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Summary (max. 150 words) 

Risk stratification and treatment decisions for leukaemia patients are regularly based on clinical markers 
determined at diagnosis, while measurements on system dynamics are often neglected. However, there is 
increasing evidence that linking quantitative time-course information to disease outcomes can improving 
the predictions for patient-specific treatment response. 

We analyzed the potential of different computational methods to accurately predict relapse for chronic and 
acute myeloid leukaemia, particularly focusing on the influence of data quality and quantity. Technically, 
we used clinical reference data to generate in-silico patients with varying levels of data quality. Based 
hereon, we compared the performance of mechanistic models, generalized linear models, and neural 
networks with respect to their accuracy for relapse prediction. We found that data quality has a higher 
impact on prediction accuracy than the specific choice of the method. We further show that adapted 
treatment and measurement schemes can considerably improve prediction accuracy. Our proof-of-
principle study highlights how computational methods and optimized data acquisition strategies can 
improve risk assessment and treatment of leukaemia patients. 
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Introduction 

Leukaemia describes blood cancers in which immature, dysfunctional cells progressively displace 
functional blood cells. Myeloid leukaemias are characterized by aberrations affecting the proliferation and 
maturation of myeloid progenitor cells. They are further subdivided into chronic myeloid leukaemia (CML), 
typically presenting with a disease-specific BCR-ABL1 fusion gene (Zhou and Xu, 2015), and acute myeloid 
leukaemia (AML), which is a highly heterogeneous disease with a variety of mutational profiles involved 
(Cancer Genome Atlas Research Network et al., 2013). Although the overall treatment strategy aims 
towards achieving sustainable remission, the available drugs, and the heterogeneity of the phenotypes 
lead to very different therapeutic approaches. For CML, tyrosine kinase inhibitors (TKI) have been 
established as a targeted therapy leading to molecular remission in most patients under continuous drug 
administration (Hochhaus et al., 2017). AML is treated by cyclic induction chemotherapy, usually combined 
with subsequent cycles of maintenance therapy. Molecular monitoring of disease-specific markers is 
currently established as the method of choice to quantify the leukemic burden. 

A recurrence of the disease after treatment-induced remission is a significant and life-threatening risk for 
leukaemia patients. For AML, relapse usually occurs after completion of intensive chemotherapy treatment 
(Oliva et al., 2018). In contrast, in CML molecular recurrence is commonly observed in about 50% of the 
patients once TKI administration is terminated to probe treatment-free remission (Cerveira et al., 2018; 
Mahon et al., 2010; Nagafuji et al., 2019). In any case, the ability to prospectively predict the risk and timing 
of relapse or molecular recurrence is of outstanding importance to optimize and adjust individual therapies.  

Currently, treatment decisions are based on the recommended risk stratification schemes. Those risk 
assessments are commonly based on static measurements from single time points, often at diagnosis 
(Döhner et al., 2017; Othus et al., 2016). In contrast, treatment response dynamics, such as the speed of 
initial remission, are only rarely evaluated for risk stratification. However, others and we have shown that 
molecular disease dynamics indeed correlate with therapy response and future relapse occurrence 
(Branford et al., 2014; Hoffmann et al., 2019, 2020; Saussele et al., 2018; Shanmuganathan et al., 2020). 
We reason that the direct integration of molecular response dynamics in the form of time-series data, which 
are increasingly available from standard disease monitoring, is a crucial element to improve the patient-
specific risk stratification. 

There are several, conceptually different approaches to integrate time-series data of molecular monitoring 
into risk assessment. Three common approaches represent the pillars of this methodological spectrum: 

- Mechanistic models (MM) describe the molecular disease dynamics as a functional consequence 
resulting from the interaction between relevant system components (such as drugs, cell types, 
cytokines etc.). Based on the model's fit to patient time-series data, the further course of the 
disease can be simulated. Although MMs require considerable expert knowledge about the 
underlying mechanisms, the results of these models are readily interpretable as the model 
parameters typically carry explicit biological meaning. 

- On the other end of the spectrum, there are deep learning approaches (Fawaz et al., 2018; 
Goodfellow et al., 2016; Zhang, 1994) in which generic neural network models (NN) are trained to 
classify time-series data by implicitly identifying characteristic features that correlate with future 
outcomes. Those methods require no a priori knowledge, but they are not suitable to directly 
interpret underlying biological mechanisms. 

- Classical statistical models, in particular, generalized linear models (GLM) (McCullagh and Nelder, 
1989) like logistic regression classifiers are applied to estimated distribution parameters that 
describe population characteristics to classify predefined features of the time-course data. Herein, 
prior knowledge about general treatment dynamics is directly incorporated as an explicit feature 
of the GLM, while no understanding of the underlying biological mechanisms is required. Although 
GLMs are typically easier to interpret than neural networks (as the influence of parameters on the 
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prediction can be assessed (Lundberg and Lee, 2017)) this probabilistic approach does not allow 
for explicit mechanistic interpretations as it is the case for MMs. 

In this work, we will systematically compare these three methods. In particular, we study the influence of 
data size, sampling density and measurement error on their prediction accuracy. As available data sets of 
relevant molecular time courses for AML and CML are currently limited, we use established mechanistic 
in-silico models of those diseases (Hähnel et al., 2020; Hoffmann et al., 2020) to generate fully annotated 
artificial patient data. Based on this reference data, we are further able to suggest alternative disease 
surveillance schemes that may enhance the predictive power (Fig.1).  
 

