windows of 2-6 SNVs in length as previously 151 

described by Mathias et al. (41). Assuming a panel of 684,126 variants and 3,420,615 independent 152 

tests across all windows a Bonferroni corrected threshold for genome-wide significance was 153 

calculated as p ≤ 2.92 x 10-8 using the method described by Song et al (42). A single-locus mixed 154 

model analysis was performed for comparison using an identity-by-state kinship matrix and an 155 

Efficient Mixed-Model Association eXpedited (EMMAX) algorithm as implemented in Sequence 156 

Variation Suite software (Golden Helix, Bozeman, MO). To facilitate direct comparison of single 157 

marker and haplotype-based analyses, Manhattan plots were overlaid (Fig 1b). Only windows of 158 

2, 4, and 6 SNVs in length were included within the composite plot for visual clarity. The 159 

composite image indicated haplotype-based testing generally outperformed single marker 160 

association testing and increasing haplotype window size generally correlated with improved 161 
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statistical strength. Haplotypes located at chromosome 6: 111,936,275-111,964,664 including the 162 

rs17754910 marker consistently exceeded the threshold for genome-wide significance with the 163 

most significant haplotype (GACGAA; p ≤ 3.34 x 10-10) consisting of markers rs671271, 164 

rs17754910, rs490080, rs1327199, rs9487771, and rs585057. Composite windows representing all 165 

haplotypes of 2-6 SNVs in length were filtered selecting for haplotypes with a χ2 p value ≤ 5 x 10-166 

5. This filter was applied as an incremental step towards achieving our objective which was to 167 

identify regions where increasing haplotype structure correlated with improved significance. In 168 

total 466 haplotypes consisting of 417 unique variants spanning 165 unique haploblocks remained 169 

(Table 1; Supplemental Table S1). Of the 165 haploblocks, ten  were isolated and nonadjacent. 170 

Five of these blocks were excluded from further analysis because: 1) the component SNVs were 171 

represented in adjacent clusters (blocks 6611, 7202, 8926, and 9337); or, 2) the isolated block was 172 

weakly associated with an existing cluster (block 7489). The remaining isolated haploblocks 173 

(blocks 3738, 6951, 7182, 8759, and 9862) failed to exhibit a significant association with age-of-174 

onset based on regression analysis and hence were excluded from further consideration. The 175 

remaining 155 haploblocks consisted of 264 unique SNVs and formed consecutive clusters 176 

defining 33 discrete chromosomal regions (Supplemental Table S2). The most significant 177 

haploblocks within each of the 33 chromosomal regions are defined in Supplemental Table S3. 178 

Visualization of haplotype structure was performed using the “Graphical Assessment of 179 

Sliding P-values” (GrASP) excel macro (41). The GrASP macro concisely depicts haplotype 180 

windows of varying length with corresponding p values,  providing an efficient means for 181 

screening regions of interest while visualizing haplotype substructure. Of the chromosomal regions 182 

examined using the GrASP macro, 13 exhibited improvement in statistical significance and 183 

incremental changes in haplotype structure with increasing window size (Table 1). Composite 184 
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images reflecting sliding window p values and the relative position of functional elements within 185 

candidate regions are depicted in Fig 2. Regions of interest exhibiting improved significance with 186 

increasing window size were associated with TP73, LYPD6B, KIAA1109, ADAD1, IL2, a 187 

regulatory enriched region on chromosome 6, ARHGEF10, AGO2, CNNM1, LINC00941, 188 

PPFIBP1, and non-coding loci including AL160035.1 and the NEK4P1 pseudogene. As displayed 189 

in Fig 2 the region defined on chromosome 6 was the only region to exceed the threshold for 190 

genome-wide significance. The region defined on chromosome 6 is functionally enriched 191 

consisting of predicted regulatory elements including promoter and promoter flanking regions, 192 

multiple enhancers, CTCF binding sites, and putative transcription factor binding sites. The nearest 193 

sequence element was LINC02527 located within ~11 kb of the defined region on chromosome 6. 194 

Other regions of particular note identified through this screen included ARHGEF10 and IL2 both 195 

of which are listed within the COSMIC census of known cancer drivers. Odds ratios and 95% 196 

confidence intervals for the aforementioned chromosomal regions are portrayed as a forest plot 197 

comparing younger and older breast cancer populations in Fig 3. Positive correlations between 198 

candidate haplotypes and younger breast cancer patients (diagnosis ≤ 45 years-of-age) relative to 199 

older breast cancer patients (diagnosis = 46-50 years-of-age) were associated with LYPD6B, the 200 

long arm of chromosome 6, AGO2, LINC00941, and PPFIBP1. The most striking comparison was 201 

associated with LYPD6B with an OR = 6.95 and a 95% CI of 2.47-19.51.  Negative correlations 202 

between candidate haplotypes and younger breast cancer patients (diagnosis ≤ 45 years-of-age) 203 

relative to older breast cancer patients (diagnosis = 46-50 years-of-age) were associated with TP73, 204 

