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Abstract

Abstract. A Monte Carlo simulation in a novel approach is used for studying the problem of the outbreak
and spread dynamics of the new virus COVID-19 pandemic in this work. In particular, our goal was
to generate epidemic data based on the natural mechanism of the transmission of this disease assuming
random interactions of a large-finite number of individuals in very short distance ranges. In the simulation
we also take into account the stochastic character of the individuals in a finite population and given densities
of people. On the other hand, we include in the simulation the appropriate statistical distributions for the
parameters characterizing this disease. An important outcome of our work, apart of the produced epidemic
curves, is the methodology of determination of the effective reproductive number during the main part of
the new daily cases of the epidemic. Because this quantity constitutes a fundamental parameter of the
SIR-based epidemic models, we also studied how it is affected by small variations of the incubation time
and the crucial distance distributions, and furthermore, by the degree of quarantine measures. Moreover,
we compare our qualitative results with that of selected real epidemic data from some world wide countries.

Keywords— COVID-19, Epidemic, Monte Carlo simulation, SIR model, Reproductive number

1 Introduction

Facing the problem of the spread of the new virus COVID-19, the standard procedure is to analyse or to fit
the epidemic data with the appropriate mathematical models. This methodology is very useful, not only to
determine the particular parameters of the disease, but also to forecast the evolution of its spread by using
some typical figures of merit as the doubling time, the peaking time and the basic and affective reproductive
numbers [1, 3, 2, 4]. Another approach is to work in the reverse problem, that is, to generate epidemic data
consistent with the disease under study. By data we mean the fundamental ones, that is, the reported -
confirmed “daily new cases” (DNC), expressing the daily rate of infected individuals [5]. The advantage of this
methodology, materialized by a Monte Carlo (MC) simulation, is that allows the use of the stochastic character
of the parameters used in the mathematics of the epidemics (the known classical SIR model and its extensions),
and as well as, to include other extrinsic factors, like quarantine, physical distances and other specific social
measures. In this methodology we are studying the set of people in a city or even in a country as a complicate
system in which there is no sense to concentrate to the behaviour or habits of individuals or groups of them
in detail. Besides, this is surely infeasible to be done. Two factors only must be taken to account, the first is
the radius of movement or transport and the second the crucial physical distance for transmitting the disease.
The choice of the appropriate range of values, because we are facing random variables with the associated
distributions, is one of the main tool for manipulation the generated epidemic data. In order to be consistent
with the new COVID-19 disease, we must use, initially, the medical data found in the literature. However,
the spread of the disease differs widely among the countries and thus we are forced to focus on the particular
ones with similar epidemic “picture”. Another very important and useful outcome of this simulation is the
so called “Effective reproductive number”, Re, which is a function of time. From this we can determine also
the fundamental parameter used in SIR-based models, the “Basic reproductive number”, Ro. Both quantities
present very large uncertainties when they are calculated from real epidemic raw data (the DNC), even in case
of using parametrization mathematical models [6, 7, 8, 9]. The reason is, first, the large fluctuations of the data
and secondly the mathematical procedure for determining Reff based on variations day-by-day, as we describe
next. Studying the impact of the main parameters of the disease to Reff or its time trend is also basic subject
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of our work and we suspect that the results can be useful for understanding and facing this serious worldwide
pandemic.

2 Simulation methodology

The Monte Carlo (MC) simulation we developed is based on the idea to simulate the natural mechanism and
process happened during the spread of the disease [10]. According to our claim that we must examine and
study the community as a complicate system, we clarify the basic conditions as follows: a) the transmission
of the virus is happened only if the physical distance becomes small by the sense of being in a crucial range
where the transmission probability tends progressively to unity, b)assuming the condition (a) the daily step of
movement every discrete time of one day which is free variable of the simulation because it depends on personal
or social factors and c) the specific parameters of the particular disease of new COVID-19 which are mainly, the
incubation time and the recovering time, being these two in some kind of convolution [11, 12, 13, 14, 15, 16].
The above three conditions constitute the core of the simulation and thus their mathematical description is
essential. In particular, due to their stochastic character we might decide about their probability distribution
and the appropriately chosen associated parameters, mainly the mean and standard deviation values. Beyond
these, the population and the corresponding people density must be specified at the beginning of the simulation,
both related to that is called “size” in the mathematical theory of epidemics. These conditions can be adapted
to urban or country town cases in the implementation in real conditions. Below we describe these conditions in
more details, where the first three constitute random processes and the fourth one just a set of given constant
parameters [17, 18, 19].

Figure 1: A random movement of two individuals Pi and Pj along a 2-D grid during three successive days. Their
distance at the 3rd day is equal to d. The shade regions around any new location represent the uncertainty of
the radial translations following Gaussian distribution in x and y coordinates.

