
1 

 

Survival analysis in breast cancer using proteomic data from four 

independent datasets 

 

RUNNING TITLE: Survival analysis using proteomic data 

 

AUTHORS 

 Ágnes Ősz1,3, András Lánczky1, Balázs Győrffy1,2,3 
1 Semmelweis University Department of Bioinformatics, H-1094, Budapest, Hungary 
2 Semmelweis University 2nd Department of Pediatrics, H-1094, Budapest, Hungary 
3 TTK Momentum Cancer Biomarker Research Group, Institute of Enzymology, H-1117, 

Budapest, Hungary 

 

CORRESPONDENCE 

Balázs Győrffy MD PhD 

Semmelweis University Dept. of Bioinformatics 

Tűzoltó u. 7-9, H-1094, Budapest, Hungary 

gyorffy.balazs@med.semmelweis-univ.hu 

 

ABSTRACT 

Breast cancer clinical treatment selection is based on the immunohistochemical determination 

of four proteins: ESR1, PGR, HER2, and MKI67. Our aim was to correlate 

immunohistochemical results to proteome-level technologies in measuring the expression of 

these markers. We also aimed to integrate available proteome-level breast cancer datasets to 

identify and validate new prognostic biomarker candidates. 

We identified protein studies involving breast cancer patient cohorts with published survival 

and proteomic information. Immunohistochemistry and proteomic technologies were 

compared using the Mann-Whitney test. Receiver operating characteristics (ROC) curves 

were generated to validate discriminative power. Cox regression and Kaplan-Meier survival 

analysis were calculated to assess prognostic power. The false discovery rate was computed to 

correct for multiple hypothesis testing. 

The complete database contains protein expression data and survival information from four 

independent cohorts for 1,229 breast cancer patients. In all four studies combined, a total of 

7,342 unique proteins were identified, and 1,417 of these were identified in at least three 
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datasets. ESR1, PGR, HER2 protein expression levels determined by RPPA or LC-MS/MS 

methods showed a significant correlation with the levels determined by 

immunohistochemistry (p<0.0001). PGR and ESR1 levels showed a moderate correlation 

(correlation coefficient=0.17, p=0.0399). A panel of candidate proteins, including apoptosis-

related proteins (BCL2,), adhesion markers (CDH1, CLDN3, CLDN7) and basal markers 

(cytokeratins), were validated as prognostic biomarkers. We expanded our established web 

tool to validate survival-associated biomarkers to include the proteomic datasets analyzed in 

this study (https://kmplot.com/analysis/). 

Large proteomic studies now provide sufficient data enabling the validation and ranking of 

new protein biomarkers. 

 

KEYWORDS: immunohistochemistry, mass spectrometry, RPPA, breast cancer molecular 

subtypes, Cox, Kaplan-Meier 
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INTRODUCTION 

Breast cancer is one of the most frequently diagnosed cancers and the leading cause of 

cancer-related death in women (1). Routine utilization of histopathological markers has led to 

better survival outcomes in personalized therapy, while multigenic genomic and 

transcriptomic analyses have further defined clinically meaningful molecular subtypes (2). 

Genomics provides the “blueprint” for cellular structure and functions, but due to its nature, it 

is always static, and the genome itself does not define the biological function. On the other 

hand, proteomics can show the physical structure of the cell, revealing a dynamic picture of 

active key functional elements. Proteomics can display the status of over 500,000 gene 

products defined by only approximately 30,000 genes. Overall, proteomics can provide a 

snapshot of the biological functions within a cancer cell. However, the availability of 

proteomic data derived from large patient cohorts is still limited. 

Routine methods used for protein quantification include antibody-based techniques, 

such as immunohistochemistry (IHC) and reverse-phase protein array (RPPA), enzyme-linked 

immunosorbent assays (ELISA) and mass spectrometry (MS)-based technologies. ELISA 

invented in the 1970s is extensively used in laboratory practice for analyzing a small number 

of proteins, but its limitations in multiplexing requiring high developmental costs and well-

characterized antibodies prevented its large-scale application (3). IHC is currently the gold 

standard method in routine pathological diagnosis, including the semiquantitative 

determination of ESR1, PGR and HER2 receptor status in breast tumors. Multiplexing of IHC 

is achieved in tissue microarrays, but even these achieve higher output by multiplexing the 

patient samples and not by multiplexing the proteins simultaneously evaluated. Nevertheless, 

tissue microarrays play a solid role in uncovering new biomarkers in cancer research (4). 

Although IHC is the most frequently used protein analysis method in oncology, it also has 

limits in the quantification and detection of activated proteins (5). 

In contrast to antibody-based methods, the RPPA technique, introduced in 2001, 

immobilizes the whole protein lysate on a solid phase in multiple dots. A specific antibody 

solution is added to each array spot separately to achieve sensitive and simultaneous 

detection of proteins in small sample amounts (e.g., biopsy). RPPA requires well-specified 

antibodies, but it also makes it feasible to quantify the phosphorylation status of proteins 

and thus enables the characterization of entire pathways (6). 
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Mass spectrometry (MS)-based technologies have rapidly advanced in recent years. In 

addition to speed, the second most prominent advantage of these methods is their ability to 

facilitate de novo identification and quantification of multiple proteins simultaneously. 

