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Correction of human forehead temperature
variations measured by non-contact infrared

thermometer
Adrian Shajkofci, Member, IEEE

Abstract— Fever is a common indicator for symptoms of infections, includ-
ing SARS-CoV-2 or influenza. Non-contact infrared thermometers are able to
measure forehead temperature in a timely manner and perform a fast fever
screening in a population. However, forehead temperature measurements
differ greatly from basal body temperatures and are the target of massive
perturbations from the environment. Here we gathered a dataset of N=19392
measurements using the same precision infrared sensor in different loca-
tions while tracking both outside temperature, room temperature, time of
measurement, and identity. From this, we propose a method able to extract
and remove the influence of external perturbations and set a threshold for
fever based on local statistics. This method can help manufacturers and
decision-makers to build and use more accurate tools so as to maximize
both sensitivity and specificity of the screening protocol.

Index Terms— fever, infrared, screening, temperature

I. INTRODUCTION

FEVER, also called pyrexia, is one of the usual clinical
features that appears during the course of several infectious

diseases, such as influenza or SARS-CoV-2 viral infections.
It reduces viral replication and is a straightforward marker of
immune response [1]. Body temperature can be measured in
numerous ways. The traditional method for such a measurement
are contact thermometers placed in the mouth, ear, armpit
or rectum. Contact thermometers are measuring temperature
using the conduction of heat to a thermocouple, a resistance
temperature detector (RTD) or a thermistor through a metallic
element. While RTDs are among the most precise temperature
sensors available, the process of conduction is slow (around
one minute) and the device needs extensive disinfection after
use to prevent cross-contamination [2]. Non-contact infrared
thermometers (NCITs), on the other hand, allow the temperature
to be taken without contact and therefore do not require constant
disinfection, take fast measurements (less than one second)
and do not require to stay uncomfortably with a thermometer
for a long time. Non-contact thermometers were extensively
reviewed in [3] and validated for their use for fever symptoms
detection.
NCITs can be classified into two categories. Thermal scanners,
or thermal cameras are used to take a person temperature from
a great distance (in the order of meters), thanks to its cell array.
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Switzerland and École Polytechnique Fédérale de Lausanne, CH-1015
Lausanne, Switzerland.

However, they are rather imprecise, with an error of between
0.5 and 5◦C compared to contact thermometers. They also
are greatly dependent on the fluctuations of air temperature.
The second type are thermopiles. They receive the radiant
energy released by the object over a constant field of view
and convert it into an electrical signal, which is calibrated
to the relative temperature of the object. The latter type of
thermometer can be accurately calibrated, the ambient air flow
being almost negligible since the distance between the sensor
and the object is small (2 cm to 20 cm). However, even though
variations caused by air flow are reduced, many factors affect
the temperature measurement of the human body by the skin,
such as placement, skin type, moisture, and most importantly,
environmental conditions [4]–[6].
In our research, we consider the variation of human forehead
temperature in different environments. We then examine if
these perturbations influence the measurement accuracy in
the context of infection symptom screenings. We believe that
the analysis of temperature perturbations on human forehead
temperature can be used to improve screening protocols by
correcting the perturbations and adapting the fever detection
threshold to the variations.
After having described the acquisition modalities in Section
II-A, we design a statistical analysis of temperature variation
of groups and individuals across time, ambient temperature
and meteorological conditions. Then, we propose in Section
II-B a method to remove the effect of external perturbations.
We publish the results in Section III and conclude in Section
IV.
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II. METHODS

A. Acquisition modalities and sensor calibration

We gathered the data from participating companies that used the
infrared sensor module Coronasense (Coronasense, Martigny,
Switzerland). The device embeds a thermopile-based sensor
element (MLX90614-DCI, Melexis Technologies NV, Belgium)
with a reported measurement accuracy of ≤ 0.2◦C. The sensor
chip is certified to comply with the ASSTM standard section
5.4 (Designation: E1965-98/2009)) - Standard Specification
for Infrared Thermometers for Intermittent Determination of
Patient Temperature. The devices were installed at the entrance
of the buildings and measurements were taken approximately
30 seconds after entrance. For each measurement, the user was
told to aim at a point 3 cm above the junction between the
eyes, 10 cm away from the sensor. Exact distance between
the device and the user was controlled and recorded using a
Light Detection And Ranging (LIDAR) detector. A burst of 10
measurements were taken at different positions on the forehead,
and the maximal value was kept. For a subset of the data, we
gathered an anonymous imprint of the user’s identity, so we
could track their temperature over time. For another subset
of the data, we could also gather the local meteorological
conditions at the time of measurement using OpenWeatherMap
(OpenWeather Ltd., London, UK).
All sensors were factory calibrated using a black body and
automatically calibrated themselves using the temperature of
the ambient air. We adjusted the sensor output to the human
body emissivity ε = 0.98 from Plank’s law [7]:

T =
4

√
T 4
amb − (1 − ε)T 4

ir

ε
, (1)

with Tamb and Tir the ambient temperature of the environment
and the mirrored temperature of the object, respectively. We
added to the results an offset of 2.1 degrees in order to match
with the average temperature using a contact thermometer, as
observed by [3].

B. Correction of environmental perturbations

We now turn to the task of measuring the correlation between
the forehead temperature and environmental factors (inside
ambient temperature, outside temperature and hours in the
days) in the aim of removing the influence of these factors
from the raw data. We model the relationship between the
forehead temperature and the ambient and outside temperature
data as a combination of affine functions ta(t) = aat+ ca and
to(t) = aot+ co respectively. We also model the relationship
between the hours in a day and the forehead temperature as
a second degree polynomial function tp(t) = t2 + t+ cp. We
correct the temperature by subtracting to every point of data its
corresponding point in the modeled curve or line and multiply,
for every environmental perturbation, by the mean of the raw
data.
In the same way, one can instead correct the threshold for fever
detection by subtracting the offset between the regression curve
and the acquired raw data to the fever threshold tmax corr. For
example, to correct the threshold as a function of the outside

Location N Average (◦C) Indiv. deviation (◦C)

All 19392 35.38± 0.81 0.56± 0.28
A 3622 35.57± 0.89 0.77± 0.24
B 4759 35.30± 0.68 N/A
C 2508 35.09± 0.69 0.39± 0.24

(a) without correction

Location N Average (◦C) Indiv. deviation (◦C)

All 9839 35.37± 0.67 0.49± 0.20
A 2966 35.52± 0.70 0.57± 0.20
B 1539 35.23± 0.59 N/A
C 2503 35.3± 0.54 0.34± 0.19

(b) with corrections

TABLE I: Statistics of the dataset of forehead temperature
measurements. We also tracked temperatures of individuals
over time and reported the mean of the deviation of temperature
for one person over time. The number of measurements
after outdoor temperature correction is smaller than without
correction due to the availability of meteorological data.

temperature:

tmax corr(t) = tmax − aot− co, (2)

with ao and co trained from the previous measurements using
a least-squares fit.
When it is possible to track measurements of a unique individ-
ual over time, we propose a personalized threshold when the
temperature measurements can be associated with an individual
identifier, computed using the K-th last measurements of the
specific person i:

tmax corr(t
i) = t̄i + α

√∑K
(t̄i − tik)2

K
, (3)

with t̄i the mean of K temperature acquisitions for the
individual i and 0 < α < 5 a coefficient for the standard
variation. We use α = 3 since it is the coefficient so that
99.7% of the data remains detected as healthy under the normal
approximation of the temperature distribution curve [8].
In the next section, for illustration purposes, instead of adapting
the threshold dynamically for every data point, we adapt the
individual temperature values against perturbations with a fixed
threshold.

III. RESULTS

A. Population analysis

We measured the temperature of N = 19392 during a
period of six weeks, in 6 different locations (see Figure 1
(a)) and computed statistics for all locations as well as for
individual locations (Table I). We observed an average forehead
temperature of 35.38 ± 0.81◦C. The average and deviation
of these measurements did not change significantly among
different locations and populations (see Table I for locations
A-C). The distribution of temperatures seem to be skewed
toward low temperatures (see Figure 2 (a)).
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(a) without correction

(b) corrected against all perturbations

Fig. 1: Dataset of forhead temperature measurements (N =
19392) relatively to time, taken during a period of six weeks.
Statistics are shown in Table I. (a) without correction (b) with
the corrections computed in Section II-B (ambient, outside and
time corrections)