ADAD1, IL2, ARHGEF10, CNNM1, the long arm of chromosome 13, and the long arm of 205 

chromosome 21. 206 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted December 7, 2020. ; https://doi.org/10.1101/2020.12.04.20244251doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.04.20244251


Comparison of haplotype frequencies between siblings, however, failed to fully address 207 

the potential for overmatching as previously described (36). Correction for hidden population 208 

stratification through the use of kinship matrices provides an important and essential control in 209 

genotypic analyses but may be more robustly controlled for through population-based haplotype 210 

frequency analysis drawing upon data outside of the discovery population. Hence, we evaluated 211 

haplotype frequencies observed within The Two Sister Study against  phase III data from the 1,000 212 

Genomes Project (Fig 4). Towards this end haplotype frequencies derived from The Two Sister 213 

Study were compared to haplotype frequencies observed in African (AFR), American (AMR), 214 

East Asian (EAS), and non-Finnish European (EUR) populations. Viewed within this context, 215 

haplotype frequencies within The Two Sister Study were elevated in comparison to AFR and/or 216 

AMR populations for TP73, the KIAA1109 promoter, ADAD1, IL2,  ARHGEF10, CNNM1, and 217 

the long arms of chromosomes 6, 13, and 21. Eight haplotypes did not occur within the EAS 218 

population. Minimal variation was observed in the non-Finnish EUR population relative to The 219 

Two Sister Study. 220 

Haplotype trend regression was used to analyze the aforementioned 33 autosomal regions 221 

of interest in both affected (1,456 breast cancer patients) and unaffected (525 discordant sibs) 222 

populations as originally defined within The Two Sister Study. Whereas visual representation of 223 

data using the GrASP macro provided an intuitive sense of evolving haplotype structure, haplotype 224 

trend regression provided robust measures of statistical significance. Full model permuted p values 225 

indicated 14 of the 33 regions investigated were significantly associated with EOBC within the 226 

affected population (Table 2). Conversely, haplotype trend regression failed to detect significant 227 

associations between the candidate regions and discordant sibs. Haplomaps summarizing marker 228 
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distributions are presented in Supplemental Figure S3 and marker characteristics are described 229 

in Supplemental Table S4. 230 

In an attempt to validate our findings, we first analyzed breast cancer expression data 231 

obtained through cbioportal (43). The expression data included the “mRNA expression z-scores 232 

relative to normal samples (log RNA Seq V2 RSEM)” file and included representing 994 donors. 233 

Variance partition analysis was performed to evaluate associations between gene expression and 234 

age-at-diagnosis. Summary findings indicated that expression of AGO2, KIAA1109, and PPFIBP1 235 

was significantly associated with breast cancer age-at-diagnosis and explained 4.47% of age-236 

related variance within the population (Table 3). 237 

Subsequent analysis was performed in an attempt to correlate gene-specific mutation types 238 

with age-at-diagnosis. Due to the rarity of discrete mutation types the study population was 239 

expanded to include 30 studies across various tissues that were accessed through cbioportal. 240 

Pediatric studies were excluded from analysis and 20 years-of-age was applied as a cutoff to 241 

exclude minors. Subpopulations were defined by the affected gene and type of mutation 242 

(amplification, deletion, missense/truncating mutation). Significant associations linking age-at-243 

diagnosis to (candidate x mutation type) were identified by two sample Z-test (Table 4). The mean 244 

age-at-diagnosis ± standard deviation for controls was 60.2 ± 13.13 years-of-age. Significant 245 

associations between age-at-diagnosis and gene-specific copy number variants involving 246 

amplifications were observed in ARHGEF10 (63 ± 10.86; p = 0.029); CNNM1 (54.2 ± 11.61; p = 247 

0.004); LYPD6B (57.5 ± 13.39; p = 0.04); and TP73 (62.9 ± 10.38; p = 0.021). Significant 248 

associations between age-at-diagnosis and gene-specific copy number variants involving deletions 249 

were observed in ADAD1 (64.4 ± 10.06; p = 0.0047); AGO2 (64.6 ± 11.02; p = 0.022); CNNM1 250 

(66.1 ± 10.42; p = 0.00011); IL2 (64.4 ± 10.06; p = 0.0047); KIAA1109 (64.6 ± 9.57; p = 0.0023); 251 
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and LYPD6B (64.8 ± 10.36; p = 0.00091). Significant associations involving missense/truncating 252 

mutations followed a trend similar to that observed in association with deletions as might be 253 

expected in terms of functional consequence. 254 

DISCUSSION 255 

 Our objective in this retrospective study was to gain insight into the genetics of EOBC 256 

using existing data sets. We proposed to do so through a subtle rephrasing of the initial hypothesis 257 

and by applying haplotype-based methods rather than single marker tests of association. The Two 258 