In Fig. 2 we present an abstract design of the transmission mechanism among two individuals as a function
of time, where one of them is infected and the other is considered as susceptible. we have to face a random
process and thus we investigated the most realistic assumption for the required distributions.

• Daily step of movement (DS random process): the movement of the dots, because they represent real
individuals, must present realistic characteristics. The step must be that corresponding to walking dis-
tances in higher probability and transportations with lower probability. However, because the movements
are performed relative to the previous location, the cumulative distance should be much greater than one
step. This parameter has been chosen to be a fraction of the length corresponding to the dimension of a
shell according to the selected people density and follows a Gaussian distribution. In a typical - baseline
run we set a mean step equal to 1/4 of the grid dimensions with a std equal to 1/12 of the grid dimensions.
In Fig. 1 an indicative sequence of random movement by using discrete steps of two individuals during
three successive days is presented.

• Physical distance (PD random process): the physical distance is a delicate issue, in the sense of that it
is the fundamental parameter causing infection among two individuals in short distance, if one of them
already infected and passed the stage of incubation time of the virus. in order to introduce this condition
in a realistic way, we must answer two fundamental questions, a) what is the appropriate relationship
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Figure 2: An abstract design showing the various time periods of the virus transmission mechanism from one
infected individual to another. The time moments concern the mean values of the relevant random processes.

between the infection probability and the physical distance, and b) what is the statistical distribution and
its parameters describing the variance of the probability related to this medical phenomenon. Even if an
appropriate distribution is specified, the phenomenon in the real world is very complicate: we can imagine
the pair of individuals, not only keeping a short or longer physical distance, but to wear a mask or not, to
wear it incorrectly, the one of them having high or low virus load, straight orientation or not, and other
circumstances playing their particular role in the probability of infection. Moreover, the environmental
conditions (relative humidity, air ventilation etc. contribute to the infection). For this reason, the crucial
parameters in the mathematical approach must be considered as the effective ones incorporating all the
cases described above in a good approximation. The success to this approximation can be verified only in
comparison to real epidemic data analysis. The probability distribution that we assumed is the exponential
one, whose the probability density function (PDF) is

f(x;λ) = λe−λx (1)

where x is a random variable (assumed x > 0) and λ is the “rate parameter”. The mean value is equal to
1/λ which is used in the runs of our simulation.

As an alternative probability distribution we assumed a sigmoid function shape. In particular, we created
a modified sigmoid function taking values from maximum 1 (for d = 0) to minimum 0 (for d =∞). It is
characterized by saturation of the distance (as a variable) at very low values close to zero. This probability
distribution might approximate better to the real situation and is obtained by using an algorithm running
inside the simulation code. This modified sigmoid function, assuming as variable the physical distance
d ≥ 0, is the following

f(d; dr) =
1

1 + ded−dr
(2)

where dr is a reference parameter specifying in which distance we want to achieve a particular probability
of infection. For instance, setting dr = 0.1931 the probability of infection at a distance of 0.5 m is equal to
0.5. For the typical physical distance of 2 m the probability falls down to 0.0528 (or about only 5.3%). In
the present study of the MC simulation we have used the exponential distribution with mean value 8 m.

• Incubation and recovering time (IR random process): these parameters are very crucial for a realistic
simulation. We are forced basically to use mathematical principles because of their stochastic character,
even both are related to medical processes inside a human body. It is known that the problems of waiting
times are faced using the exponential distribution. Another more advance approach is to assume the
Gamma distribution belonging to the same generic distribution family. It is di-parametric including the
positive parameters, shape α and the rate β. The corresponding PDF is the following.

f(x;α;β) =
βα

Γ(α)
xα−1e−βx (3)

where x is a random variable, x ∈ (0,∞). The mean value is µ = α/β and the variance σ2 = α/β2.
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In our MC simulation, measuring the random variable of discrete time in days, we have chosen a = 6
(dimensionless) and β = 2/3 days−1. Therefore, the mean value is 9 days incorporating also the “latent
period” (see Fig.2) and the rms (square root of variance) is 4.9 days. These two parameters lead to
a distribution which show characteristics consistent with most medical observations published in the
literature.

• Population, Area and Density (PAD given constants): in the simulation, we chose the total number of
dots in a finite area. Therefore, the density is specified at the same time. The population density can be
considered in large and very dense cities (e.g. like Paris) with around 20000 people per km2 or for typical
small size cities with a density around 2000-4000 people per km2. In our runs we used the density of
2000-4000 people per km2. As initial condition we have chosen 10 infected individuals, that is only 0.5%
of the population.