(a) histogram without correction

(b) histogram corrected against all perturbations

Fig. 2: Histogram of forhead temperature measurements
(N = 19392), taken during a period of six weeks. Statistics
are shown in Table I. (a) without correction (b) with the
corrections computed in Section II-B (ambient, outside and
time corrections)

(a) forehead temp. against outside temp. (uncorrected)

(b) corrected against outside temperature

(c) forehead temp. against ambient temp. (uncorrected)

(d) corrected against ambient temperature

(e) forehead temp. against hours in a day. (uncorrected)

Fig. 3: Dataset of forehead temperature measurements (N =
19392) relatively to external perturbations ((a) outside tem-
perature, (c) room temperature, (e) hour of measurement),
taken during a period of six weeks, before and after correction
for environmental effects. The number of measurements
after outdoor temperature correction is smaller than without
correction due to the availability of meteorological data.
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B. Tracking of individual temperature data
After having looked at the data from an ensemble point of view,
we now turn to the tracking of temperatures of individuals over
time. For a subset of the data (N = 12882), we were able
to gather individual anonymous tagging for every temperature
measurement, along with all other features already analyzed
in Section III-A. Results shown in Table I for variations
of temperature of an individual over time indicates that the
individual variation (0.56±0.28◦C) was lower than the average
variation of temperature in a population (0.81◦C).

C. Correction of environmental perturbations
We were able to retrieve, on a subset of the dataset (N = 9839),
the meteorological data of the exact measurement location
at the time when the measurement was taken. We then
trained the regression models from Section II-B. There was a
significant correlation between outside temperature (R2 = 0.20)
and forehead temperature in terms of Pearson correlation
coefficient. Room temperature had a lower influence on the data
(R2 = 0.11), since some measurements were taken when the
individual entered a particular building. A similar correlation
(R2 = 0.19) was found by comparing the measurements with
their acquisition times within a 24-hour day. From the trained
regression curves, we were able to subtract the differences
representing the coupling of features for ambient, outside
temperature and time of the day with the forehead temperature
(R2 = 0) (see Figure 1 (b)). After correction, the variation of
temperatures across both population and time were reduced
(Table I (b)) and the histogram of temperature density appeared
to follow a Gaussian curve (Figure 2 (b)).

IV. CONCLUSIONS

Thanks to the data analyzed in this study, we found out that
the average forehead temperature was 35.38 ± 0.81 ◦C. This
number was consistent across different places and matched to
the values found in [9], [10], after proper scaling. Similarly to
[3], we propose a fever detection temperature threshold of the
mean plus 3 times the standard deviation of the temperatures
in our dataset (37.81 with the offset we applied, or 35.68◦C
without calibration). After correction of external components,
this threshold is reduced to 37.38◦C, which is consistent
with the new data from [8]. Using the same calculation, this
threshold could even be lowered due to the smaller deviation
of measurements in specific environments (see Table I for
Location B-C).
We modeled the relationship between outside, ambient temper-
atures, hours in the day and the measured forehead temperature
as first and second degrees polynomials. Using these models, we
were able to subtract the influence of external perturbations and
drastically reduce the co-linearity between these features. Such
correlations between perturbations and the measured forehead
temperature reveals that corrections to the temperature or fever
detection threshold can lead to a better detection accuracy of
high temperature symptoms.
Furthermore, we found that the deviation of the forehead
temperature of one individual over time is lower than the devi-
ation of the mean temperature in a population. These findings

confirm the idea that every individual is biologically distinct
in terms of temperature and skin type due to demographic and
physiological factors [11]. Consequently, the limit threshold
for fever might be individual as well. Personalized thresholds
and tracking may then have a significant advantage over static
thresholds for fever screening, since the personalized threshold
may be lower than the global threshold.
In a time when disease outbreaks can spread worldwide very
easily and at high speeds, fast disease screening solutions, such
as fever screening, appear to be necessary. We hope that this
research helps decision-takers and manufacturers to build more
robust and intelligent tools that use multi-dimensional data
in order to maximize both sensitivity and specificity of the
screening protocol.

V. DECLARATIONS

Code and datasets will be available online (github) upon
acceptance. AS work for Coronasense, Martigny, Switzerland,
who gathered and released the raw data.
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