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Correction of human forehead temperature
variations measured by non-contact infrared

thermometer
Adrian Shajkofci, Member, IEEE

Abstract— Elevated body temperature (fever) can be a common symptom
of a medical condition, such as a viral or bacterial infection, including
SARS-CoV-2 or influenza. Non-contact infrared thermometers are able to
measure forehead temperature in a timely manner and were used to perform
a fast fever screening in a population. However, forehead temperature
measurements differ greatly from basal body temperatures, and are the
target of massive perturbations from the environment. Here we gathered
a dataset of N=18024 measurements using the same precision infrared
sensor in different locations while tracking both outside temperature, room
temperature, time of measurement, and identity. Herein, we propose a
method able to extract and remove the influence of external perturbations
and set the threshold for fever based on local statistics to 37.38 ◦C, after
calibration and temperature correction. This method can help manufacturers
and decision-makers to build and use more accurate tools so as to maximize
both sensitivity and specificity of the screening protocol.

Index Terms— fever, ncit, infrared, screening, temperature, medical monitoring, thermopile

I. INTRODUCTION

FEVER, also called pyrexia, is one of the usual clinical
features that appears during the course of several infectious

diseases, such as influenza or SARS-CoV-2 viral infections [1].
It reduces viral replication and is a straightforward marker of
immune response [2]. Body temperature can be measured in
numerous ways. The traditional method for such a measurement
is using contact thermometers placed in the mouth, ear, armpit
or rectum. Contact thermometers are measuring temperature
using the conduction of heat to a thermocouple, a resistance
temperature detector (RTD) or a thermistor through a metallic
element. While RTDs are among the most precise temperature
sensors available, the process of conduction is slow (around
one minute) and the device needs extensive disinfection after
use to prevent cross-contamination [3]. On the other hand, Non-
contact infrared thermometers (NCITs) allow the temperature to
be taken without contact and therefore do not require constant
disinfection, take fast measurements (less than one second) and
allow for a comfortable and much less intrusive measurement
process. NCITs were extensively reviewed in [4] and validated
for their use for fever symptoms detection.
NCITs can be classified into two categories. The first category
comprises infrared cameras, also called thermal scanners. These
devices operate like normal digital cameras, and capture a map
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of temperatures over a constant field-of-view (FOV). They
are used to measure objects up to 10 meters in front of the
camera. They focus heat radiation using coated optics made of
germanium, zinc salts, or surface mirrors, towards a focal plane
array (FPA) of heat-conductive pixels. The relative temperature
of the FPA is then sequentially read by a bolometer that
converts the temperature difference into resistance, further
converted into electrical signals. Thermal imaging cameras
require an extensive calibration using different sensitivity curves
allocated to each pixel, their output being compared to the
temperature of a black body. These devices usually need to be
stabilized at a defined chip temperature [5]. Moreover, they are
greatly dependent on the fluctuations of air temperature since
the camera receives the radiation emitted from the targeted
object, as well as heat coming from surrounding objects or
the atmosphere [6]. According to Minkina and Klecha [7], the
following parameters should be considered when calculating
the temperature of the object: the emissivity of the object
material (ε), the transmittance of the atmosphere, the distance
between the object and the camera, the relative humidity,
the atmospheric temperature Tamb and information about the
surrounding heat sources (sun, halogen lamps, heated walls,
etc.). These parameters are often difficult to gather and one
must make approximations when designing a NCIT system.
Moreover, these parameters can easily shift over time due to
wind (or a draught), rain, or direct sunlight. Consequently, this
type of sensor is known not to be accurate enough for medical
temperature measurement. These devices are subject to an error

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 30, 2021. ; https://doi.org/10.1101/2020.12.04.20243923doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2020.12.04.20243923
http://creativecommons.org/licenses/by-nc/4.0/