However, MS requires high initial cost, manual and time-consuming sample preparation, and 

an experienced technician to run the samples and interpret the data (7). Three major 

quantitative MS-based techniques have been developed: shotgun (or discovery), directed, and 

targeted proteomics. The shotgun method is based on the sequencing of peptides digested 

from the whole proteome and analyzing them via liquid chromatography and tandem mass 

spectrometry (LC‐MS/MS) and automated database searching (8). Then, the protein quantity 

is calculated from the signal of detected peptides (ion intensity) or recorded number of 

MS/MS spectra (spectral counting). Protein abundance is normalized to the background 

proteome signal of measured samples (LFQ) or to an internal standard added to a labeled 

experiment (9, 10). 

These methods enable comprehensive large-scale analysis of the human proteome. 

International initiatives have emerged to facilitate collaboration and data sharing. The Human 

Proteome Organization (HUPO, www.hupo.org) initiated in 2010 the Human Proteome 

Project (HPP) aiming for the determination of the human proteome using a standardized 

analytical pipeline (11). Major data repositories for MS-based protein datasets include the 

ProteomeXchange Consortium (http://www.proteomexchange.org), PRIDE 

(http://www.ebi.ac.uk/pride), and PeptideAtlas (http://www.peptideatlas.org) (12). The 

Human Protein Atlas portal (www.proteinatlas.org) provides antibody-based data of normal 

and cancerous tissues (13). The Clinical Proteomic Tumor Analysis Consortium (CPTAC, 

https://cptac-data-portal.georgetown.edu/cptacPublic) of the National Cancer Institute curates 

combined genomic and proteomic data of multiple tumor types (14). Finally, a side project of 

The Cancer Genome Atlas (TCGA) Project, The Cancer Proteome Atlas (TCPA, 

https://tcpaportal.org/tcpa/index.html) contains a large RPPA-based protein expression cohort 

(9). 

Breast cancer is classified into four molecular subtypes, each having different 

molecular and prognostic characteristics. In the clinical routine, immunohistochemistry is 

used to measure the presence of estrogen receptor (ESR1), progesterone receptor (PGR), 

human epidermal growth factor receptor 2 (HER2) and the proliferation marker MKI67. 

Evaluation of these biomarkers is mandatory to assign patients into clinically effective 

treatment subtypes termed basal (receptor negative), luminal A (ESR1 and PGR positive and 
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low MKI67), luminal B (ESR1 and PGR positive and high MKI67), and HER2-enriched 

(HER2 positive ESR1 negative) (15). Of note, additional markers, including androgen 

receptor (AR), epidermal growth factor receptor (EGFR) and cytokeratins (CK), have also 

been proposed for biomarker-based subtyping (16, 17). 

Proteomic datasets comprise a large amount of protein-level data for each included 

specimen, and therefore, these datasets can provide an opportunity to validate existing 

prognostic biomarkers. In addition, by simultaneously analyzing multiple proteins in the same 

sample cohort, one can compare and rank new biomarker candidates. However, utilization of 

these sample cohorts is difficult due to limited/unavailable clinical data, ambiguous analysis 

pipelines, and discrepant gene annotations. Here, our first goal was to establish a breast 

cancer proteomic resource database by combining samples from multiple large independent 

studies. Then, we aimed to utilize this resource to validate and rank prognostic protein 

biomarkers in breast cancer. 

 

MATERIAL AND METHODS 

Construction of the integrated protein database 

We searched for publications and datasets containing proteome and survival data for 

breast cancer patients in PubMed, The Cancer Proteome Atlas (TCPA) (9) and the 

ProteomeXchange Consortium (18) portals. The search terms “human”, “breast”, and 

“cancer” were used to identify eligible datasets. Only studies with available protein 

expression data generated by either mass spectrometry or RPPA, clinical survival 

information, and at least 50 cancer patients met our inclusion criteria. Four protein datasets 

met these conditions (9, 19-21). Due to the use of different platforms and analysis methods, it 

was not possible to merge the datasets into a single unified dataset. Therefore, each dataset 

was processed separately. In the analyses, the author-reported normalized expression data 

were used. Figure 1 summarizes the pipeline of data filtering. 

Protein annotation 

In each dataset, the protein annotation generated by the authors was the starting point 

and duplicated and non-annotated proteins were removed. In addition, UniProt IDs were used 

to identify gene symbols corresponding to the same genes. The final integrated table of all 
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annotated proteins in the database, including the gene symbol, UniProt ID and TCPA 

antibody list, is provided as Supplemental Table 1. 