Sister Study data set was chosen for retrospective analysis because it is among the best 259 

characterized studies involving EOBC and because the data structure lends itself to formation of 260 

alternative hypotheses. We believe there is a need to explore alternatives in the study of complex 261 

disease in general because the greater portion of phenotypic heterogeneity in complex disease 262 

remains unexplained. By way of example the investigation of breast cancer has resulted in the 263 

identification of a handful of genetic drivers with large effect and more than 200 susceptibility loci 264 

with minor effect explaining less than half of breast cancer heritability. Known drivers associated 265 

with EOBC are less well defined. Yet EOBC accounts for an estimated 10% of all new breast 266 

cancer cases among women and an estimated 15% of breast cancer deaths result from breast 267 

cancers initially diagnosed prior to 45 years-of-age (3, 44). 268 

 The Two Sister Study made use of a familial study design to identify maternally-mediated 269 

affects and germline associations with EOBC by contrasting breast cancer patients diagnosed prior 270 

to the age of 50 against discordant siblings (25, 26). In the current study we addressed a different 271 

question and hypothesized that candidate associations with EOBC might more readily be identified 272 

by contrasting younger and older cases of breast cancer. This supposition is consistent with 273 
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arguments presented by Kerber and colleagues (38), although the merits of treating age as a 274 

categorical variable remains a subject of debate (45-47).  275 

Initial haplotype-based association studies to compare cases (age-at-diagnosis ≤ 45) and 276 

controls (age-at-diagnosis = 46-50) yielded normally distributed results as determined by QQ plot. 277 

Preliminary screening alone identified a single SNV exceeding genome-wide significance 278 

(rs17754910; p = 4.73 x 10-9, FDR = 0.0016). Haplotype-based association testing and sliding 279 

window analysis helped identify 33 chromosomal regions of interest, 13 of which exhibited 280 

increasing haplotype structure in conjunction with improved measures of significance. The 281 

qualitative observations resulting from sliding window analysis were subsequently corroborated 282 

by haplotype trend regression with 14 of the 33 candidate regions achieving a permuted p value ≤ 283 

0.05. It should be noted that the only haplotypes to achieve genome-wide significance by means 284 

of haplotype-based association testing  included the rs17754910 SNV on chromosome 6 in a region 285 

enriched with regulatory elements. The nearest sequence element approximately 11 kb upstream 286 

of the rs17754910 SNV is the non-coding LINC02527 RNA (chromosome 6: 111,900,306-287 

111,909,395). We note that alternating methylation patterns are observed within the LINC02527 288 

promoter in various cancers including breast cancer (48). Other candidates identified by haplotype 289 

trend regression included the known cancer drivers IL2 and ARHGEF10 (interleukin 2 and rho 290 

guanine nucleotide exchange factor 10, respectively) neither of which have previously been 291 

associated with an early-onset cancer phenotype. The remaining candidates identified by haplotype 292 

trend regression may be broadly categorized in terms of known involvement in cancer, metastasis, 293 

and age-of-onset in disease. AGO2 (argonaute 2), CNNM1 (cyclin and CBS domain divalent metal 294 

cation transport mediator 1), KIAA1109, and TP73 (tumor promoter 73) have been implicated in 295 

breast cancer, metastasis, and disease age-of-onset (49-57). The noncoding LINC00941 RNA, 296 
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LYPD6B (LY6/PLAUR Domain Containing 6B), and PPFIBP1 (liprin-beta-1) have been 297 

implicated in cancers that may or may not include breast cancer, have been implicated in 298 

metastasis, but have no known association with disease age-of-onset (58-61). ADAD1 (adenosine 299 

deaminase domain containing 1) has no known association with cancer but has been associated 300 

with early-onset asthma and may have a role in childhood seizures. Last, the NEK4P1 pseudogene 301 

and the AL160035.1 sequence have no known associations with cancer, metastasis, or disease 302 

onset. Though not addressed within the body of this study, we note that Ingenuity Pathway 303 

Analysis associated AGO2, ARHGEF10, CNNM1, IL2, KIAA1109, LYPD6B, PPFIBP1, and TP73 304 

with a single network  centered around nodes formed by TP53 and the estrogen receptor. We note 305 

the obvious absence of BRCA1/BRCA2 within the network and mention it here as an anecdote 306 

worthy of speculation. 307 

Haplotype frequency analysis within The Two Sister Study and phase III data from the 1000 308 