2 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2020

of 0.5 ◦C to 5 ◦C when compared to contact thermometers,
depending on the calibration modality [8]. The second type of
NCIT is the family of thermopiles, mostly found in handheld
forehead or tympanic thermometers. They receive the radiant
energy released by the object over a constant FOV and convert
it into an electrical signal (using the Seebeck effect), which is
calibrated to the relative temperature of the object. Thermopiles
are more accurate than infrared cameras since the ambient air
flow is minimized due to the smaller distance between the
sensor and the imaged object (1 cm to 20 cm) [9]. However,
their accuracy drops drastically when used outside of their
recommended range [10].
The accuracy of the measurement of human body temperature
using NCITs is affected by individual factors, such as instru-
ment placement, skin type and thickness, sweating, ethnicity,
or body mass index [11], [12], as well as environmental factors
such as outdoor temperature, wind, relative humidity, and level
of direct sunlight. Indeed, these factors can either alter the
temperature of the skin, or change the calibration parameters
of the devices [13], [14].
During the 2020 COVID-19 pandemic outbreak, NCITs were
used for fever symptom screening at quarantine stations. Their
accuracy is discussed since skin temperature must become
acclimatized after coming inside from the cold [15]. For
example, in recent statistics from Kaohsiung Hospital [16],
during the month of March, only 5 patients out of 40887
were identified with fever when the measurement was made
outside. Yet, at a second indoor measurement checkpoint,
further 37 people were identified with fever since their bodies
have acclimatized to the indoor temperature.
Manufacturers and users of NCITs usually calibrate their
sensors to the ambient temperature using blackbody calibration
sources as a temperature of reference [17]. Nevertheless, this
calibration method does not take into account the effect of the
outside temperature on the human skin. Indeed, the skin acts as
an insulative layer that, in the presence of cold, prevents heat
loss in a both passive (fat layer) and active (vasoconstriction,
arteriovenous shunts) manner [18]. For these reasons, without
any correction, skin temperature becomes an erroneous marker
for body temperature.
In our research, we consider the variation of human forehead
temperature in different environments defined by separate
locations, times of measurement within a day, outside tem-
peratures, and room temperatures. We then examine if these
perturbations influence the measurement accuracy in the context
of infection symptom screenings. We believe that the analysis
and corrections of external perturbations on human forehead
temperature can be used to improve fever screening protocols
by adapting the fever detection threshold to the variations.
After having described the acquisition modalities in Section
II-A, we design a statistical analysis of temperature variation
of groups and individuals across time, ambient temperature,
and meteorological conditions. Then, we propose in Section
II-B a method to remove the effect of external perturbations.
We publish the results in Section III. Finally, we discuss the
results and suggest a threshold for fever detection in Section
IV.

II. METHODS

A. Acquisition modalities and sensor calibration
We collected the data from participating companies that used the
infrared sensor module Coronasense (Coronasense, Martigny,
Switzerland). The device embeds a thermopile-based sensor
element (MLX90614-DCI, Melexis Technologies NV, Belgium)
with a reported measurement accuracy of ≤ 0.2 ◦C. The sensor
chip is certified to comply with the ASSTM standard section
5.4 (Designation: E1965-98/2009)) - Standard Specification
for Infrared Thermometers for Intermittent Determination of
Patient Temperature. The devices were installed at the entrance
of the buildings and measurements were taken approximately
30 seconds after entry. For each measurement, the subject was
told to aim at a point 3 cm above the junction between the
eyes, 10 cm away from the sensor. Exact distance between the
device and the subject was controlled and recorded using a
Light Detection And Ranging (LIDAR) detector. A burst of 10
measurements were taken at different positions on the forehead,
and the maximal value was kept. For a subset of the data,
we gathered an anonymous imprint of the subject’s identity,
so we could track their temperature over time. For another
subset of the data, we could also associate the measurements
to the local meteorological conditions using OpenWeatherMap
(OpenWeather Ltd., London, UK).
All sensors were factory calibrated using a black body and
automatically calibrated themselves using the ambient air
temperature. We adjusted the sensor output to the human body
emissivity ε = 0.98 from Plank’s law [19]:

T =
4

√
T 4
amb − (1 − ε)T 4

ir

ε
, (1)

where Tamb and Tir are the ambient temperature of the
environment, and the mirrored temperature of the object,
respectively. We added to every measurement an offset of 2.2
degrees in order to match with the average temperature obtained
using a contact or a tympanic thermometer, as observed and
concluded by [4], [20].
The acquired data is expressed as a mean and a variance. We
calculated the coefficient of variance (CV) to determine the
accuracy of the measurement. A CV under 5 % indicates a
sufficient precision [21].

B. Correction of environmental perturbations
We now turn to the task of measuring the correlation between
the forehead temperature and environmental factors (inside
ambient temperature, outside temperature and hours in the
days) in the aim of removing the influence of these factors
from the raw data. We model the relationship between the
forehead temperature and the ambient and outside temperature
data as a combination of affine functions ta(t) = aat + ca
and to(t) = aot + co respectively. Furthermore, we model
the relationship between the hours in a day and the forehead
temperature as a second-degree polynomial function tp(t) =
t2 + t+ cp. We correct the temperature by subtracting to every
point of data its corresponding point in the modeled curve or
line and multiply, for every environmental perturbation, by the
mean of the raw data.
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Location N Average (◦C) CV Indiv. deviation (◦C)

All 18024 35.49± 0.80 2.25% 0.54± 0.29
A 3714 35.66± 0.89 2.50% 0.76± 0.25
B 4957 35.40± 0.67 1.89% N/A
C 2508 35.19± 0.69 1.96% 0.39± 0.24