 

Fig. 1: Conceptual overview of our methodological approach: (a) We developed computational 
models (MM) for both AML and CML from mechanistic and empirical knowledge (Hähnel et al., 2020; 
Hoffmann et al., 2020). The models are first fit to actual patient data to obtain realistic parameters 
distributions. (b) We sampled from this empirical parameter distribution to simulate dense, synthetic data 
(D) with our MM. We gradually reduced the data quality to mimic actual clinical measurements by 
introducing noise (dense-noisy, DN), undersampling (sparse-noisy, SN) and a minimum detection limit 
(artificial patient data, AP). Additionally, we introduced a more informative scheme (artificial scheme, AS), 
in which the temporal measurements are optimally spaced (AML) or a period of reduced treatment dose 
precedes the cessation (CML). (c) We systematically compared the performance of our mechanistic model 
(MM), a generalized linear model (GLM) and a neural network (NN) to predict the outcome (relapse/no 
relapse) of our virtual patient data with varying quality.  
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Figure 1: A Schematic overview of the mathematical model describing the dynamics of leukaemia-initiating cells
and healthy stem cells in the bone marrow of an AML patient.
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Figure 2: Overview of the artificial data sets by the example of one patient.
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Figure 3: Example Dense time course with overlain model for feature generation. y0 gives the starting point, a

the decreasing slope during therapy and b the increasing slope of the leukemic burden in treatment-free periods.
Times of treatment is marked light red.

DN

AS

SN

AP

+ Sparsity

+ Detection 
Limit

+ Artificial 
   Scheme

+ Detection 
Limit

Synthetic 
data  

0 2 4 6 8
10�8

10�3

102

time [months]

le
uk

em
ic

bu
rd

en
[%

]

Dense

0 2 4 6 8
10�8

10�3

102

time [months]

le
uk

em
ic

bu
rd

en
[%

]

Dense-Noise

0 2 4 6 8
10�8

10�3

102

time [months]

le
uk

em
ic

bu
rd

en
[%

]

Artificial scheme

0 2 4 6 8
10�8

10�3

102

time [months]

le
uk

em
ic

bu
rd

en
[%

]

Artificial patient

0 2 4 6 8
10�8

10�3

102

time [months]

le
uk

em
ic

bu
rd

en
[%

]

Dense-Noise-Sparse

Figure 2: Overview of the artificial data sets by the example of one patient.

0 2 4 6 8
10�4

10�2

100

y0

a

b

time [months]

le
uk

em
ic

bu
rd

en
[%

] model
data

Figure 3: Example Dense time course with overlain model for feature generation. y0 gives the starting point, a

the decreasing slope during therapy and b the increasing slope of the leukemic burden in treatment-free periods.
Times of treatment is marked light red.

0 2 4 6 8
10�8

10�3

102

time [months]

le
uk

em
ic

bu
rd

en
[%

]

Dense

0 2 4 6 8
10�8

10�3

102

time [months]

le
uk

em
ic

bu
rd

en
[%

]

Dense-Noise

0 2 4 6 8
10�8

10�3

102

time [months]

le
uk

em
ic

bu
rd

en
[%

]

Artificial scheme

0 2 4 6 8
10�8

10�3

102

time [months]

le
uk

em
ic

bu
rd

en
[%

]

Artificial patient

0 2 4 6 8
10�8

10�3

102

time [months]

le
uk

em
ic

bu
rd

en
[%

]

Dense-Noise-Sparse

Figure 2: Overview of the artificial data sets by the example of one patient.

0 2 4 6 8
10�4

10�2

100

y0

a

b

time [months]

le
uk

em
ic

bu
rd

en
[%

] model
data

Figure 3: Example Dense time course with overlain model for feature generation. y0 gives the starting point, a

the decreasing slope during therapy and b the increasing slope of the leukemic burden in treatment-free periods.
Times of treatment is marked light red.

0 2 4 6 8
10�8

10�3

102

time [months]

le
uk

em
ic

bu
rd

en
[%

]

Dense

0 2 4 6 8
10�8

10�3

102

time [months]

le
uk

em
ic

bu
rd

en
[%

]

Dense-Noise

0 2 4 6 8
10�8

10�3

102

time [months]

le
uk

em
ic

bu
rd

en
[%

]

Artificial scheme

0 2 4 6 8
10�8

10�3

102

time [months]

le
uk

em
ic

bu
rd

en
[%

]

Artificial patient

0 2 4 6 8
10�8

10�3

102

time [months]

le
uk

em
ic

bu
rd

en
[%

]

Dense-Noise-Sparse

Figure 2: Overview of the artificial data sets by the example of one patient.

0 2 4 6 8
10�4

10�2

100

y0

a

b

time [months]

le
uk

em
ic

bu
rd

en
[%

] model
data

Figure 3: Example Dense time course with overlain model for feature generation. y0 gives the starting point, a

the decreasing slope during therapy and b the increasing slope of the leukemic burden in treatment-free periods.
Times of treatment is marked light red.

MM (A)

Q ALQ

HQ

LA

HA

KQ KA

↯
X �ph

↯X �pl
tlA

therapy action

- leukemic

- healthy

tlQ

thA

thQ

dl

dh

cl

ch

quiescent state active state

t
A activation rate

t
Q inactivation rate

d differetiation rate

p proliferation rate

c kill rate

K carrying capacity

L LIC

H HSC

Figure 1: A Schematic overview of the mathematical model describing the dynamics of leukaemia-initiating cells
and healthy stem cells in the bone marrow of an AML patient.

1 AML Model

2 Artificial Data AML

3 GLM parameters AML

4 CML Model

5 Artificial data CML

6 GLM parameters CML

7 Model fits - examples and overview

8 Similarity of artificial and real data

9 Accuracies for statistical model

10 Accuracies for artificial scheme

GLM

NN

Fit

Relapse outcome


Simulate

Estimate

0 2 4 6 8
10�8

10�3

102

time [months]

le
uk

em
ic

bu
rd

en
[%

]

Dense

0 2 4 6 8
10�8

10�3

102

time [months]

le
uk

em
ic

bu
rd

en
[%

]

Dense-Noise

0 2 4 6 8
10�8

10�3

102

time [months]

le
uk

em
ic

bu
rd

en
[%

]

Artificial scheme

0 2 4 6 8
10�8

10�3

102

time [months]

le
uk

em
ic

bu
rd

en
[%

]

Artificial patient

0 2 4 6 8
10�8

10�3

102

time [months]

le
uk

em
ic

bu
rd

en
[%

]

Dense-Noise-Sparse

Figure 2: Overview of the artificial data sets by the example of one patient.

0 2 4 6 8 10
10�5

10�3

10�1

101
y0

a

b

time [months]

le
uk

em
ic

bu
rd

en
[%

] model
data

Figure 3: Example Dense time course with overlain model for feature generation. y0 gives the starting point, a

the decreasing slope during therapy and b the increasing slope of the leukemic burden in treatment-free periods.
Times of treatment is marked light red.