Validation of proteome-based protein level determination 

To determine how effective recent proteomic technologies are in assessing the actual 

protein levels, we compared proteome-based results to conventional immunohistochemistry 

results. Such data were available in multiple data sets for genes with therapeutic importance, 

including ESR1, PGR, HER2 and MKI67. All validation analyses were performed in each of 

the four cohorts separately. In the case of MKI67, we also compared the expression between 

normal and tumor tissue, as this was available in one dataset. 

Correlation between protein biomarker candidates and survival 

We performed a PubMed search to identify previously published biomarker candidates 

related to survival using the search terms “breast cancer”, “protein”, “cohort”, “marker”, and 

“survival”. Publications describing cell lines, other tumor types, those not investigating a 

tumor tissue, and studies with fewer than 100 patients were excluded. After these restrictions, 

53 publications remained. In addition, we examined ten additional publications describing 

breast cancer guidelines. In all 63 publications, a total of 91 proteins were described, 57 of 

which were present in our database. This list includes FDA-approved biomarkers, growth 

factor receptors, immune receptor ligands, basal and adhesion markers (cytokeratins, 

cadherins, and claudins), stem cell markers, and apoptotic markers (Supplemental Table 2). 

We analyzed all 57 protein biomarkers used in breast cancer diagnostics for their prognostic 

power. The validation of the markers was performed separately in each dataset using overall 

survival and relapse-free survival time. 

Statistical analyses 

 Differential expression was evaluated using the Mann-Whitney test. Receiver 

operating characteristics (ROC) were computed to measure sensitivity and specificity and to 

validate discriminative power. ROC was also utilized to determine the optimal cutoff values 

to define cohorts based on the expression of the investigated proteins. Spearman rank 

correlation coefficients were calculated to assess the correlation of continuous variables. To 

measure the association between protein expression and survival length, the patients were 

grouped into high and low expression groups based on the expression of the selected protein. 

Then, the two groups were compared by Cox proportional hazards regression, and hazard 
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ratios (HRs), 95% confidence intervals (CIs) and log-rank p values were calculated. Finally, 

for a selected set of markers, Kaplan-Meier plots were generated to display the different 

survival characteristics of the two cohorts. For cutoff values, each potential threshold was 

analyzed between the lower and upper quartiles, and the false discovery rate (FDR) was 

computed to correct for multiple hypothesis testing. The results were accepted as significant 

when p<0.05 and FDR<0.2. 

Survival analysis web tool 

We previously created an online analysis platform utilizing transcriptome-level 

mRNA expression (22) and miRNA expression (23) data together with clinical, follow-up, 

and pathological data to assess the correlation between gene expression and survival in breast 

cancer. Here, we have established a new subsystem of this analysis platform. The complete 

proteomic database is now integrated into this system, and new biomarker candidates, as well 

as each biomarker assessed here, can be rapidly evaluated using the registration-free analysis 

site. In the tool, selection of the proteins can be performed using the gene symbol, the UniProt 

ID or the RPPA antibody name (https://kmplot.com/analysis/). 

 

RESULTS 

Integrated breast cancer protein database 

Altogether, 140 datasets were identified, of which 30 studies had at least some clinical 

information for the included patients. We listed all these datasets in Table 1. After exclusion 

of those without survival data and other ineligible studies, four independent projects 

remained. These four datasets comprise 1,229 specimens and 7,342 unique proteins. The 

entire set of patients included 1,064 overall survival (OS) and 998 relapse-free survival (RFS) 

records. Two datasets had either only overall (Tang 2018) or relapse-free survival data 

(DeMarchi 2015). Median OS and RFS times varied between 27.6-96.5 months and 9.6-85.5 

months, respectively. The mean age of the patients was 57.7±13.6 years. In line with our 

expectations, estrogen receptor-positive (ESR1+) patients represented approximately 67% of 

all samples, and almost half of the patients had nodal involvement (46%). Of note, the Liu 

2014 dataset included triple negative breast cancer (TNBC), lymph node negative and 

treatment naive patients only. In the other studies, hormone therapy, primarily tamoxifen, was 
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applied (59%). Table 2 contains detailed clinical parameters for each included dataset used, 

and Figure 2 shows selected clinical characteristics for these datasets. 

The dataset generated using RPPA contains most of the patients (n=873) but least of 

the proteins (n=224). The other three datasets have combined >7000 protein records measured 

by LC-MS/MS technology. Figure 3A shows the proportions of detected proteins in each 

dataset combination. Only 39 proteins were measured in all datasets, while 1,356 overlapping 

proteins were evaluated in the three LC-MS/MS studies. A total of 4,731 proteins were 

detected in only one study, and most of them came from the Tang 2018 cohort (n=4,225). 

When mapping the measured proteins to cellular locations, the majority of proteins originated 

from the cytoplasm (36.3%), nucleus (32.2%) and cytosol (27.6%) (Figure 3B and 3C). 

Supplemental Table 1 includes all proteins. 

Evaluation of routine diagnostic biomarkers 

ESR1, PGR and HER2 protein expression levels determined by RPPA were compared 

to IHC-based receptor status and the results revealed that protein expression and receptor 

status were highly significantly correlated with one another (p<0.0001) (see Figure 4A-C). 