(a) without correction

Location N Average (◦C) CV Indiv. deviation (◦C)

All 10078 35.49± 0.67 1.89% 0.49± 0.23
A 2992 35.64± 0.70 1.96% 0.57± 0.20
B 1608 35.38± 0.60 1.70% N/A
C 2503 35.42± 0.54 1.52% 0.34± 0.19

(b) with corrections

TABLE I: Statistics of the dataset of forehead temperature
measurements (average, standard deviation, coefficient of
variance (CV)) before and after correction. We also tracked
temperatures of individuals over time and reported the mean of
the deviation of temperature for one person over time. Because
of the limited availability of meteorological data, we could
compute such corrections on a subset of the original data.

In the same way, one can instead correct the threshold for fever
detection by subtracting the offset between the regression curve
and the acquired raw data to the fever threshold tmax corr. For
example, to correct the threshold as a function of the outside
temperature, we set:

tmax corr(t) = tmax − aot− co, (2)

with ao and co trained from the previous measurements using
a least-squares fit.
When it is possible to track measurements of a unique individ-
ual over time, we propose a personalized threshold when the
temperature measurements can be associated with an individual
identifier, computed using the K-th last measurements of the
specific person i:

tmax corr(t
i) = t̄i + α

√∑K
(t̄i − tik)2

K
, (3)

where t̄i is the mean of K temperature acquisitions for the
individual i and 0 < α < 5 a coefficient for the standard
variation. We use α = 3 since it is the coefficient so that 99.7
% of the data remains detected as healthy under the normal
approximation of the temperature distribution curve [22].
In the following section, for illustration purposes, instead of
adapting the threshold dynamically for every data point, we
adapted the individual temperature values against perturbations
with a fixed threshold.

III. RESULTS

A. Population analysis
We gathered N = 18024 measurements of temperature during a
period of five weeks, using the same device, but in 6 different
locations (see Figure 1 (a)). We computed statistics of the
ensemble data for all locations as well as individual locations
(Table I). We observed an average forehead temperature of
35.49 ± 0.80 ◦C. The mean and standard deviation of these

(a) without correction

(b) corrected against all perturbations

Fig. 1: Dataset of forehead temperature measurements relatively
to time, taken during a period of five weeks. Statistics are shown
in Table I. (a) without correction (N = 18024) (b) with the
corrections computed in Section II-B (ambient, outside and
time corrections) (N = 10078)

(a) histogram without correction

(b) histogram corrected against all perturbations

Fig. 2: Histogram of forehead temperature measurements, taken
during a period of five weeks. Statistics are shown in Table I.
(a) without correction (N = 18024) (b) with the corrections
computed in Section II-B (ambient, outside and time corrections
(N = 10078))
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(a)

(b)

Fig. 3: Bland-Altman plot of differences between uncorrected
and corrected forehead temperature measurements (N =
10078). A negative value indicated that the corrected tem-
perature is lower than the base temperature. The colors are the
relative densities of measurements (the yellow color represent
a higher density). (a) temperature correction values against
mean temperature of corrected and uncorrected data points (b)
temperature correction values against outside temperature

measurements did not change significantly across different
locations and among different populations (see Table I for
locations A-C). We suppose that this consistency is the result of
measuring among the population of the same country (French-
speaking Switzerland), with similar meteorological conditions
and ethnicity. The distribution of temperatures seems to be
skewed toward low temperatures (see Figure 2 (a)).

B. Tracking of individual temperature data
After having examined the data from an ensemble perspective,
we now turn to the tracking of temperatures of individuals over
time. For a subset of the data (N = 12882), we were able
to gather individual anonymous tagging for every temperature
measurement, along with all other features already analyzed
in Section III-A. Results shown in Table I for variations
of temperature of an individual over time indicates that the
individual variation (0.54±0.29 ◦C) was lower than the average
variation of temperature in a population (0.80 ◦C).

C. Correction of environmental perturbations
We were able to retrieve, on a subset of the dataset (N =
10078), the meteorological data of the exact measurement
location at the time when the measurement was taken. We

(a) forehead temp. against outside temp. (uncorrected)

(b) corrected against outside temperature

(c) forehead temp. against ambient temp. (uncorrected)

(d) corrected against ambient temperature

(e) forehead temp. against hours in a day. (uncorrected)