Genomes Project yielded insight specifically with regard to the potential hazards of overmatching 309 

in study design. As mentioned overmatching presents a potentially significant challenge in 310 

complex disease models where discordant sibs are likely to share an indeterminate number of 311 

disease-related  alleles (36). If, as suggested by the current literature, hundreds of discrete 312 

susceptibility loci control breast cancer occurrence and phenotypic expression, we must consider 313 

the possibility that familial controls carry a greater burden of polygenic risk alleles without 314 

necessarily experiencing disease occurrence. Because no single allele drives breast cancer 315 

occurrence, it logically follows that differences in allele or haplotype frequencies between 316 

discordant sibs may lack the capacity to distinguish between alleles associated with phenotypic 317 

heterogeneity in complex disease. It is known that familial controls may carry a significantly 318 

elevated polygenic load relative to unrelated cases or healthy controls creating an uncontrolled 319 
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source of bias in discovery (37). By way of example we note that haplotype frequencies are 320 

elevated in discordant sibs relative to affected breast cancer patients for TP73, IL2, and 321 

ARHGEF10 (Fig 3). IL2 and ARHGEF10 are both listed within the COSMIC census of known 322 

cancer drivers and it does not require a stretch of the imagination to consider that TP73 might play 323 

a role in breast cancer. Based solely upon haplotype frequencies observed in discordant sibs, it 324 

would appear that all three haplotypes are negatively correlated with EOBC. Yet the observed 325 

haplotype frequencies for these three genes within The Two Sister Study are elevated when 326 

compared to the 1000 genomes phase III AMR population by 1.54-fold, 1.68-fold, and 1.82-fold, 327 

respectively. The undefined element on chromosome 21 is elevated by 18.86-fold relative to the 328 

AFR population although the very same haplotype is more abundant in discordant sib controls 329 

relative to breast cancer patients diagnosed at ≤ 50 years-of-age.  330 

Because this study was retrospective a replication of our findings would be challenging 331 

without a prospective collection of new data, something which is beyond the scope of the current 332 

study. In the absence of replication, we have attempted to validate our findings with supporting 333 

evidence as a matter of due diligence. Towards this goal breast cancer gene expression data derived 334 

from the TCGA pan-cancer study was evaluated using regression modeling and variance partition 335 

analysis to identify correlations between gene expression and age-at-diagnosis. Earlier age-at-336 

diagnosis was associated with higher expression of AGO2 (p = 1.19 x 10-4), KIAA1109 (p = 1.13 337 

x 10-5), and PPFIBP1 (p = 1.07 x 10-3). These findings are consistent with prior studies involving 338 

AGO2 and KIAA1109 and provide new evidence suggesting a potential association of PPFIBP1 339 

expression in EOBC (50, 54). Under the assumption of an additive model, expression of these 340 

three genes was calculated to explain a combined 4.47% of age-related variance within the study 341 

population.  342 
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Subsequent validation involved the evaluation of age-at-diagnosis as a function of gene-343 

specific mutations drawing upon available data from 30 distinct cancer studies for statistical 344 

purposes. Of the gene-specific mutations the vast majority were observed to result in a significant 345 

increase in the mean age-at-diagnosis. We speculate that most of these mutations are unlikely to 346 

be causally associated with late-onset disease and instead reflect the global accumulation of 347 

damage as a secondary consequence of errors in DNA repair. The candidate genes CNNM1 and 348 

LYPD6B shared a unique feature, though, in that both exhibited bidirectionality of effect depending 349 

upon mutation status. Gene amplifications affecting CNNM1 and LYPD6B were associated with a 350 

significantly lower mean age-at-diagnosis (54.2 ± 11.61 and 57.5 ± 13.39 years-of-age, 351 

respectively). Deletions affecting CNNM1 and LYPD6B were conversely associated with a 352 

significant increase in mean age-at-diagnosis (66.1 ± 10.42 and 64.8 ± 10.36 years-of-age, 353 

respectively). This bidirectionality of effect, we believe, is sufficiently compelling to warrant 354 

further investigation of CNNM1 and LYPD6B as contributory factors in EOBC. 355 

 Complex disease phenotypes remain a major challenge in the genomic sciences. 356 

Frequentist strategies, based upon the assumption that more data will translate into more insight, 357 

are currently in vogue and serve a valuable purpose. The identification of rare variants associated 358 

with disease is a matter of sample size and ongoing efforts to integrate disparate data sets for meta-359 

analysis is a monumental challenge. Our objective in the current study is less ambitious and merely 360 

asks if we can repurpose data to improve our understanding of complex disease. To that limited 361 

extent, we have achieved our goal. We have identified a new candidate of genome-wide 362 

significance with a potential role in EOBC. We have provided strong supporting evidence 363 

justifying the pursuit of a handful of priority candidates with a potential role in EOBC. We have 364 

identified two known cancer drivers with a potential involvement in disease onset. And, we have 365 
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highlighted conditions where frequentist analysis may lead to questionable conclusions in the 366 

analysis of familial data. Data-mining, in this instance, suggests that there may be merit in re-367 

examining existing data and the assumptions made during initial inquiry.  368 
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METHODS 369 