When running ROC analysis using RPPA-based continuous HER2 levels, the proteomic 

measurements delivered a substantial area under the ROC curve (AUC) of 0.74 (p=1.9e-20). 

ESR1 protein expression determined by LC-MS/MS also delivered a reliable correlation to 

IHC results (p=0.0423) (Figure 4D). The AUC value for ESR1 levels determined by LC-

MS/MS was 0.61 (p=0.03). 

The Tang et al dataset included paired normal and tumor samples for 53 patients. 

When comparing the expression of the proliferation marker MKI67 between the normal and 

cancer samples, the tumor samples had significantly higher expression (fold change=2.22, 

p=0.0001) (Figure 4E). 

Finally, we also assessed the correlation between ESR1 and the ESR1-regulated gene 

PGR. In this analysis, we uncovered a moderate correlation between ESR1 and PGR protein 

expression levels, as determined by LC-MS/MS (correlation coefficient=0.17, p=0.0399, 

Figure 4F). Unfortunately, due to the limited availability of simultaneously collected data, it 

was not possible to analyze all possible clinical scenarios and to model molecular subtype 

determination based on proteomic datasets. 

Proteins with significant prognostic power 
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We assessed the link between survival and the expression of 63 proteins and their 

phosphorylated forms to validate their prognostic relevance in breast cancer (Supplemental 

Table 2). The expression of 33 of 63 proteins had a significant correlation with patient 

outcome. Twelve proteins associated with OS only, nine proteins associated with RFS only, 

and twelve proteins (PGR, CDH1, BCL2, NDRG1, CTNNB1, APOD, PARP1, RBM3 and 

four cytokeratins: KRT18, KRT5, KRT6B, KRT17) were prognostic for both RFS and OS. Of 

these, three proteins (KRT18, APOD and CDH1) and four proteins (PGR, CDH1, CTNNB1, 

and BCL2) were confirmed to be related to OS and RFS, respectively, in at least two 

independent datasets. The results of the survival analysis for each of these proteins in terms of 

OS and RFS are displayed in Table 3A and 3B, respectively. 

A better overall survival outcome was associated with higher expression of E-cadherin 

(HR=0.21, 95%CI=0.08−0.6, p=0.0013) and the apoptosis regulator protein BCL2 (HR=0.6, 

95%CI=0.39−0.81, p=0.0017). Higher BCL2 was also strongly related to longer relapse-free 

survival (HR=0.4, 95%CI=0.27−0.61, p=9.5e−06). While we also validated the prognostic 

value of the expression level of tyrosine 1248-phosphorylated HER-2 (HER2_pY1248) 

(HR=1.63, 95%CI=1.13−2.36, p=0.0079) using RPPA data, the expression level of 

nonphosphorylated HER-2 did not have a significant correlation with survival in any of the 

included datasets. Both estrogen receptor and progesterone receptor were linked to improved 

relapse-free survival (HR=0.3, 95%CI=0.19−0.49, p=1.9e−07 and HR=0.4, 

95%CI=0.26−0.69, p=0.0004, respectively). Kaplan-Meier curves for these proteins are 

shown in Figure 5A-F. 

 

DISCUSSION 

A major advance of proteomic technologies lies in their ability to simultaneously 

measure multiple biomarkers from a single clinical specimen. Here, we collected four 

independent breast cancer proteomic cohorts and validated established and new biomarker 

candidates.  

Despite the quantitative and multiplexing limitations of immunohistochemical 

analysis, in clinical practice, it is still the gold standard. We compared the efficiency of 

various proteomic techniques to determine routinely measured breast cancer biomarkers, 

including ESR1, PGR, HER2, and MKI67. In this analysis, both the RPPA and LC-MS/MS 

method results were highly correlated with IHC results and thus can be utilized to determine 
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receptor status in breast cancer patients. Unfortunately, we did not have all markers for the 

same patients, and the results achieved for individual genes can only suggest that proteomic 

technologies will also be capable of performing molecular stratification in the future, enabling 

the discrimination of breast cancer subtypes. 

Estrogen receptor is a pioneer cancer biomarker, and classifying breast tumors based 

on hormone receptor status has been utilized in routine clinical practice for over four decades 

(24). ESR1 positivity and PGR positivity are associated with better survival outcomes than 

negative ESR1/PGR status. In addition to clinicopathological prognostication, the main 

medical application of these receptors is selecting patients for endocrine therapy (25). 

MKI67 is a protein not expressed in G0 phase, and thus, it is a perfect marker for 

determining the proportion of dividing cells. MKI67 expression is correlated with outcome, 

and high MKI67 expression is associated with poor prognosis, which has been validated in a 

meta-analysis involving over 64 thousand breast cancer patients (26). Immunohistochemical 

staining of MKI67 alone can also pinpoint low-risk breast cancers with the same reliability as 

genomic markers (27). 