Train

Predict

0 100 200 300 400 500 600
time

10-2

100

102

104

N
PM

1/
AB

l [
%

]

Patient: 5230

0 20 40 60 80 100
time

10-2

100

102

104

N
PM

1/
AB

l [
%

]

Patient: 5232

0 100 200 300 400 500
time

10-2

100

102

104

N
PM

1/
AB

l [
%

]

Patient: 5238

0 20 40 60 80 100 120
time

10-2

100

102

104

N
PM

1/
AB

l [
%

]

Patient: 5244

(A)

D DN DNS AP

60

80

100

ac
cu

ra
cy

[%
]

MM
GLM
NN

AML
(B)

D DN DNS AP

60

80

100

ac
cu

ra
cy

[%
]

MM
GLM
NN

CML

(C)

AP AS AP AS AP AS

60

80

100

ac
cu

ra
cy

[%
]

MM
GLM
NN

AML
(D)

AP AS AP AS AP AS

60

80

100

ac
cu

ra
cy

[%
]

MM
GLM
NN

CML

Figure 3: Accuracies for relapse prediction in for all 4 data sets. A, B Comparison of the three methods using
10-fold cross-validation: Neural network (NN), Generalized Linear Model (GLM) and Mechanistic Model (MM).
C, D Comparison of the accuracies for the Artificial Patient data and the Artificial scheme using all three methods.

0 2 4 6 8
10�8

10�3

102

time [months]

le
uk

em
ic

bu
rd

en
[%

]

Dense

0 2 4 6 8
10�8

10�3

102

time [months]

le
uk

em
ic

bu
rd

en
[%

]

Dense-Noise

0 2 4 6 8
10�8

10�3

102

time [months]

le
uk

em
ic

bu
rd

en
[%

]

Artificial scheme

0 2 4 6 8
10�8

10�3

102

time [months]
le

uk
em

ic
bu

rd
en

[%
]

Artificial patient

0 2 4 6 8
10�8

10�3

102

time [months]

le
uk

em
ic

bu
rd

en
[%

]

Dense-Noise-Sparse

Figure 4: Overview of the artificial data sets by the example of one patient.
True outcome


Predict

Accuracy

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 7, 2020. ; https://doi.org/10.1101/2020.12.04.20243907doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.04.20243907
http://creativecommons.org/licenses/by/4.0/


Results 

(i) Artificial patient data that closely resemble clinical time courses provide an excellent basis to 
systematically analyze the performance of predictive, computational models. 

We apply two mechanistic models to simulate the dynamics of AML and CML(Hähnel et al., 2020; 
Hoffmann et al., 2020) thereby creating sets of synthetic response data. To make sure that the synthetic 
data resemble real patient time-courses as close as possible, we fitted the models to respective data sets 
obtained from 275 AML patients carrying a traceable NPM1-mutation (consisting of a total of 1567 
measurements quantifying the relative amount of NMP1-mut transcript [8] over time on a log10-scale) and 
21 CML patients (with in total 478 measurements (Hähnel et al., 2020) quantifying the relative amount of 
BCR-ABL1 transcripts over time on a log10-scale). Fig. 1a illustrates corresponding model fits, while we 
report on the overall fitting quality in Suppl. Fig. 1. The fitted model parameters are used to simulate 
synthetic time courses (Fig. 1b). To assess the influence of data quality, we gradually degraded the fully 
sampled, noise-free time series. We used estimates of the measurement frequencies and measurement 
errors obtained from the patient data to adjust the corresponding sampling density and noise level for the 
synthetic data (see supplementary methods). In total, we created four different datasets with 5000 time-
courses from each model to systematically study the influence of data quantity and quality: (i) a dense (D) 
data set consisting of weekly (AML) or monthly (CML) measurements of the leukemic burden free of any 
measurement error. (ii) For the dense-noisy (DN) data we added noise (see Experimental Procedures) to all 
data points of D to match the measuring error (AML) or the residuals observed between real data and their 
corresponding model fits (CML). (iii) In a third step, we reduced the total number of measurements per 
patient, creating a sparse-noisy (SN) data set that matches the measurement frequency in the real data. 
(iv) Finally, to make the data as realistic as possible, we also added a detection limit for very low 
measurements, thereby creating a set of artificial patient (AP) data. Example time-courses for all data sets 
can be found in Suppl. Fig. 2 and 3. 

To verify that the created artificial patient data (AP) sets are indeed similar to the real patient data, we 
derived characteristic features to quantitatively compare them. Those characteristic features refer to typical 
time scales and remission levels of the patient’s response (see Suppl. Figure 4) and are explained in detail 
in the Exp. Procedures. The features are computed separately for the AP data and the actual input data. 
The visual comparison in Suppl. Figure 5 indicates that the  median values of the characteristic features 
are very similar between AP and real data. It appears, that especially for the case of CML, the synthetic 
data sets yields a larger variance compared to the real data. A closer look at the data reveals that this is 
effect, at least partially, results from a sampling effect, as the variance measurement is only based on a 
small data set (n=21) of real patients. 

Similar to the clinical presentation, we classified the synthetic time-courses as whether they show a relapse 
or not. For both CML and AML, we define disease recurrence by an increase of the leukemic burden 
(measured in terms of relative transcript abundance) within a predefined period above a given threshold. 
We then systematically compared the accuracy of relapse predictions between the three general 
approaches: (1) fitting the mechanistic model (MM) to the data and simulating the outcome, (2) feeding the 
previously derived explicit features of the time-course into a GLM classifier or (3) using an end-to-end 
learning approach with a neural network (NN) model (Fig. 1c). 
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Fig. 2: Prediction accuracy across data quality and computational models: (a, b) Comparison of 
performance between mechanistic model (MM), generalized linear model (GLM) and neural network (NN) 
to predict relapse in synthetic data for AML (a) and CML (b) using 10-fold cross-validation. Data quality 
gradually decreases from fully sampled, noise-free data (D), to noisy (DN), sparse and noisy (SN), and 
artificial patient data (AP) (see main text for details).  