Fig. 4: Dataset of forehead temperature measurements relatively
to external perturbations ((a) outside temperature, (c) room
temperature, (e) hour of measurement), taken during a period
of five weeks, before ((a), (c), (e)) and after correction for
environmental effects ((b), (d)). The number of measurements
after outdoor temperature correction is smaller than without
correction due to the availability of meteorological data. The
color represents the relative point density (yellow is a higher
density).
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then trained the regression models from Section II-B. There
was a significant correlation between outside temperature
(R2 = 0.19) and forehead temperature in terms of Pearson
correlation coefficient. Room temperature had a lower influence
on the data (R2 = 0.12), since some measurements were
taken when the individual entered a particular building. A
similar correlation (R2 = 0.19) was found by comparing the
measurements with their acquisition times within a 24-hour day.
From the trained regression curves, we were able to subtract the
differences representing the coupling of features for ambient,
outside temperature and time of the day with the forehead
temperature (R2 = 0) (see Figure 1 (b)). After correction,
the variation of temperatures across both population and time
were reduced, lowering the CV by 0.36 % (Table I (b)). The
histogram of the corrected temperature density appeared to
follow a Gaussian curve (Figure 2 (b)). The corrections were
in the order of 0.02 ± 0.51 ◦C, with most of the corrections
being in the [0 ◦C; +0.5 ◦C] interval (see Figure 3 (a)). By
design, the corrections did not alter the mean of the temperature
measurements. The corrections do not depend on the subject’s
temperature but rather on the outside temperature (see Figure 3
(b)). For example, when the outside temperature was 5 ◦C, the
applied correction ranged from 0.65 ◦C to 1.47 ◦C.

IV. DISCUSSION AND CONCLUSION

NCITs are remarkably noisy sources of data. Indeed, they
exhibit variations due to different types of noise: intrinsic noise
from the electronics; temperatures disparities due to sensor
placement, skin type, skin color, and thickness, moisture, fat
content; and finally, environmental conditions such as outside
temperature, humidity, and sunlight exposure. Out of all these
parameters, we chose to model the relationship between outside
temperatures, ambient temperatures, acquisition time within
the day and the measured forehead temperature as first and
second-degrees polynomials. Using these models, we were
able to subtract the influence of external perturbations and
drastically reduce the co-linearity between these features.
Thanks to the data analyzed in this study, we found out that
the average forehead temperature was 35.49 ± 0.80 ◦C. This
number was consistent across different places and matched to
the values found in [23], [24], after proper scaling. Similarly to
[4], we proposed a fever detection temperature threshold of the
mean plus 3 times the standard deviation of the temperatures in
our dataset (37.81 ◦C with the offset we applied, or 35.68 ◦C
without calibration). After correction of external components,
this threshold was reduced to 37.38 ◦C, which is consistent
with the results from [22]. Using the same calculation, this
threshold could even be lowered due to the smaller deviation of
measurements in specific environments (see Table I for Location
B-C). Our results were not in agreement with the research
by [4], who did not find a significant correlation between
air temperature and body temperature. However, it appears
that, in that study, the subjects were already acclimatized to
a constant room temperature. We believe that, in a real-world
case, temperature screening devices are installed at the entrance
of a building and the security policy do not give the incoming
people enough time to acclimatize inside the building before
measuring their forehead temperature.

Furthermore, we found that the deviation of the forehead
temperature of one subject over time is lower than the deviation
of the mean temperature in a population, due to disparities
between subjects. These findings confirm the idea that every
individual is biologically distinct in terms of temperature
and skin type due to demographic and physiological factors
[25]. Consequently, the limit threshold for fever can be set
individually as well. Personalized thresholds can be lower than
the static threshold and might have a significant advantage
over the latter for fever screening. Consequently, we propose
a personalized fever detection threshold of the mean plus 3
times the standard deviation of the temperature record for a
given subject, after correction for external perturbations.
Such correlations between perturbations and the measured
forehead temperature reveal that corrections to the temperature
or fever detection threshold can lead to a more accurate
recognition of high temperature symptoms. Eventually, even
after corrections, our method does not take into account
temperature perturbations caused by factors such as occasional
sports, sweating and moisture on the skin. However, other data
sources and modalities can be integrated to the computation,
such as humidity measurements, tracking data or personal
schedule of the subject to compensate for other perturbations.
Our method might as well exaggerate false positives (type
I error). For example, the alert might be triggered if the
temperature outside is very low and the subject is warmed
by an external source like a car heating. Hence, the challenge
presented in [15], [16] is only partially settled. Finally, like
with any fever screening method, we cannot exclude some form
of examiner bias. Indeed, feverish subjects would be prone to
either stay at home or try to avoid the screening process and
therefore would not appear in the statistics.
In a time when disease outbreaks can spread very easily rapidly
worldwide, fast disease screening solutions, such as fever
screening, appear to be necessary. We hope that this research
helps decision-makers and manufacturers to build more robust
and intelligent tools that use multi-dimensional data in order
to maximize both sensitivity and specificity of the screening
protocol.
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