Evaluation of HER2 (ERBB2, neu) status has also been routinely used in breast cancer 

molecular diagnostics since the end of the 1990s. Analysis of large cohorts of patients found 

that HER2 overexpression is associated with unfavorable prognosis and poor response to 

chemotherapy (28). The clinical introduction of anti-HER2 therapies (i.e., trastuzumab, 

pertuzumab) in combination with chemotherapy in patients who have HER2-positive cancer 

results in exceptional survival advantages. As a result, HER2-positive patients have a better 

outlook than HER2-negative patients (29). Today, tumors with even 1% positivity are eligible 

for anti-HER2 therapy (30). 

Triple-negative breast cancer (TNBC) is diagnosed in cases where tumors are negative 

for ESR1, PGR, and HER2. In these breast tumors, the immunohistochemical measurement of 

basal markers (cytokeratin 5/6, EGFR), claudins (CLD3/4/7), cadherins (CDH1, CDH3), stem 

cell markers (CD44/CD24, ALDH1), apoptosis markers (BCL2, TP53), a transcription marker 

(YB-1) and urokinase-type plasminogen activator (uPA)/plasminogen activator inhibitor-1 

(PAI-1) have also been suggested for advanced stratification (16, 17, 31, 32). 

We assessed the prognostic power of a selected set of proteins, including ESR1, PGR, 

HER2, cytokeratins, claudins, E-cadherin (33) and EGFR, in the datasets included in the 

present study. Overall, we uncovered that 33 proteins had a significant correlation with 
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prognosis. In the case of FDA-approved protein biomarkers, the expression of estrogen and 

progesterone receptors is correlated with favorable relapse-free survival. High expression 

levels of phosphorylated HER2 protein measured by RPPA were linked with worse overall 

survival than low expression levels; these findings are in line with the previous study by 

Hayashi et al. on the same protein (34). 

High expression of the antiapoptotic Bcl-2 and the adhesion marker E-cadherin was 

related to longer relapse-free survival than low expression in at least two independent 

datasets. Bcl-2 overexpression was revealed in other cancers and was linked to cancer 

initiation and progression, and higher expression positively correlated with favorable patient 

outcomes in hormone receptor-positive breast tumors (35, 36). Loss of E-cadherin expression 

is frequently represented in invasive lobular breast carcinoma, which is three times more 

likely to metastasize (37). 

Interestingly, some of the genes, including PGR and E-cadherin, display inverse 

correlations with survival when assessing the link to survival in different patient cohorts. 

Here, we have to mention some limitations of our analysis that might lie behind these 

discrepancies. A major constraint is that only 20% of the proteins were determined in at least 

three platforms. This means that the evaluation of further databases will be needed to perform 

a comprehensive validation of all potential biomarker candidates. Another shortcoming of the 

investigated datasets is the rather low proportion of events (in the case of the TCGA dataset) 

and the short follow-up time (DeMarchi dataset). A future large-scale proteomic database 

with long follow-up and uniform protein level determination using a single method could 

provide more reliable data for a similar analysis. 

In summary, we successfully integrated four distinct breast cancer proteomic datasets 

containing tumor and normal samples. A significant correlation was observed between marker 

levels detected by proteomic technologies and those detected by immunohistochemistry 

results. We validated prognostic and predictive breast cancer biomarkers and compared the 

efficiency of different proteome analysis techniques. The entire database is integrated into our 

online tool, providing an opportunity to validate our findings and to identify and rank new 

survival-associated biomarker candidates using multiple independent cohorts of breast cancer. 
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FIGURES 

Figure 1. Data acquisition workflow, the number of samples and unique proteins in each 

included dataset. 
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Figure 2. Clinical characteristics of the breast cancer patients used in this study. A) 
Availability of clinical data in the included cohorts; B) the proportion of patients treated with 
radiation, hormones or chemotherapy. C) Percentage of patients by nodal status in each 
dataset; D)-E) the proportion of patients by receptor status for ESR1, PGR and HER2 in each 
dataset; F) the distribution of stage and grade; G) the mean age of patients; and H) the mean 
follow-up time in each dataset. 
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Figure 3. Proteins measured in multiple studies and their cellular localizations. A) Number of 

proteins represented in one, two, three, or four datasets, B) proportion of proteins present in 

various cellular components, and C) graphical representation of cellular origin of the analyzed 

proteins, where font size is relative to the proportion of proteins from that compartment. 
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B) Location GO ID % P value 

Cytoplasm GO:0005737 36.3 4E-104 
Nucleus GO:0005634 32.2 2E-21 
Cytosol GO:0005829 27.6 1E-179 
Exosome GO:0070062 25.6 5E-231 
Nucleoplasm GO:0005654 21.0 6E-82 
Membrane GO:0016020 18.8 1E-128 
Mitochondrion GO:0005739 10.3 3E-44 
Extracellular space GO:0005615 7.5 5E-02 
Nucleolus GO:0005730 6.8 6E-33 
Golgi apparatus GO:0005794 5.9 1E-12 
Endoplasmic reticulum GO:0005783 5.6 2E-11 
Endoplasmic reticulum membrane GO:0005789 5.5 1E-07 
Perinuclear region of cytoplasm GO:0048471 5.0 1E-25 
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Figure 4. Validation of proteome-based molecular biomarker determination by comparing the 

results to those achieved by IHC-based receptor status determination. A)-C) ESR1, PGR, 