(ii) Data quality has a strong influence on prediction accuracies, but the drop in performance considerably 
differs between models and use-cases. 

Next, we analyzed how well the different approaches (MM, GLM, NN) can predict the outcome for the 
virtual patient data and how model performance changes with varying data quality (Fig. 1b,c, and 
Experimental Procedures). The results of the 10-fold cross-validation of the model performance are 
depicted for AML (Fig. 2a) and CML (Fig 2b). As expected, the prediction accuracy (see Methods for the 
mathematical definition) declines for all approaches when the data quality decreases. We point out that the 
decrease in data quality differs between use-cases and models. In the case of AML, the introduction of 
sparsity leads to a relatively sharp drop in model performance. This drop illustrates the dependency on 
data size (here data points per time series) as we have a median of only 4 measurements in the SN and 
AP data, compared to the original 39 measurements in the dense data set (D) set. In line with this, we 
observe a more gradual decline in performance when comparing the effect of introducing noise and 
sparsity in the CML case. Here, we have a median of 25 measurements in the SN and AP data, compared 
to the original median of 93 measurements. 

Interestingly, the difference in model performance is not consistent across the two use-cases. For the 
sparser AML data, all models perform similarly on the dense (D) and noisy data (DN). However, when 
introducing more sparsity into the data, a mechanistic model performs more robustly than the generic NN 
model (a difference in the accuracy of 6.3 and 7.4 percentage points for the SN and AP) and the GLM 
model performance is in between MM and NN. This result reflects the importance of introducing prior 
knowledge (or inductive bias) when dealing with very few data (Fig. 2a). 

We observe a different situation in the CML case. Here, the prediction accuracy for the mechanistic model 
drops down substantially more compared to the statistical GLM model and the generic NN when data 
quality decreases (a difference in accuracy between MM and NN of 19.7% for SN and 19.8% for AP, 
respectively). We recall that the noise-free data (D) was generated by the very same mechanistic model 
(compare Fig. 2b). The high prediction accuracy for this data indicates that the correct (generative) MM 
can truly be identified. However, given the higher number of free parameters (n=7) in the CML case, a 
reduction of data quality (either resulting from noisy or sparse measurements) more strongly effects the 
identifiability of the correct MM, while the GLM and the NN appear more robust.  
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Overall, our analysis confirms that predictive computational methods are promising tools to objectively and 
reproducibly predict relapse in myeloid leukaemias. For the real patient data (and the corresponding 
artificial patient samples AP) these methods achieve up to 70% accuracy (compare Figure 2a,b). While this 
indicates that the computational methods can in principle  identify predictive, nontrivial patterns in time 
series data obtained during treatment, the resulting prediction accuracy might not adhere to the expected 
standards for clinical decision support. Our systematic study suggest that especially the scarcity and 
limited accuracy of available measurements per patient appears as a limiting factor for the overall prediction 
accuracy for relapse occurrence. Given those constrains on the data side, we doubt that structural 
changes to the computational method s(e.g. by refining the neural network architecture) can substantially 
improve the overall performance. However, we see great potential in optimizing the measurement process 
to yield more informative sampling schemes.  

 
Fig. 3: Dedicated measurement schemes: (a, b) A dedicated measurement scheme (AS) improves 
prediction performance with the same number of data points for all models compared to the AP data both 
for AML (a) and CML (b) data. 

 (iii) A refined measurement and treatment scheme leads to improved prediction accuracies 

As outlined above, a significant limitation for the prediction accuracy results from the sparsity of the 
available data, in particular for the case of AML. Here, molecular diagnostics and especially bone marrow 
aspirates are limited resources in the clinical setting. As only increasing the sampling frequency is not an 
option in many cases, we wondered whether an optimized timing of the measurements could lead to better 
predictions while the overall number of measurements remains the same. To investigate this question, we 
created an additional set of artificial patients (AS) with consistent measurement intervals during the nine-
month treatment period (i.e. the first day of each therapy cycle and every six weeks during the treatment-
free phase, typically 4 to 8 (median = 7) measurements per patient). Fig. 3a indicates that for this amended 
sampling regimen, we can already increase the accuracy of all prediction approaches (MM and NN by up 
to 12% and for GLM less pronounced). This finding strongly suggests that an adapted sampling scheme 
can considerably contribute to better relapse predictions, e.g. using methods from optimal experimental 
design (Chaloner and Verdinelli, 1995; Goodwin, 1977; Seeger, 2008; Walter and Pronzato, 2010). 

The DESTINY trial implemented a study protocol for CML patients, in which patients in molecular remission 
reduced their TKI dose to 50% of the original dose for 12 months before TKI was finally stopped (Clark et 
al., 2019). Motivated by this study, we simulated a corresponding data set in which a 12-month dose 
reduction is explicitly modelled (AS dataset). Training the prediction approaches to explicitly integrate this 
perturbation, we found a substantial increase in the prediction accuracy of up to 19.1% (Fig. 3b). We argue 
that probing the system's response to perturbation (such as dose reduction) provides additional 
information about control mechanisms that cannot be obtained from ongoing monotherapy (Gottschalk et 
al., 2020; Hähnel et al., 2020; Roeder and Glauche, 2020). 
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Discussion 

In summary, we could show that qualitatively different computational approaches, ranging from machine 
learning approaches to mechanistic models, are in principle suited for predicting relapse occurrence based 
on time-series data of leukaemia remission levels. To this end, we employed simulated time course data 
generated by mechanistic mathematical models, which we previously developed to describe disease and 
treatment dynamics in CML and AML. It is the advantage of this approach that we obtain highly controlled, 
although idealized, remission curves from which we can abstract different levels of sampling density and 
measurement error. The simulated data always allows us to refer to the ground truth of the underlying 
generative model. Applying this technique, we could also demonstrate that data quality in terms of 
measurement frequency and measurement error has a more substantial influence on the accuracy of the 
prediction than the employed prediction method, which is particularly evident in the AML data. Our results 
for the CML case indicate that it can be harder to fit a more complex mechanistic model (in terms of the 
number of model parameters) to noisy data than it is to fit a statistical predictor like a GLM or a generic, 
black-box neural network.  

