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Abstract

Background: Pooling is a popular strategy for increasing SARS-CoV-2 testing throughput. One popular pooling
scheme is Dorfman pooling: test N individuals simultaneously. If the test is positive — retest each individual separately.
However, requiring more than one positive test may lead to increased false-negative rates.

Methods: We analyze the false-negative rate (i.e., the probability of a negative result for an infected individual) of
Dorfman pooling via a new probabilistic model. We demonstrate that different, previously made probabilistic assumptions
regarding pooling are unlikely in light of empiric data. Our model is conservative in that it ignores sample dilution effects,
which can only worsen pooling performance.

Results: We show that one can expect a 60-80% increase in false-negative rates under Dorfman pooling, for reasonable
parameter values. Moreover, we show that the false-negative rates under Dorfman pooling increase when the prevalence
of infection decreases.

Discussion: In most pooling schemes, identifying an infected individual requires positive results in multiple tests
and hence substantially increases false-negative rates. Furthermore, this phenomenon is more pronounced when infection
prevalence is low — exactly when pooling is most efficient. Thus, pooling presents an inherent trade-off: it is most efficient
when it is least accurate. The deterioration of false-negative rates and the aforementioned trade-off are inherent problems
of pooling schemes and should be kept in mind by practitioners and policy makers.

1 Introduction

RT-PCR testing is a key component in breaking transmission chains and mitigating the COVID-19 pandemic. As such,
the need for large-scale testing has resulted in the development of pooling schemes of RT-PCR tests [2, 6, 7, 10, 11]. One
such popular scheme is Dorfman pooling [2, 5]: Select N individuals and perform a single RT-PCR test on their combined
(“pooled”) samples. If the pooled test yields a positive result — test each individual separately. The throughput efficiency
of Dorfman pooling has been demonstrated empirically [2]. However, when test error rates are taken into consideration, a
sharp increase in false-negative rates can be expected.

It is important to distinguish three types of false-negative events when performing pooling. For convenience, we follow
a single infected individual, henceforth referred to as ”Donald”. A single test’s false-negative is the event of a negative
result upon testing Donald separately, i.e., in an RT-PCR test without pooling. We denote the test sensitivity Se, so the
probability of a single test false-negative is 1 − Se. A pooled false-negative occurs when a pooled test containing Donald’s
sample (and other samples) yields a negative result, i.e., the pooling fails to detect at least one positive result. Lastly, a
scheme false-negative occurs when an entire pooling scheme fails to identify Donald as infected. Our goal is to calculate
Dorfman’s scheme false-negative rate. Rephrasing, we wish to answer the following question: what is the probability of not
identifying Donald as infected under a Dorfman pooling scheme?

2 Methods

2.1 Probabilistic Assumptions

We assume two pathways for a positive pooled test result: Viral RNA from an infected individual is correctly detected;
or, some erroneous detection occurs (e.g. contaminant viral RNA is introduced). We ignore cross-reactivity with other
Coronaviruses, which is negligible [14]. We assume a homogeneous and disconnected population (each individual is infected
independently and with equal probability). For simplicity, we do not take into account sample dilution, since it can only
further increase false-negative rates [2].

Our assumptions, although natural, stand in contrast to assumptions commonly made in the literature [1, 3, 8, 12]. It is
commonly assumed that the probability of a positive pooled test is not increased by having more than one infected individual
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Negative pool Positive pool
# subsequent positives = 1 24 42
# subsequent positives ≥ 1 5 57

Total 29 99

Table 1: Contingency table of data from [4]

in the pool. We refute the common assumptions with experimental data summarized in table 1, collected from [4]. There,
the authors investigate Dorfman pooling and, regardless of the pooled test result, follow up and test each pool member
separately. Here, we focus on 128 pools for which at least one subsequent separate test was positive — of which 29 pooled
tests were negative and 99 positive. In the data cited in [4], of the 29 negative pools, subsequent separate testing yielded a
single positive result in 24. In contrast, of the 99 positive pools, 42 yielded a single positive test upon subsequent separate
testing.

The data in table 1 allows us to test the following null hypothesis H0: The probability of a pooled false-negative is equal
for pools with one subsequent positively tested member and pools with two or more such members. We apply Fisher’s exact
test for the presence of more than one positive individual in correctly identified pools. Fisher’s test yields an increased odds
ratio of 6.4, 95% CI (2.2,23.4), with a p-value ≈ 10−4. Thus we reject H0, refuting the independence of a pooled result from
one or more individuals infected within the pool, as assumed in [1, 3, 8, 12]

2.2 calculation of Dorfman’s scheme false-negative rate

Denote the prevalence of infection in the (tested) population q. As before, Se is the test’s sensitivity, so 1 − Se is the single
RT-PCR test’s false-negative rate. We also denote Sp the test specificity — the true-negative probability. This encompasses
events of an erroneous RNA detection (via any possible pathway), which may cause a false-positive. By our assumptions, a
pool containing Donald’s sample and N − 1 other samples will yield a negative result if all of the following occur:

• No erroneous detection occurred (i.e. no false-positive). This happens with probability Sp.

• The detection process fails for Donald’s sample. A false-negative occurs for Donald, with probability 1 − Se.

• No detection for any of the other N−1 samples. For a single sample, the probability of being detected is the prevalence
of SARS-CoV-2 in the tested population q, multiplied by the sensitivity Se, hence the probability of detection is qSe.
For N − 1 such samples, the probability of not being identified is (1 − qSe)

N−1.