HER2 protein expression results determined by RPPA showed a significant correlation with 

IHC results. D) The correlation between ESR1 status by IHC and ESR1 protein expression 

levels measured by LC-MS/MS. E) MKI67 levels measured by LC-MS/MS showed higher 

expression in tumors than in normal samples in the Tang 2018 dataset (n=53). F) Correlation 

between ESR1 and PGR protein expression levels in LC-MS/MS data. 
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Figure 5. Survival outcome differences in patients with different expression levels of protein 

biomarkers. Kaplan-Meier plots of overall survival by CDH1 (E-cadherin) (A), apoptosis 

regulator BCL2 (B), and tyrosine 1248-phosphorylated HER2 (C). Kaplan-Meier plots of 

relapse-free survival for estrogen receptor 1 (D), progesterone receptor (E) and BCL2 (F) in 

breast cancer patients. Note the different survival characteristics of the different datasets. 
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TABLES 

Table 1. Overview of breast cancer proteomic studies. 

Reference ProteomeXchange 
/CPTAC ID Method used Survival Sample 

n Protein n Reason for 
exclusion Eligible 

Tang et al. (2018) PXD005692 LC-MS/MS available 65 7141 - yes 
Terunuma et al. (2014) NA GC-MS, LC-MS available 67 NA no protein data no 
Mertins et al. (2016) S039 (CPTAC) LC-MS/MS available 105 15369 only 13 events no 
Huang et al. (2017) S032 (CPTAC) LC-MS/MS not available 24 12794 no survival data no 
Waldemarson et al. (2016) PXD000944 2D-DIGE, LC-MS/MS available 38 14000 only 38 samples no 
Cifani et al. (2015) PXD000691 

2D-DIGE, LC-MS/MS available 38 3681 only 38 samples no 
Liu et al. (2014)a PXD000260 nLC-MS/MS available 126 5000+ - yes 
Liu et al. (2014)b PXD000260 nLC-MS/MS available 126 5000+ - yes 
TCGA (2012) NA RPPA available 348 171 - yes 
Bouchal et al. (2015) PXD000029 iTRAQ-2DLC-MS/MS not available 96 4405 no survival data no 
Sjöström et al. (2015) PXD001685 LC-MS/MS; LC-SRM not available 80 778 no survival data no 
De Marchi et al. (2015) PXD000485 LC-MS/MS available 112 3109 - yes 
De Marchi et al. (2016) PXD002381 LC-MS/MS not available 38 3404 no survival data no 
De Marchi et al. (2016) PXD002381 LC-MS/MS not available 38 4 no survival data no 
Pozniak et al. (2016) PXD000815 LC-MS/MS not available 44 10124 no survival data no 
Pedersen et al. (2017) PXD005544 TMT-HILIC; LC-MS/MS not available 34 4163 no survival data no 
Zagorec et al. (2018) PXD008012 Ti(IV)-IMAC; LC-MS/MS not available 34 9000+ no survival data no 
Tyanova et al. (2016) PXD002619 LC-MS/MS not available 40 10135 no survival data no 
Jiang et al. (2015) PXD002208 LC-MS/MS not available 53 115 no survival data no 
Haukaas et al. (2015) NA RPPA not available 191 150 no survival data no 
Ternette et al. (2018) PXD009738 nUPLC�MS/MS not available 11 6275 no survival data no 
Chen et al. (2018) PXD007217 LC–MS/MS not available 10 388 no survival data no 
Naba et al. (2017) PXD005554 LC-MS/MS not available 4 1000 no survival data no 
Gajbhiye et al. (2017) PXD006441 iTRAQ-SCX; LC-MS/MS not available 76 365 no survival data no 
Chen et al. (2018) PXD007572 LC-MS/MS not available 56 556 no survival data no 
Chen et al. (2017) PXD005214 LC-MS/MS not available 36 2413 no survival data no 
Lobo et al. (2017) PXD003106 LC/MS-MS not available 40 4175 no survival data no 
Braakman et al. (2017) PXD003632 nLC/MS-MS not available 38 2995 no survival data no 
Muraoka et al. 2013 PXD000066 nLC–MS/MS  not available 18 7092 no survival data no 
Jordan et al. (2016) PXD003322 SPS-based MS3  not available 3 6300+ no survival data no 
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Table 2. Detailed clinical features of the four protein datasets eligible for this analysis. 