Our analysis illustrates that generic methods, such as neural networks work well for the prediction of 
disease recurrence if frequent measurements are available (as in the CML data). For diseases with sparse 
measurements and limited data on the other hand (exemplified in the AML data), neural networks (and 
representation learning in general) is less suited for identifying the critical factors underlying the disease 
dynamics. In such cases, it is beneficial to incorporate prior knowledge to yield better predictions using 
either mechanistic models of the disease, if available, or statistical approaches based on explicit 
(phenomenological) features. In our current study, we used an LSTM neural network as the standard 
approach for analyzing sequential data. An interesting next step is to assess if more complex neural 
network models (Chen et al., 2018; De Brouwer et al., 2019) can even improve upon the LSTM results, 
although we suspect that data quality is the dominant limiting factor. 

Regardless of the exact choice for a predictive computational method, our study indicates that the 
optimization of measurement schemes and clinical protocols is a promising strategy to improve the overall 
prediction accuracy without necessarily requiring more measurements per patients. In our predictions for 
AML recurrence, we could reach a level of accuracy of about 80% for the prognosis of relapse occurrence 
within two years after diagnosis. This result would already exceed the prediction accuracy for relapse-free 
survival after 12 months in the study by (Othus et al., 2016). As our results are based on synthetic data, 
this comparison should be treated with caution. Still, our findings indicate that standardized measurement 
schedules adds critical leverage to improve the ability for predicting relapse no matter what computational 
methods are used in the end. Our artificial measurement schemes indicated a clear improvement, while 
we did not even apply formal optimization criteria to obtain most suitable regimes that maximizes accuracy 
while minimizing the number of measurements. This finding opens a clear perspective for future research 
on optimized measurement strategies that balance a maximized gain of information from clinical data with 
an economical use of resources. We argue that such refined schedules can contribute to reaching a level 
of prediction accuracy, which indeed supports clinical decision making.  

In this work, we focused on the accuracy of relapse prediction employing three different, prototypic 
computational approaches working on time-series data. However, their implementation in a decision-
making context also requires an intuitive understanding of how the method works. Although NNs do not 
require any prior knowledge and can achieve excellent prediction accuracies, it is not trivial to identify which 
aspects of the data are causative for a particular prediction (Arras et al., 2017; Shrikumar et al., 2017). In 
other words, the "black box" nature of NNs does intrinsically not reveal the key features of the data on 
which a decision is based. There is a general, ongoing scientific discussion about how severe this apparent 
lack of interpretability is (Esteva et al., 2019; Rudin, 2019). Consequently, there is still a level of reluctance 
and discomfort with decision-makers and regulatory authorities to consider such methods for integration 
into clinical routines. Mechanistic models represent the other side of the "interpretability spectrum" as they 
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superimpose a principal understanding of the underlying interactions onto the final observations. It appears 
tempting to favour this type of approach. However, it comes with other limitations: it is highly specific and 
not easily transferable to other disease entities, and it cannot be guaranteed that all essential interactions 
are indeed mapped (compare (Hoffmann et al., 2020)). GLMs represent a middle ground and balance the 
pros and cons of NN and MM approaches. They can be helpful if detailed mechanistic knowledge is 
missing while important features of the response characteristics can readily be named, estimated and also 
interpreted. However, their overall performance depends strongly on the choice of those hand-crafted 
features and is also vulnerable to missing critical aspects. 

The increasing availability of diagnostic methods to track molecular remission in different cancer types over 
extended time periods will establish a rich data source to explore further how this dynamic information can 
be correlated with the future course of treatment and disease. Obtaining a systematic understanding of 
how different computational methods can be used to exploit this data is of crucial importance to provide 
usable predictions and potentially integrate them into decision making in the clinical context. 

Experimental Procedures 

Mechanistic models 

To generate the synthetic data, we used our recently published mechanistic models for AML (Hoffmann et 
al., 2020) and CML (Hähnel et al., 2020). The models use ordinary differential equations to describe 
leukemic cell populations and their respective drug responses and mutual interactions. For the AML 
models, patient-specific differences in the disease characteristics are represented by two free parameters 
and varying treatment details (length, number and interval of chemotherapy cycles), while for the CML 
models we are estimating seven free parameters to describe a patient's response optimally. Details of the 
model setup are provided in the Supplementary Materials. 

Patient data 

For the generation of a set of realistic parameters, we fitted the respective mechanistic model to previously 
published time course data reflecting the patient's tumour remission during and after therapy. In particular, 
we used the time courses of 275 NPM1-mut AML patients, in which the level NPM1-mut/ABL abundance 
is used as a measure of leukaemia load (median follow-up time of 10 months, the median number of 5 
measurements (Hoffmann et al., 2020)). Furthermore, we integrated data sets from 21 CML patients 
reflecting both their BCR-ABL1/ABL remission levels under TKI therapy and after therapy cessation 
(median follow-up time of 84 months, the median number of 28 measurements (Hähnel et al., 2020)).  
Examples of model fits to patient data, and the mean absolute error for each fitted patient can be found in 
Suppl. Fig. 1.  

Generation of artificial data 

To generate artificial patient data, we sampled from the set of parameters that we derived from fitting our 
models to the patient data. 

In the case of AML, we sampled a random parameter combination from the empirically observed 
parameters. We added a small random variation to the parameters (see Supplementary Material for details) 
and sampled one clinical chemotherapy schedule from our pool of patient data. We then simulate an 
artificial time course of nine months length with our mechanistic model and the sampled parameters.  

For the corresponding artificial CML time-courses, we sampled the seven model parameters from the 
distribution of empirical estimates in the available data basis, maintaining their mutual correlations (for 
details see Supplementary information). The therapy cessation time was sampled based on kernel density 
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estimates from the cessation time of the real patients. This information was then used to generate time-
courses with the mechanistic CML model.  