Data: The Two Sister Study. Discovery was performed using data derived from The Two Sister 370 

Study: A Family-Based Study of Genes and Environment in Young-Onset Breast Cancer (accession 371 

phs000678.v1.p1). Study contents were accessed under a Data Use Certification (DUC) 372 

Agreement via the Database of Genotypes and Phenotypes (dbGAP). The dataset includes 373 

genotypic, phenotypic, and demographic data for 1,456 patients, 525 discordant sib controls, and 374 

an additional 1,359 controls. The demographics of the population have been described (25, 26, 375 

39). The parent study described 1,458 patients. We believe two of these patients were erroneously 376 

excluded from the present study during filtering to eliminate duplicate samples. Quality control 377 

filtering of the corresponding genotypic data retained a total of 684,126 variants with a call rate ≥ 378 

0.99, a minor allele frequency ≥ 0.05, and a Hardy-Weinberg p value ≥ 1 x 10-6 within the older 379 

“control” population. 380 

Data: cbioportal. In order to validate initial findings clinical data spanning 30 studies representing 381 

10,902 donors was accessed through cbioportal (43). A total of 220 donors were excluded due to 382 

cross-study differences in the definition of donor age. An additional 23 donors diagnosed prior to 383 

the age of 20 were excluded as minors. The studies were selected based on three criteria: 1) existing 384 

evidence of an early-onset cancer phenotype within the tissue; 2) the availability of data defining 385 

age-at-diagnosis; and 3) exclusion of pediatric studies. Composite data included the following 386 

studies: Acute Myeloid Leukemia (OHSU) (62), Breast Cancer (METABRIC) (63, 64), Breast 387 

Cancer (SMC) (65), Breast Fibroepithelial Tumors (Duke-NUS) (66), Breast Invasive Carcinoma 388 

(British Columbia) (67), Breast Invasive Carcinoma (Broad) (68), Breast Invasive Carcinoma 389 

(Sanger) (69), Breast Invasive Carcinoma (TCGA, PanCancer Atlas) (70), Cervical Squamous Cell 390 

Carcinoma (TCGA, PanCancer Atlas) (71), Clear Cell Renal Cell Carcinoma (DFCI) (72), 391 
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Colorectal Adenocarcinoma (DFCI) (73),  Colorectal Adenocarcinoma (TCGA, PanCancer Atlas) 392 

(71), Esophageal Adenocarcinoma (TCGA, PanCancer Atlas) (71), Esophageal Squamous Cell 393 

Carcinoma (ICGC) (74), Esophageal Squamous Cell Carcinoma (UCLA) (75), Kidney 394 

Chromophobe (TCGA, PanCancer Atlas) (71), Kidney Renal Clear Cell Carcinoma (BGI) (76), 395 

Kidney Renal Clear Cell Carcinoma (IRC) (77), Kidney Renal Clear Cell Carcinoma (TCGA, 396 

PanCancer Atlas), Kidney Renal Papillary Cell Carcinoma (TCGA, PanCancer Atlas) (71), Liver 397 

Hepatocellular Carcinoma (TCGA, PanCancer Atlas) (71), Lung Adenocarcinoma (OncoSG) (78), 398 

Lung Adenocarcinoma (TCGA, PanCancer Atlas) (71), Ovarian Serous Cystadenocarcinoma 399 

(TCGA, PanCancer Atlas) (71), Prostate Adenocarcinoma (Broad/Cornell) (79), Prostate 400 

Adenocarcinoma (Fred Hutchinson CRC) (80), Prostate Adenocarcinoma (TCGA, PanCancer 401 

Atlas) (71), Small Cell Carcinoma of the Ovary (MSKCC) (81), Uterine Carcinosarcoma (Johns 402 

Hopkins) (82), and Uterine Corpus Endometrial Carcinoma (TCGA, PanCancer Atlas) (71). 403 

Samples lacking mutation in any of the candidate genes were assembled into a control dataset (N 404 

= 7026). In order to validate initial findings, experimental data sets were assembled on a per gene 405 

basis and subcategorized according to mutation type (amplification, deep deletion, or 406 

missense/truncating mutations).  407 

Data: The 1000 Genomes Project. Genotypic data from phase III of the 1000 Genomes Project 408 

was obtained through the Ensembl data portal Donor identification numbers were matched to 409 

genotypic data in order to assemble haplotypes. Quantification of haplotype frequencies was 410 

subsequently performed using the Haploview software package. 411 

Cutpoint optimization. The %findcut SAS macro was used to calculate cutpoints as previously 412 

described (83). The mean value was used as the cutoff for dichotomizing the case population in all 413 

subsequent analyses. 414 
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Association testing. All association testing was performed using the Sequence Variation Suite 415 

software package (Golden Helix, Bozeman, MO) and a custom workstation with dual Xeon Gold 416 