Dataset 
(Reference) 

Platform 
(Company) 

Technology 
Sample 

size 

Median 
follow-up 

(OS, 
months) 

Progression 
events 
(OS) 

Median 
follow-up 

(RFS, 
months) 

Progression 
events 
(RFS) 

ESR1+ 
(*) 

PGR+ 
(*) 

HER2+ 
(*) 

Stage 
(1/2/3/4) 

Grade 
(1/2/3) 

Lymph-
node 

positive 
Age 

Radiation 
therapy 

Hormone 
therapy 

Chemo-
therapy 

TCGA-
RPPA 
(9, 38) 

2470 Arrayer 
(Quanterix) RPPA 873 27.6 121 25.3 64 627 532 133 

128/505/
207/18 - 452 58.2±13.3 53 422 488 

Liu 2014 
(19) 

LTQ-Orbitrap-
XL MS system 

(ThermoElectron) 
LC-MS/MS 126 96.5 40 85.5 50 0 0 0 - 2/16/87 0 53.9±13.8 - 0 0 

DeMarchi 
2015 
(20) 

LTQ-Orbitrap-
XL MS system 

(ThermoElectron) 
LC-MS/MS 112 - - 9.6 105 112 - - - - 104 61.1±11.2 - 112 - 

Tang 2018 
(21) 

LTQ MS system 
(Thermo Fisher 

Scientific)  
LC-MS/MS 118 50.0 30 - - 32 - - 6/46/13/0 8/19/28 27 54.5±15.7 - - - 

OS: overall survival, RFS: relapse-free survival 

*ER, PGR, HER2 receptor status was identified using both gene expression and immunohistochemistry data in each cohort. 
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Table 3. Protein markers with validated prognostic value in breast cancer when assessing the correlation between expression level and overall 

survival (A) and relapse-free survival (B). Bold: significant at p<0.05. 

A)     Overall Survival TCGA-RPPA 
  

Liu 2014 
  

Tang 2018   
Protein marker Symbol Uniprot ID n HR 95% CI p-value n HR 95% CI p-value n HR 95% CI p-value 

Estrogen receptor ESR1 P03372 733 0.82 0.55-1.21 0.31 - - - - 65 1.53 0.72-3.26 0.27 

Progesterone receptor PGR P06401 873 1.27 0.85-1.89 0.24 - - - - 65 2.23 1.01-4.94 0.042 

Human epidermal growth factor receptor 2 HER2 P04626 836 1.32 0.9-1.95 0.16 - - - - 65 1.37 0.64-2.92 0.41 

 
HER2_pY1248 

 871 1.63 1.13-2.36 0.0079         

Androgen receptor AR P10275 870 1.37 0.88-2.14 0.16 - - - - 65 0.29 0.1-0.83 0.014 

Apoptosis Regulator, BCL2 BCL2 P10415 869 0.56 0.39-0.81 0.0017 - - - - - - - - 

Basal markers, Cytokeratin-8 KRT8 P05787 - - - - 125 1.86 0.99-3.49 0.051 65 2.16 1.03-4.55 0.038 

Basal markers, Cytokeratin-18 KRT18 P05783 - - - - 126 0.35 0.14-0.88 0.02 65 2.35 1.11-5.00 0.022 

Basal markers, Cytokeratin-5 KRT5 P13647 - - - - 126 0.54 0.29-1.01 0.05 65 0.41 0.19-0.85 0.014 

Basal markers, Cytokeratin-6A KRT6A P02538 - - - - 121 0.63 0.3-1.33 0.22 65 2.17 1.02-4.61 0.039 

Basal markers, Cytokeratin-6B KRT6B P04259 - - - - 115 0.46 0.23-0.9 0.019 65 1.89 0.91-3.9 0.081 

Basal markers, Cytokeratin-17 KRT17 Q04695 - - - - 126 0.49 0.26-0.92 0.022 65 1.59 0.61-4.16 0.34 

Adhesion marker, E-Cadherin CDH1 P12830 668 1.76 1.07-2.89 0.024 125 0.21 0.08-0.6 0.0013 65 0.58 0.28-1.2 0.14 

Adhesion markers, Claudin-3 CLDN3 O15551 - - - - 119 0.48 0.26-0.91 0.021 - - - - 

Transcription factor, Y-box-binding protein 1 YBX1 P67809 872 0.73 0.5-1.07 0.11 - - - - 65 2.07 0.99-4.31 0.047 

 
YBX1_pS102 

 
873 1.48 1.0-2.17 0.046 - - - - - - - - 

Invasion marker, Stromelysin-3 MMP11 P24347 - - - - - - - - 65 2.09 1.0-4.35 0.044 

N-myc downstream-regulated gene 1 protein NDRG1 Q92597 - - - - 126 0.66 0.34-1.28 0.216 65 2.24 1.07-4.72 0.0288 

Catenin beta-1 CTNNB1 P35222 873 1.38 0.84-2.29 0.2031 126 0.27 0.12-0.59 4E-04 65 1.73 0.74-4.07 0.2009 

Apolipoprotein D APOD P05090 - - - - 126 0.56 0.29-1.08 0.081 65 0.35 0.12-1.0 0.0411 