For each disease model, we generated the following 5 data sets with varying levels of data quality: 

- Dense data (D): with weekly (AML) or monthly (CML) exact measurements, respectively. 
- Dense-noisy data (DN): where white noise was added to each measurement, according to the 

noise level found in the real data. 
- Sparse-noisy data (SN): generated from the DN data set by reducing the number of data points 

to reflect the measurement frequency in real patients. 
- Artificial-Patient data (AP): by adding a detection limit to the SN data as found in the real data. 
- Artificial scheme data (AS): Similar to AP data but using an improved sampling scheme compared 

to the clinical data. For AML measurements are made at the end of each chemotherapy cycle and 
every six weeks afterwards. For CML, the treatment dose is reduced to half of the usual dose 12 
months before therapy cessation. 

Example time courses of all data sets for each use-case can be found in Suppl. Fig. 2 and 3. 

Using this synthetic data, we define the relapse prediction task as follows: for AML, we use a time window 
of 9 months after diagnosis (covering the treatment phase) to predict whether a patient will relapse within 
the subsequent 15 months. For CML, we use a time window from treatment start to cessation (avg of 92 
months with a standard deviation of 28.2 months) to predict whether a patient will relapse within the 
subsequent ten years, as a CML can evolve very slowly, especially for a low number of tumour cells at 
treatment cessation. To obtain the model predictions in the case of MM, we fitted the model parameters 
to the available time course then simulated the future behaviour using the fitted model for each dataset 
individually. In contrast, both GLM and NN are initially optimized on a separate, labelled training set for 
which the respective outcome of relapse occurrence was given as a target value.  

Explicit features of time series for GLM analysis  

As the Generalized Linear Model, we use a logistic regression classifier. The model uses explicit features 
that describe characteristics of the time-course data. We took the two characteristics of AML time-courses 
defined in our previous work (Hoffmann et al., 2019): the elimination slope α, describing the speed of 
decrease of leukemic burden over the time of treatment and the lowest measured leukemic burden after 
treatment n. In this work, we further added three additional features: the leukemic burden at diagnosis (y0, 
the following decreasing slope during the times of treatment (a) and the increasing slope of the leukemic 
burden in between treatment cycles (b) (Suppl Fig. 4A). 

For CML, we defined seven features from fits of a bi-exponential function that described the decrease of 
the leukemic burden after treatment start. These features include the bi-exponential parameters (A, α, B, 
β), the corresponding deviation of the fit and the data (σ), the cessation time and the BCR-ABL1 value 
before cessation or half dose. For the AS data, we expand these features with the behaviour of the leukemic 
burden during the time of dose reduction including linear function parameter (γ), the deviation during half 
dose (C) and the last measured value before cessation. (Suppl Fig. 4B). 

Neural Network 

To predict the occurrence of relapse from the time series data, we used a bidirectional Long-short-term-
memory (LSTM) network as the default architecture to handle sequence data with varying length. The 
model consists of a bidirectional LSTM layer followed by a fully connected feature extractor and a binary 
classification output. We use the respective cross-entropy loss to train the network. We implemented the 
network in Python using the Keras library (Chollet). To get a robust estimate of the model performance, we 
conducted 10 training runs on the same dataset and chose the network with the highest validation 
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accuracy. We then did 10-fold cross-validation for the entire experiment to assess the average and the 
variability of the results. Further details about the network architecture and training can be found in the 
Supplementary Materials and Methods. 

Accuracy 

We use the traditional definition of accuracy as the ratio of the number of correct predictions over the total 
number of predictions: 𝑎𝑐𝑐	 = 	 #"#$$%"&

#&#&'(
=	 )*+),

)*+-*+),+-,
 where TP, TN, FP, and FN are true positives, true 

negatives, false positives and false negatives respectively.   

Lead Contact,  

nico.scherf@tu-dresden.de 

Data and Code Availability.  

The patient data for the AML patients are published in (Hoffmann et al., 2020) and can be found here: 
https://doi.org/10.6084/m9.figshare.12871777.v1 
The CML patient data will be provided upon request to the correspondent author (Ingmar Glauche). 
Source code is available at https://zenodo.org/record/4293490#.X8DznMtKg-Q 
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Supplement 

 
Suppl Fig. 1: Mechanistic model fit to patient data: (A) Example relapse of an AML patient and 
respective model fit. Red areas show time of chemotherapy administration. (B) Mean absolute error (MAE) 
of all 275 fitted AML patients. (C) Example of an CML patient and respective model fit, showing a relapses 
after TKI stop. (D) MAE of all 21 fitted CML patients. 
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Figure S1: A Example AML patient data with model fit. B Mean absolute error (MAE) of all model fits to the

AML patient data. C Example CML patient cessation period (grey) and model fit. D MAE of all model fits to the

CML patient data.

1 Model fits - examples and overview
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Suppl Fig. 2: Overview of artificial AML data sets: Dense data (D) with weekly exact measurements. 
Dense-noisy data (DN) where white noise was added to each measurement. Sparse-noisy data (SN) was 
generated from the DN data set, by reducing the number of data points to meet the measurement 
frequency in real patients. Artificial patient data (AP) is the data set most similar to the real patient data, 
which differs from the SN data set only by the inclusion of a detection limit, as it is found in the real data. 
Artificial scheme data (AS) is a data set, close to real data, with a measurement scheme, where 
measurements are made at the end of each chemotherapy cycle and every 6 weeks afterwards.  
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Figure S3: Overview of the artificial data sets by the example of one patient.

2 Artificial Data AML
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Suppl Fig. 3: Overview of artificial CML data sets: Dense data (D) with monthly exact measurements. 
Dense-noisy data (DN) where white noise was added to each measurement. Sparse-noisy data (SN) was 
generated from the DN data set, by reducing the number of data points to meet the measurement 
frequency in real patients. Artificial-Patient data (AP) is the data set most similar to the real patient data, 
which differs from the SN data set only by the inclusion of a detection limit, as it is found in the real data. 
Artificial scheme data (AS) is a data set, close to real data, with an additional 12-month period of half-dose 
TKI treatment (shown in gray). 