12-core processors and 192 Gb RAM (Thinkmate, Waltham, MA). Genotypic data sourced from 417 

The Two Sister Study was filtered to exclude variants with a call rate ≤ 0.99, a minor allele 418 

frequency < 0.05, or extremes in Hardy-Weinberg disequilibrium within the control population (p 419 

≤ 1 x 10-6). In order to identify regions of interest, haplotype-based association testing was 420 

performed using an EM algorithm (50-iterations, convergence tolerance = 0.0001, frequency 421 

threshold = 0.01) and a dynamic window size of 10 kilobases (kb). Covariates in the analysis 422 

included race, family history of disease occurrence, and age-at-menopause. Regions of interest 423 

were identified using a threshold of p ≤ 5 x 10-4.  424 

Sliding window haplotype-based association testing. Sliding window analysis was performed 425 

essentially as described by Mathias et al (41). Genotypic data from patients affected by breast 426 

cancer was filtered as described leaving a total of 684,126 variants for analysis. Sliding window 427 

analysis was subsequently performed using windows of varying size (2-6  SNPs) to evaluate 428 

unphased haplotypes. Analysis was performed using a case-control design and an EM algorithm 429 

(50-iterations, convergence tolerance = 0.0001, haplotype frequency threshold = 0.01). Applied 430 

test statistics consisted of a single test per sliding window and not the individual tests for each 431 

haplotype. For comparison, a single-locus Efficient Mixed-Model Association eXpedited 432 

(EMMAX) analysis was performed under an additive model using Sequence Variation Suite 433 

software (Golden Helix). 434 

Manhattan plots. Manhattan plots were generated by plotting of observed versus expected -log[p] 435 

values. A single plot was constructed using output from haplotype-based association testing with 436 

a static window size of 10 kb for reference. A second composite plot was constructed by overlaying 437 
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the output from single marker association tests and sliding window association tests using windows 438 

of 2, 4, and 6 SNVs in length.  439 

Graphical assessment of p-values from sliding window haplotype tests (GrASP). GrASP is a 440 

graphical tool for displaying p-values from sliding window tests (41). The Excel add-on produces 441 

a simple graphic that simultaneously depicts the width of the sliding windows while using user-442 

specified color to specify varying levels of significance. GrASP allows the user to identify 443 

regions/blocks of interest, based jointly on the absolute p-value of the tests from these windows 444 

and the building of haplotypes of significance in the region. Graphical representations for regions 445 

of interest were assembled and trimmed to display regions of increasing significance while 446 

minimizing the length of flanking sequence falling below a threshold of p < 5 x 10-5. Assembled 447 

images were presented within the context of functional genomic elements as defined within the 448 

Ensembl human genome browser (GRCh38). GrASP is freely available for use at: 449 

http://research.nhgri.nih.gov/GrASP/. 450 

Forest plot. Odds ratios (OR) and 95% confidence intervals (95% CI) were derived from a single 451 

overall test per sliding window, and not the individual tests of deviation for each haplotype. 452 

Weighting was performed using –(log[p]) as the weighting variable so that symbol size directly 453 

correlated with significance. A Forest plot depicting the OR and 95% CI was generated using the 454 

“DistillerSR Forest Plot Generator from Evidence Partners” web resource 455 

(https://www.evidencepartners.com/resources/forest-plot-generator/).  456 

Haplotype trend regression. Haplotype trend regression was performed using the Sequence 457 

Variation Suite software package (Golden Helix). Analysis was performed using predefined blocks 458 

as described within the text and Supplemental Table S3. Stepwise regression was performed 459 

using backwards elimination and up to 50 EM iterations with a convergence tolerance of 0.0001 460 
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and frequency threshold of 0.01. Full versus reduced model regression was performed using age-461 

at-diagnosis as a quantitative trait, with race, family history of disease, and menopause status as 462 

covariates. Correction for multiple testing was performed using Bonferroni adjusted p values and 463 

1,000 full scan permutations. 464 

Haplotype frequency analysis. EM frequencies representing the 1,456 cases defined in The Two 465 

Sister Study were contrasted against population-specific haplotype frequencies. Population-466 

specific data was gathered from phase III of the 1000 Genomes Project and haplotype frequencies 467 

were determined using Haploview software (84).  468 

Variance partition analysis. Data derived from the TCGA Pancancer Atlas Breast Invasive 469 

Carcinoma study (70) was evaluated in the R software environment using the VariancePartition 470 

application (85). Expression data consisted of z-score measures relative to normal samples 471 

obtained through cbioportal. Expression data was unavailable for ADAD1 and hence this candidate 472 

was excluded from the analysis. Age-at-diagnosis was correlated with expression data as 473 

previously described. 474 

Pancancer mutation analysis. To evaluate the impact of mutation type on cancer age-of-onset 475 

meta-data representing 9 candidate genes from 30 studies was obtained as described. A total of 476 