Poly [ADP-ribose] polymerase 1 PARP1 P09874 873 1.55 0.77-3.09 0.2134 126 0.79 0.93-3.48 0.079 65 2.44 1.18-5.05 0.0131 

Scavenger receptor cysteine-rich type 1 protein M130 CD163 Q86VB7 - - - - 126 0.74 0.35-1.53 0.412 65 2.43 1.17-5.06 0.0138 

Fascin FSCN1 Q16658 - - - - 126 0.52 0.28-0.98 0.040 65 2.52 1.2-5.26 0.0111 

Asporin ASPN Q9BXN1 - - - - - - - - 65 2.29 1.06-4.94 0.0294 

RNA-binding protein 3 RBM3 P98179 - - - - 126 0.42 0.18-1.01 0.045 65 2.03 0.97-4.26 0.056 

Glioma-associated oncogene GLI1 P08151 - - - - - - - - 65 0.43 0.18-1 0.0427 
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B)     Relapse-free survival TCGA-RPPA 
  

Liu 2014 
  

DeMarchi 2015  
Protein marker Symbol Uniprot ID n HR 95% CI p-value n HR 95% CI p-value n HR 95% CI p-value 

Estrogen receptor ESR1 P03372 623 0.64 0.36-1.14 0.13 - - - - 112 0.3 0.19-0.49 1.9e−07 

Progesterone receptor PGR P06401 750 0.42 0.26-0.69 0.0004 - - - - 112 0.61 0.41-0.92 0.018 

Human epidermal growth factor receptor 2 HER2 P04626 719 1.19 0.73-1.96 0.48 - - - - 112 0.75 0.51-1.11 0.15 

 
HER2_pY1248 

 
748 0.68 0.39-1.21 0.19 

        
Apoptosis Regulator, BCL2 BCL2 P10415 746 0.51 0.31-0.84 0.0071 - - - - 112 0.4 0.27-0.61 9.5e−06 

Basal markers, Cytokeratin-18 KRT18 P05783 - - - - 124 0.39 0.17-0.86 0.016 - - - - 

Basal markers, Cytokeratin-5 KRT5 P13647 - - - - 124 0.49 0.28-0.85 0.01 - - - - 

Basal markers, Cytokeratin-6B KRT6B P04259 - - - - 113 0.43 0.23-0.77 0.004 - - - - 

Basal markers, Cytokeratin-17 KRT17 Q04695 - - - - 124 0.51 0.29-0.88 0.014 - - - - 

Adhesion marker, E-Cadherin CDH1 P12830 578 1.83 0.93-3.58 0.075 123 0.35 0.16-0.78 0.007 112 0.61 0.39-0.95 0.026 

Adhesion markers, Claudin-7 CLDN7 O95471 715 1.67 1-2.79 0.048 - - - - 112 0.72 0.49-1.06 0.098 

Apoptotic marker, Tumorsupressor p53 TP53 P04637 727 1.84 1.12-3.02 0.014 - - - - - - - - 

Bcl-2-associated athanogene 1 BAG1 Q99933 - - - - - - - - 112 0.58 0.39-0.86 0.0061 

Carcinoembryonic antigen-related cell adhesion molecule 5 CEACAM5 P06731 - - - - - - - - 112 0.66 0.43-1.00 0.049 

N-myc downstream-regulated gene 1 protein NDRG1 Q92597 - - - - 124 0.58 0.33-1.03 0.059 112 0.56 0.37-0.87 0.0084 

Large neutral amino acids transporter small subunit 1 SLC7A5 Q01650 - - - - - - - - 112 1.5 1.01 -2.22 0.0455 

Catenin beta-1 CTNNB1 P35222 750 0.73 0.71-1.3 0.2823 124 0.36 0.19-0.7 0.002 112 0.56 0.36-0.85 0.0061 

Apolipoprotein D APOD P05090 - - - - 124 0.64 0.35-1.15 0.133 112 0.59 0.38-0.91 0.0161 

Poly [ADP-ribose] polymerase 1 PARP1 P09874 750 0.46 0.17-1.3 0.1341 124 1.49 0.83-2.66 0.176 112 0.65 0.44-0.97 0.0349 

Carcinoembryonic antigen-related cell adhesion molecule 6 CEACAM6 P40199 - - - - - - - - 112 0.56 0.38-0.84 0.0044 

Ras-related protein Rab-27B RAB27B O00194 - - - - - - - - 112 0.59 0.37-0.92 0.0183 

RNA-binding protein 3 RBM3 P98179 - - - - 124 0.40 0.19-0.86 0.016 112 0.78 0.51-1.18 0.2466 

GATA-binding factor 3 GATA3 P23771 750 0.61 0.37-1.01 0.0544 - - - - 112 0.49 0.32-0.74 0.0007 
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SUPPLEMENTARY MATERIAL 

Supplemental table 1: Protein list 

Supplemental table 2: Protein biomarkers 
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