 

 
Suppl Fig. 4: Derived features of the time-courses: (A) AML features with y0 the leukemic burden at 
diagnosis, a the decreasing slope during treatment and b the increasing slope in treatment free intervals. 
(B) CML features with A, B and C being the intersections of the fitted line to the first and the second part 
of the biexponential fit and to the increase of the leukemic burden during half-dose periods, respectively. 
α, β and γ are the respective slopes. 
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Figure S4: Overview of the artificial data sets by the example of one patient.
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3 GLM parameters AML
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Suppl Fig. 5: Similarity of artificial patients and real patients: a distribution comparison of 
statistical parameters: Comparison of distribution of parameters describing the course characteristics 
between artificial patient data (AP) and real data (RD).  
  

(A)

AP RD

0

0.5

a

AP RD

�0.1

0

0.1

b

AP RD

�1

0

1

2

3

y 0

AP RD

�0.1

0

a

AP RD

�4

�2

n

(B)

AP RD

0

5

10

lo
g(

A)

AP RD

�2

0

2

lo
g(

a
)

AP RD

�10

�5

0

lo
g(

B)

AP RD

�0.1

0

0.1

b

Figure S2: Distribution of parameters describing the course characteristics, that were used as GLM features for the

artificial patient data (AP) and the real data (RD). A GLM features for AML B Main GLM features for CML.
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Supplementary Materials and Methods 

AML 

Clinical data 

To be able to generate data with the mechanistic AML models that were as similar as possible to real 
clinical data, we used a patient data set for comparison. The data published together with the mechanistic 
model was used (Hoffmann2020). 61 of these 275 patients relapsed within two years after therapy initiation. 
The data consists of time course measurements of the relative tumour load of NPM1-mutated patients, by 
qPCR measurements of the amount of NPM1-mut transcripts relative to the amount of the reference genes 
transcripts (ABL). 

 

Mechanistic model  

Our mechanistic model of the molecular disease dynamics of AML, already published in (Hoffmann et al., 
2020), describes the dynamics of healthy stem cells (H) and leukemia-initiating cells (L) in the bone marrow 
of an AML patient. Each cell can adopt one of the two differential states: a quiescent state (Q) and an active 
state (A). The cells can reversibly switch between states with transition rates tAL/H and tQL/H. Cells in active 
state (QA/LA) proliferate with proliferation rate pL/H and are sensitive to chemotherapeutic treatment with the 
kill rate c. Active cells can also differentiate into other states and therefore leave the two observed states. 
Individual chemotherapy schedules as well as patient-specific transition rates from quiescent to active state 
of the leukemic cells (tLA) and proliferative potential of leukemic cells (pL) are taken into account to adapt 
the model to individual patients. The model equation are as follows: 
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For individual patient fitting we minimized the residual sum of squares. 

 

Artificial data 

For data generation the chemotherapy information of real patients was used, as well as the fitted 
parameters from the patient set, published in Hoffmann2020, which were slightly varied with white noise. 
The following 5 data sets with 5000 time-courses each, half of them relapsing, half of them non-relapsing 
within two years, and a measurement period of 9 months were generated: 

- Dense (D) data: one measure per week starting with the first day of chemotherapy. 
- Dense-noisy (DN) data: added noise to each measurement from D. 
- Sparse-noisy (SN) data: Measurement frequency was adjusted to the number and intervals of 

measurements in the real data.  
- Artificial patient (AP) data: all values of SN below the detection limit of -5 [log10] were set to -5 

[log10]. 
- Artificial scheme (AS) data: using DN measurement time points at the beginning of each therapy 

cycle and every 6 weeks thereafter. All values below detection limit were set to -5 [log10]. 
 
Only patients which reached remission after therapy and did not relapse within 9 months were included in 
the data set. If the leukemic burden exceeded the relapse threshold of 1% at two years after treatment 
start, the time series was classified as a relapse. 

Generalized linear model 

For training a generalized linear model (GLM), in more depth a logistic regression classifier, we derived 5 
features. Two were taken from the previous description of the main characteristics of the time course in 
AML (Hoffmann2019): the elimination slope α, giving a measure of the decrease of leukemic burden during 
therapy, until the relapse threshold of 10^-3 is reached and the minimal leukemic burden after therapy (n). 
The other three features were derived from a simple model describing the time course with a starting point 
(y0) at the beginning of treatment, a linear decrease with slope a of the leukemic burden during the time of 
treatment and a linear increase with slope b during treatment-free periods (see Suppl. Figure 4A). The 
starting points (y0) and the two slopes (a and b), together with the two characteristics were then handed 
to the GLM. When fitting the GLM using the parameters it became clear that two of them could be left out 
without losing accuracy. Therefore, the final GLM was fitted to predict the relapse based only on the 
minimal leukemic burden after therapy (n), the decreasing slope during therapy (a) and the increasing slope 
during treatment free periods (b). A 10-fold cross validation was used to estimate the variation of the 
estimated accuracy. 

Neural Network 

The neural network consists of a bidirectional Long-short-term-memory (LSTM) layer with 32 hidden units 
(using ReLU activation), followed by a fully connected layer with 64 nodes with a ReLU activation and a 
single, sigmoid output layer.  

We use a vector of log10 values of NPM1/ABL values as input. Missing values (i.e. no measurement 
available at this particular time point) were encoded as -1 and a respective masking-layer was introduced 
to the network. For the non-detectable datapoints, we used the detection limit for the clinical data (see 
details about Clinical Data). The time points of chemotherapy were given as a second channel input in the 
case of AML.  

To prevent overfitting, 10-fold cross validation was used. We saved the model with the highest validation 
(not training) accuracy. The entire training process was repeated 10 times on each dataset, to report a 
more robust estimate of the network performance as we regularly observed numerical instabilities in the 
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training process leading to failure of model fitting. Networks were trained with binary cross-entropy loss 
using the Adam optimizer with a learning rate of 1e-3 and a learning rate decay of 1e-5. The size of the 
validation set was chosen as 15 % of the training set. We used a batch size of 128 and trained for 100 
epochs using an early stopping checkpoint to stop the training if the validation loss did not decrease in 20 
epochs. 

CML 

Clinical data 

To generate in-silico CML patients as similar to real patients as possible, we utilized a cohort of 21 CML 
patients based on (Hähnel et al., 2020). 

Each measurement can be either a detectable or an undetectable value. If a measure is detectable a 
corresponding BCR-ABL1 ratio on a log scale (LRATIO) is given. An undetectable measure is defined by a 
quantification limit (lQL) dependent on how much of the reference gene ABL1 was found in the sample. 
The more ABL1 is in the sample, the lower is the quantification limit. 