220 donors were excluded due to cross-study differences in the definition of donor age. Pertinent 477 

data included age-at-diagnosis/diagnosis age, gene-specific copy number variants, gene-specific 478 

coding variants (missense/truncating). Samples lacking mutation in any of the candidate genes 479 

were assembled into a control dataset (N = 7026). Experimental populations were defined on a per 480 

gene basis and were classified by mutation type (amplifications, deep deletions, or 481 

missense/truncating mutations). Distribution analysis was performed using a two sample Z-test 482 
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and the equation Z = (�̅�1 – �̅�2)/√𝜎�̅�1
2 +  𝜎�̅�2

2  where �̅�1 is the mean age-at-diagnosis for the control 483 

population, �̅�2 is the mean age-at-diagnosis for the case population, 𝜎�̅�1
2  is the standard deviation 484 

for the control population divided by the square root of the number of data points, and 𝜎�̅�2
2  is the 485 

standard deviation for the case population divided by the square root of the number of data points. 486 

Corresponding p values were calculated for each independent test statistic.  487 
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Table 1. Summary representation of data in terms of methodology. 

Screening method SNVs Haplotypes Haploblocks CHR RoI RoI 
Haplotype (10 kb) 762 4126 762 ND ND 

10-4 filter 415 322 282 64 ND 

2-6 SNV windows 417 466 165 33 13* 

HTR 417 466 165 33 33 

Permuted p ≤ 0.05 64 14 14 14 14 

Table 1. Sequential application of methods and filters defines a short list of candidates which may 

associate with breast cancer age-of-onset. HTR = Haplotype trend regression; SNVs = single nucleotide 

variants  retained at each stage of analysis; Haplotypes = haplotypes retained at each stage of analysis; 

Haploblocks = haploblocks retained at each stage of analysis; CHR RoI = chromosomal regions defined by 

the remaining haploblocks; RoI = regions of interest retained after analysis; * indicates region of interest 

was evaluated by visual assessment of data representation as opposed to statistical measures. ND = Not 

determined. 
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Table 2. Haplotype trend regression comparing discordant sibs. 

Candidates Affected Unaffected Sibs 

CHR POS FM P Bon.P PermP FM P Bon.P PermP 

1 3605097 3.44E-18 6.55E-03 4.9E-02 6.57E-39 1 1 

2 149978783 8.19E-21 1.21E-05 1.0E-03 6.85E-40 1 0.99 

4 123066575 9.94E-19 1.71E-03 1.0E-02 3.58E-39 1 1 

4 123150286 1.18E-20 1.53E-05 1.0E-03 4.47E-40 0.36 0.86 

4 123306223 1.34E-19 2.01E-04 2.0E-03 1.45E-39 0.11 0.59 

4 123370387 1.82E-19 2.77E-04 2.0E-03 4.98E-41 0.051 0.45 

6 112261385 3.65E-18 6.47E-03 4.7E-02 5.79E-39 1 1 

8 1898547 2.77E-18 5.18E-03 3.3E-02 5.90E-40 0.76 0.95 

8 141594881 7.49E-19 1.26E-03 5.0E-03 6.56E-40 0.88 0.97 

10 101117689 2.23E-18 3.05E-03 1.9E-02 1.44E-39 1 1 

12 27698751 3.04E-18 5.74E-03 4.0E-02 1.70E-40 0.073 0.52 

12 30957220 1.28E-18 2.25E-03 1.4E-02 7.46E-39 1 1 

13 27545444 7.29E-19 1.23E-03 5.0E-03 2.91E-39 1 1 

21 18544139 2.15E-18 3.94E-03 2.5E-02 2.10E-37 1 1 

 

Table 2. Haplotype trend regression underscores significant differences between breast cancer 

patients and unaffected sibs. Haplotype trend regression was performed using haplotypes as defined in 

Table 1. By way of contrast, regression analysis was performed using age-at-diagnosis as a quantitative 

trait comparing breast cancer patients to unaffected sibs. CHR = chromosome, POS = position of the first 

marker, FM P = the p value resulting from full model trend regression, Bon.P = the Bonferroni adjusted p 

value, and PermP = the permuted p value after 1,000 permutations. The 14 haplotypes all showed a 

significant association with age-of-onset in breast cancer patients, whereas no significance was observed 

in discordant sibs. Although not displayed, similar analysis using age-at-diagnosis as a categorical variable 

yielded similar findings. 
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Table 3. Correlating gene expression with age-at-diagnosis. 