3 Determination of the effective reproductive number

The effective reproductive number, Re is a fundamental quantity expressing the degree of the transmission of
the virus, that is, one infected individual to how many in average secondary individuals should transmit the
virus during the average time period that he is sick. This quantity is a function of time can be determined in
the frame of the SIR-based models as follows [20, 21, 24, 25, 22]:

Re = − dS

dR
=

d(I +R)

dR
= 1 +

dI

dt

dt

dR
= 1 +

( a
N
SI − βI

) 1

βI
= R0

S

N
(4)

Because the condition for creating an epidemic is Re > 1, the corresponding condition should be S/N > 1/R0.
Also, at t = 0 should be Re(0) ≡ R0, at the peaking time t = tp should be Re(tp) = 1 and at t = ∞ takes
the value Rt = R0

S
N (∞) < R0. By using the expressions of Eq. 4 and using the third equation of SIR model,

dR
dt = βI, we can determine Re at any time t based only the function I, as below

Re = 1 +
1

βI

dI

dt
(5)

The generated data from the MC simulation are not only the DNC corresponding to the theoretical function
of t, I, but also that correspond to the theoretical functions S and R. The determination of Re requires
only the knowledge of I and as well as the parameter β. This parameter can be considered as a constant
because constitutes an intrinsic characteristic of the disease under study and can be found in the literature.
Nevertheless, having the raw epidemiological data of the epidemic spread in a country, the value of β could
be fitted (or adjusted) in order to be consistent with the corresponding raw epidemiological data referring to
the daily recovered individuals, let us call DRC. Usually,these data are not reliable and as well as contain the
relevant delay with respect to DNC ones. For this reason we prefer to “stay tied up” to the theory described
by SIR-based models, as we have done in the above equations.

Below, we present the methodology to estimate the uncertainty of Re. According to Eq.5 the sources of the
uncertainty are two, a) the uncertainty of I due to its statistical fluctuations and b) the deviation of constant
parameter, β, from a standard bibliographic value. However, the latter, is of secondary importance because,
first a hypothetical deviation is expected to be relatively small and secondly because of an appropriate “fine
tuning” can be performed. Therefore, in our calculations below we assume a fixed value for β.

In order to calculate the error’s transmission from I to Re we can assume a short time period around t = 0,
∆t, where Re can be considered constant. This assumption is realistic, and we can also say necessary, because
the recovering rate in this disease is finite and the variations can be only be calculated at least within this time
period. Being Re constant, we can write

dI

dt
= β (Re − 1) I (6)

We integrate from an arbitrary time ti−1 to ti.

Iti∫
Iti−1

dI′

I ′
= β (Re − 1) ∆t (7)

Leading to the expression
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Iti = Iti−1
eβ(Re−1)τR (8)

In the general case we can set βτR ≡ c, even that c differs slightly from unity in practice. As we can observe,
according to this assumption of constant Re in finite time slots, its value depends on the logarithm of the ratio
pf the two successive values of I at the beginning and the the end of this time slot. This expression can also be
very useful when a surveillance of the epidemic must be implemented for doing a reliable forecast to it during,
mainly, during its mitigation stage. At this point, based on this equation, Eq. 8, we proceed to solve the
algebraic equation for Re obtaining

Re = 1 + ln

(
Iti
Iti−1

)1/c

(9)

The values of I follow the Poisson distribution, appearing the associated uncertainty as the corresponding
rms, are considered δIti = k

√
Iti and δIti−1 = k

√
Iti−1 respectively, where k is a positive constant factor

greater than unity which used for the cases of observing larger fluctuations in the raw data of I. Therefore, the
uncertainty of Re should be

δRe =

√
1

I2
ti

(δIti)
2

+
1

I2
ti−1

(
δIti−1

)2
=
k

c

√
1

Iti
+

1

Iti−1

(10)

While the corresponding relative one is

δRe

Re
=

k/c

1 + ln
(

Iti
Iti−1

)1/c

√
Iti + Iti−1√
ItiIti−1

(11)

In the segment around the peak of the DNC curve, we theoretically expect Re = 1. Indeed, from Eq.11 we
obtain this value because of maximum of the curve (having an extremum), where Iti ≈ Iti−1 . At this region,
the relative uncertainty takes its minimum value and becomes

δRe =
k

c

√
2

Iti
(12)

The basic reproductive number, R0, can be calculated by the above equations by using the values at the
first time slot (typical is of the order of 13 days), that is, I0 and It1 . Definitely, R0 is the maximum value of
Re, as it can be easily proved from Eq. 4 where at t = 0 the fraction S/N takes its maximum value and then
is decreasing due to monotonically decreasing of S.

Implementing the above methodology on the simulation program we use two processes for improving the
accuracy of Re determination. The first concerns a digital filtering, reducing the statistical fluctuations, and
the second is a moving average algorithm, both realized by functions of Matlab [23].