The pooled false-negative probability for Donald is simply the product of the terms above. Hence:

P(pool is positive) = 1 − P(pool false-negative)

= 1 − Sp(1 − Se)(1 − qSe)
N−1.

(1)

If the pooled test yields a positive result, Donald is tested separately. We assume such a simple procedure poses no risk
of introducing contaminant RNA. Therefore, the separate test yields a positive result with probability Se.

We calculate the probability that Donald is mistakenly identified as not infected — the scheme’s false-negative rate —
denoted Psfn below. To correctly identify Donald as infected, both pooled and separate tests have to yield a positive result.
Thus, the scheme’s false-negative rate Psfn is the complement of the product of the two previous terms:

Psfn : = 1 − P(correctly identify Donald as infected)

= 1 − Se

[
1 − Sp(1 − Se)(1 − qSe))

N−1
]
.

(2)

2.3 Comparison metric

The single test false-negative rate 1 − Se and scheme false-negative rate Psfn are compared via:

Erel :=
Psfn − (1 − Se)

1 − Se
· 100. (3)

Erel is the percentage increase in the pooling scheme false-negative rate, relative to the single test false-negative rate.
For the approximation commonly used in the literature estimates the scheme false-negative rate as 1 − S2

e (section ??
and [1, 3, 8, 12]). A short calculation shows that this approximation implies the percentage increase in scheme false-negative
rate is just 100 · Se.
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3 Results

We plot Erel for varying prevalence q and sensitivity Se values. As recommended by [2], we apply different pool sizes N ,
for different prevalence values. We observe that for a false-positive rate Sp = 0.95 [2] and a range of reasonable sensitivity
and prevalence values [13–16], an increase of at least 60% in Erel can be expected (Figure 1). Interestingly, an increase in
infection prevalence monotonically decreases the scheme false-negative rate, as can also be easily seen from equation (2).
For the chosen parameter ranges, the increase in the single test false-negative rates increases the relative error Erel. These
effects can be seen in Figure 1 (left panel), upon conditioning on pool size. Extending the range for Sp yields no qualitative
differences. We further compare Erel to the commonly used approximation, showing the discrepancy changes as a function
of both prevalence and the single test sensitivity (Figure 1, right panel)

Figure 1: Relative increase in Dorfman pooling false-negative rates Erel. Left: Colors represent Erel, the relative percentage
increase in the scheme false-negative rates relative to the single test false-negative rates (eq (3)). Right: colors represent the
difference between the approximation assumed in other studies and Erel as calculated by our model. The disease prevalence
q, is varied on the x-axis, while the test sensitivity is varied on the y-axis. Pool size N , was chosen according to q as in [2].

4 Discussion

Although Dorfman pooling improves testing throughput, we have shown that it can increase Erel — the false-negative rates
relative to individual testing. Furthermore, low values of infection prevalence, or low values of single test false-negative rates,
increase Erel. These results remain qualitatively similar under varying parameter values, in the observed ranges [9, 13–15]
(Figure 1).

Our results lead to a fact almost disregarded in [2]: although (Dorfman) pooling is most efficient when prevalence is low,
such circumstances are exactly those leading to a substantial increase in false-negative rates.

An approximation to our results has been previously considered: Psfn ≈ 1 − S2
e [1, 3,8,12]. Such an approximation arises

when one assumes that the probability of a false-negative is identical for the pooled and single tests. Although simplistic
in nature, this approximation does capture the intuition behind our results: For Donald to be considered negative under
Dorfman pooling, he has to test negative twice. In addition to this approximation only being an upper bound [3], it does not
account for the effect of infection prevalence on the false-negative rates under Dorfman pooling. Supporting the importance
of this effect, such an association between prevalence and the scheme false-negative rate under Dorfman pooling has been
empirically noted [2].

Although we have shown the inherent risk of Dorfman pooling, this shortcoming applies to other pooling schemes. Pooling
schemes (e.g. [6, 8, 17]), require some sequence of positive pooled results to correctly identify Donald as infected. Consider
the hierarchical pooling scheme [8, 17]: If the first pool yields a positive result, it is split in two. Then the splitting is
repeated until resulting pools are negative or individuals are tested separately. With an initial pool size of 32, Donald will
necessarily have to test positive in pools of size 32, 16, 8, 4 and 2, as well as in a single test, for the scheme to correctly
identify him as infected. Compare this to the Dorfman scheme that requires a positive test in a pool of size N = 8, and an
additional single positive test to identify Donald as infected. The hierarchical pooling scheme of [8, 17] will necessarily yield
more false-negatives than Dorfman pooling — there are additional places for it to fail.

As mentioned in [2], introducing a positive dependence within a pool decreases the false-positive rate. In the extreme
case, consider a fully connected pool, where one infection implies the entire pool is infected. In this case, a calculation
analogous to the one conducted above recovers the initial false-negative rate 1 − Se. Interestingly, pooling was also noted to
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have increased throughput when infection probabilities are dependent between the pooled individuals [2], providing another
advantage to sampling dependent individuals in pooling schemes.

To conclude, pooling is an important technique which can improve testing throughput in a cost-effective manner. Never-
theless, a substantial increase in pooling schemes’ false-negative rates can be expected. Such a increase has crucial implications
for controlling the spread of COVID-19.
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