GENE T PR(>|T|) F-STAT P VARIANCE 

AGO2 -3.86 1.19E-04 14.93 1.19E-04 1.48% 

ARHGEF10 -0.89 3.72E-01 0.7984 3.72E-01 0.08% 

CNNM1 0.056 9.56E-01 0.0031 9.56E-01 0.00% 

IL2 1.32 1.88E-01 1.733 1.88E-01 0.17% 

KIAA1109 -4.41 1.13E-05 19.48 1.13E-05 1.92% 

LYPD6B 1.41 1.59E-01 1.99 1.59E-01 0.20% 

PPFIBP1 -3.28 1.07E-03 10.77 1.07E-03 1.07% 

TP73 -0.55 5.83E-01 0.3013 5.83E-01 0.03% 

Table 3. Expression of AGO2, KIAA1109, and PPFIBP1 correlates with age-at diagnosis in breast 

cancer patients. Gene expression data was regressed using the VariancePartition R package. The 

additive effect of AGO2, KIAA1109, and PPFIBP1 expression contributed to 4.47% of the variance in age 

across the TCGA breast cancer data set. 
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Table 4. Correlating mutation-type with age-at-diagnosis. 

 
AMPLIFICATION DEEP DELETION MUTATION 

 
GROUP 

Mean SD N Z P Mean SD N Z P Mean SD N Z P 

CONTROL 60.2 13.13 7026 0.00 N/A 60.2 13.13 7026 0 N/A 60.2 13.13 7026 0.00 N/A 

ADAD1 58.3 12.65 22 1.13 0.26 64.4 10.06 26 -2.83 4.70E-03 61.5 13.27 99 -1.04 2.97E-01 

AGO2 60.3 12.53 910 -0.10 0.92 64.6 11.20 11 -2.30 2.17E-02 64.6 13.04 131 -3.83 1.28E-04 

ARHGEF10 63.0 10.86 54 -2.20 0.029 61.9 11.46 298 -1.80 7.14E-02 65.2 12.59 131 -4.40 1.10E-05 

CNNM1 54.2 11.61 8 2.90 0.004 66.1 10.42 23 -3.86 1.14E-04 64.2 12.44 87 -3.20 1.37E-03 

IL2 57.6 12.54 21 1.53 0.127 64.4 10.06 26 -2.83 4.70E-03 60.9 13.05 23 -0.39 7.00E-01 

KIAA1109 58.9 12.33 23 0.80 0.43 64.6 9.57 27 -3.05 2.33E-03 63.4 12.74 400 -3.55 3.82E-04 

LYPD6B 57.5 13.39 21 2.01 0.044 64.8 10.36 35 -3.32 9.16E-04 64.1 12.53 35 -2.53 1.14E-02 

PPFIBP1 60.2 13.20 171 0.00 1 59.3 12.98 7 0.42 6.71E-01 63.2 13.74 94 -2.35 1.86E-02 

TP73 62.9 10.38 42 -2.30 0.021 62. 12.61 33 -1.63 1.02E-01 62.9 13.43 89 -2.09 3.70E-02 

Table 4. CNNM1 and LYPD6B exhibit  bidirectionality of effect on age-at-diagnosis depending 

upon  mutation type.  Two-sample Z testing was applied to compare gene-specific mutation types with 

the control population. Gene amplifications in CNNM1 and LYPD6B correlated with a lower age-at-

diagnosis whereas deletions or truncating mutations correlated with an increased age-at-diagnosis. 
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FIGURE LEGENDS 

Figure 1. Manhattan plot. Haplotype-based analysis was performed using a fixed window size 

of 10 kb and an expectation-maximization (EM) algorithm with a maximum of 50 iterations. P 

values were derived from χ2. A Manhattan plot was constructed by plotting -log[p] against 

chromosomal position. The horizontal blue line corresponds to a suggestive threshold of p ≤ 5 x 

10-5. The horizontal red line corresponds to the conventional threshold for genome-wide 

significance at p ≤ 5 x 10-8. 

Figure 2. Fine mapping of targeted chromosomal regions. Haplotype analysis was performed 

using an EM algorithm with a maximum of 50 iterations and sliding windows consisting of 2-6 

SNPs. Haplotype windows were aligned and graphically depicted using the GrASP excel macro. 

Individual haploblocks are color-coded to represent p values (dark green p > 5 x 10-5; light green 

p ≤ 5 x 10-5; yellow p ≤ 5 x 10-6; orange p ≤ 5 x 10-7; red p ≤ 5 x 10-8). 

Figure 3. Odds ratios associated with candidate haplotypes. EM frequencies were used to 

calculate odds ratios and 95% confidence intervals comparing frequencies between younger and 

older populations within The Two Sister Study. 

Figure 4. Comparison of haplotype frequencies in The Two Sister Study and phase III of 

the 1000 Genomes Project. Bar graphs present the ratios formed by dividing The Two Sister 

Study haplotype frequency with population-specific haplotype frequencies obtained through the 

1000 Genomes Project. AFR = African, AMR = American, EAS = East Asian, EUR = non-

Finnish European. 
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