4 Implementation and results

4.1 Results generated by the simulation

During the run of the MC simulation the N dots within the assumed area are categorized by using colors: a)
the black for representing the susceptible individuals, b) the red for representing the infected individuals and
c) the green for the recovered individuals. The dots change their location day-by-day representing the random
movement of the individuals in the real world. In Fig. 3 we present a diagram with the daily new data (DNC)
generated by the MC simulation. In Fig. 4 the corresponding effective reproductive number as a function of
time is shown. Focusing on the peaking time in both plots, we observe that the value Re = 1 corresponds
to the peaking time, as one might expect according to the SIR-based models. Moreover, apart of the general
decreasing trend, we observe some slow variations, before and after the value corresponding to the peak, a
phenomenon which is hard to be explained in a simple way. These variations are visible also in the obtained
Re from real epidemiological data (see in the next). The maximum value is around 1.80 and the minimum,
relatively adequate accurate value, is at the level of 0.2 around the day 40.
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Figure 3: The generated epidemiologi-
cal data (DNC) from the MC simulation,
counted day-by-day along the whole area.

Figure 4: The effective reproductive number
as a function of time. The error bars corre-
spond to the moving average values.

4.2 Qualitative discussions and comparisons

By the MC simulation we have studied the effect of the degree of quarantine, by means of the positive effect
to the spread dynamic of an epidemic. We have set three degrees of quarantine reducing the movement range
of the individuals and the rms deviation in steps of 0.25 starting from zero (no quarantine). Because of the
fluctuations caused by the stochastic process of the MC simulation we were running the program code 10 times
calculating the mean and rms value for each particular quantity. In Table 1 the obtained results are summarized.

Quarantine degree[%] Percentage of size % DNC peak value [cases] DNC peaking time [days] R0

0 99.3 69 26 1.80
25 99.2 53 32 1.73
50 98.7 46 43 1.80
75 92.7 33 42 1.63

Table 1: Summary of the MC simulation results related to the effect of the quarantine degree, with the same
density and the mean daily step and the STD of daily step being the baseline one., that is, 7.90 m and 2.64 m
respectively. The density was set 2000 p/km

2
.

Based on the results of Table 1 we observe some interesting consequences of the quarantine as follows: The
percentage of size shows a very small decrease of 6%. Also, the greater the degree of quarantine the decreasing
the DNC peak value, while the peaking time extending accordingly. Concerning the basic reproductive number
R0, we observe that it shows negligible variation compared with the statistical errors and thus we can consider
it as constant. As we know from the SIR-based epidemic models, R0 is a fundamental quantity related to the
two basic parameters, the transmission rate and the recovering rate and therefore can not be affected seriously
by the quarantine alone. The overall variations, from 0 to 75%, due to the quarantine are: the DNC peak value
is coming down 53%, while the DNC peaking time extends by 61%.

Figure 5: The size percentage as a function
of quarantine degree. The dotted line repre-
sents a 2nd degree polynomial fit.

Figure 6: The peak value of DNC as a func-
tion of quarantine degree.The dotted line
represents a 2nd degree polynomial fit.
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Figure 7: The peaking time of DNC as a
function of quarantine degree. The dotted
line represents a 2nd degree polynomial fit.

Figure 8: The basic reproductive number as
a function of quarantine degree. The dotted
line represents a 2nd degree polynomial fit.

4.3 Results analysing real epidemiological data

For comparing the results of the MC simulation with real epidemiological data we have chosen a country where
the raw data and any parametrization of them present a “picture” very close to the theoretical as well as
with relatively small fluctuations. This country is Switzerland where, apart of the above characteristics, the
compliance with the measures is largely secured. In Fig. 9 and Fig. 10 the NDC data parametrized by the
LPE-SG model and the Re are shown respectively.

Figure 9: The epidemiological data (DNC)
referring to Switzerland at the first phase of
epidemic outbreak since 1/3/2020.

Figure 10: The effective reproductive num-
ber as a function of time for the first phase
of epidemic outbreak in Switzerland.

Conclusions

A Monte Carlo simulation has been developed aiming to study the spread dynamics of the new COVID-19
virus. The novel approach we followed in methodology is based on fundamental mechanisms during the spread
of the epidemic. Of key importance was the realistic selection of statistical distributions so that the results of
the simulation correspond to those recorded to date in various countries during the first and second “waves”
of the epidemic. Moreover, we described the mathematical process for determining the effective reproductive
number as it variates during the MC simulation. This quantity as a very important playing a role of “figure of
merit” helping to survey and understand the dynamics of the epidemic spread. We also studied the effect of
quarantine at various levels of its implementation on the shape of the epidemic curve and its parameters. In
addition, we presented some indicative real epidemic results analysed using specific parametrization model.
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