For CML, typically a biphasic course in the time series is observed. A first, rapid decline symbolizes the 
fast clearout of the majority of tumor cells in blood. This phase usually takes between 6 and 12 months. 
After this initial phase, a second phase with a moderate decline begins, symbolizing the slow tumor 
degradation in bone marrow. During the treatment the tumor load measurable in blood becomes lower, 
thus the number of non-detectable measures increases over time. 

 

Mechanistic model  

The mechanistic model simulating the CML cells consists of 3 compartments. X defines the quiescent, non 
replicating cells, Y defines the active, proliferating cells and Z defines the immune cells specific to the CML 
cells described by X and Y. Cells change from a quiescent state into an active state and vice versa with 
certain probabilities defined by the rates pXY and pYX, respectively. Furthermore, Y cells proliferate with a 
logistic growth defined by a maximal rate pY. The TKI-effect is described by a constant rate TKI killing the 
corresponding proportion of leukemic cells in Y. Immune cells in Z get activated by the number of active 
cells in Y. At the same time the immune cells kill proportional cells from Y depending on its number. 
However, the activation function of Z, depending on Y, defines a so-called immune window. In other words, 
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depending on the parametrization immune effector cells are suppressed on very high and very low numbers 
of active leukemic cells. In between the immune cells rise and get effective (Hähnel et al., 2020). 

Mechanistic parameters 

To fit the model to clinical and in-silico data, we used the following model parameters: 

- maximum activation rate of Z (pZ) 
- immune window suppressing constant (KZ) 
- cell switch rate from X to Y (pXY) 
- cell switch rate from Y to X (pYX) 
- maximum activation rate of Y (pY) 
- TKI kill rate (eTKI) 
- initial tumor burden (initRatio) 

The following model parameters were fixed among all mechanistic simulations: 

- maximum number of tumor cells in Y (KY = 1e^6) 
- kill rate of active leukemic stem cells by immune cells (m = 1e-4) 
- constant additive influx of immune cells (rZ = 200) 
- apoptosis rate of immune cells (a = 2.0) 

Fitting Mechanistic Model to Data 

We fitted the mechanistic parameters of all clinical as well as in-silico patients using a genetic algorithm. 
The fitness function is defined as the sum of the distance of all measurements with the following rules: 

(1) detectable measures: quadratic distance between patient data and in-silico data 
(2) undetectable measures: left censoring of values meaning if the simulation value is higher than the 

given lQL value (see Clinical Data) we use a quadratic distance, in case it is equal or lower, we use 
a 0-distance. 

 

Artificial data 

We generated the in-silico parameters using copulas to sample from the fitted patient parameters, such 
that we receive a highly similar correlation structure: 

(1) Using Copulae, describing a functional dependency between the marginals of multiple 
independent variables and their corresponding joint probability distribution, we: 

(a) create a normal Copula with the correlation matrix reflecting the correlations of the 
empirical random variables, 

(b) generate the random observations with the Copula targeting marginal uniform 
distributions, 

(c) and transform it into the observed empirical distribution. 

From this, we sampled 5000 in-silico patient parameters, whereas half are relapsing and half are non-
relapsing patients. Additionally, we are taking the information of the properties of cessation time, 
measurement noise, density and frequency of undetectable values from the patient data. As properties 
differ at specific treatment phases, e.g. sample frequency is usually higher in the beginning, we are using 
the following sampling time intervals: 0-6, 6-12, 12-24, 24-36, 36-(cessation time). 

(1) Dense Data (D): This dataset represents the raw simulation data taking one measurement per 
month. All measurements are noise-less and detectable. 
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(2) Dense-noisy Data (DN): We introduce noise, assuming it is solely represented by the distance 
between clinical data and the corresponding simulation fits. We sample from D using the 
corresponding error distributions, ending up with the newly defined DN dataset. 

(3) Sparse-noisy (SN): Using the clinical data, we calculate for each time interval a distribution of the 
time of the first observed sample and a distribution of time intervals by taking the differences of 
consecutive time points. Sampling from these distributions, we can generate the sparse SN 
dataset, starting from DN. 

(4) Artificial Patient (AP): For each interval a probability that a measurement is not-detectable is 
calculated. These probabilities are then applied to the in-silico patients from SN to receive the final 
in-silico patient data. 

(5) Artificial Scheme (AS): We are simulating patients with a scheme inspired by a study called 
DESTINY (Clark et al., 2019). Therefore, we set the TKI dose in the model to half 12 months before 
cessation time. To generate this AS dataset, we started all over from (1) -(4) with the only difference 
in the time intervals. As patients in DESTINY during half dose are monitored very closely, we split 
the last time interval using 36 - (half dose start) and (half dose start) - (cessation time) intervals. 

In all our CML simulations, we classify whether an in-silico patient relapses by simulating 10 years ahead 
and check whether the tumor burden is above MR1. 

Generalized linear model 

To predict the relapse outcome, we trained a logistic regression classifier (glm) using  

- the first slope α, 
- the corresponding intercept A, 
- the second slope β, 
- the corresponding intercept B,  
- the standard deviation during the biexponential phase σ,  
- the cessation time and 
- the BCR-ABL1 ratio at cessation time, 

whereas α, A, β, B and σ result from the corresponding biexponential fits. 

In the case of the artificial scheme AS, the additional predictors were added: 

- the third slope g during half dose, 
- the corresponding intercept C, 
- the first point in time of the half-dose and 
- the BCR-ABL1 ratio at half dose time. 

We allowed first-order interactions. However, resulting models were simplified based on the AIC until a 
minimum is reached. We used a 10-fold cross-validation. 

Neural Network 

We used mostly the same configuration as described above for the AML data. As input we used the vector 
of log10 values of BCR-ABL values. In case the value was not detectable, we used the lQL (see Clinical 
Data). To account for the more complex dynamics in the CML case and the higher number of data points 
within one time-series we increased the maximum number of epochs to 2000 with an early stopping if the 
validation loss does not decrease for 100 epochs. 
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