
1 
 

Can serum biomarkers predict the outcome of systemic therapy for atopic dermatitis? 
Guillem Hurault1, Evelien Roekevisch2, Mandy E. Schram2, Krisztina Szegedi2, Sanja Kezic2,  

Maritza A. Middelkamp-Hup2, Phyllis I. Spuls2 and Reiko J. Tanaka*1 

1 Department of Bioengineering, Imperial College London 
2 Amsterdam UMC, location AMC, University of Amsterdam, Department of Dermatology, Amsterdam 

Public health, Infection and Immunity 
 
SUMMARY 
Background: Atopic dermatitis (AD or eczema) is a most common chronic skin disease. Designing 
personalised treatment strategies for AD based on patient stratification, rather than the “one-size-fits-all” 
treatments, is of high clinical relevance. It has been hypothesised that the measurement of biomarkers could 
help predict therapeutic response for individual patients. 
Objective: We aim to assess whether biomarkers can predict the outcome of systemic therapy. 
Methods: We developed a statistical machine learning predictive model using the data of an already 
published longitudinal study of 42 patients who received systemic therapy. The data contained 26 serum 
cytokines measured before the therapy. The model described the dynamics of the latent disease severity and 
measurement errors to predict AD severity scores (EASI, (o)SCORAD and POEM) two-weeks ahead. We 
conducted feature selection to identify the most important biomarkers for predicting the AD severity scores. 
Results: We validated our model and confirmed that it outperformed standard time-series forecasting 
models. Adding biomarkers did not improve predictive performance. Our estimates of the minimum 
detectable change for the AD severity scores were larger than already published estimates of the minimal 
clinically important difference.  
Conclusions: Biomarkers had a negligible and non-significant effect for predicting the future AD severity 
scores and the outcome of the systemic therapy. Instead, a historical record of severity scores provides rich 
and insightful dynamical information required for prediction of therapeutic responses. 
 
INTRODUCTION 
Atopic dermatitis (AD, also called eczema) is one of the complex diseases with a considerable variation in the 
clinical phenotype and responses to treatments among patients [1]. Current treatments aim to manage 
chronic AD symptoms by preventing exacerbations, mainly using emollients, topical corticosteroids, 
calcineurin inhibitors, systemic therapies and biologics. Given the heterogeneity in responses to different 
treatments and AD phenotypes, it is of high clinical relevance to stratify patients and to design personalised 
treatment strategies for AD rather than using “one-size-fits-all” treatments [2] [3]. 
The identification of biomarkers of AD has been considered to be a critical step toward precision medicine 
[3]. Thymus and activation-regulated chemokine (TARC) was suggested to be the single best biomarker to 
assess disease severity [4], panels of biomarkers were proposed as “objective” substitutes for the EASI [5] 
and SCORAD [6] severity scores, and a discovery of AD endotypes was attempted by clustering of biomarker 
measurements [7]. Furthermore, the presence of FLG mutations [9] [10] and a high level of serum IgE [11] 
were found to be associated with poor treatment outcome for AD. However, biomarkers to predict 
therapeutic responses has been less studied for AD [8]. Generating predictions of future AD severity, beyond 
quantifying associations, is crucial to make patient stratification clinically relevant for personalised medicine. 
Ideally, the effects of multiple biomarkers should be investigated in a multivariable regression and predict 
therapeutic responses at more than one timepoint. 
We recently developed a statistical machine learning model to predict daily AD severity scores at an individual 
patient level [12]. While our model investigated the effects of age, ethnicity and treatment usage on 
predictive performance, we could not investigate the predictive power of biomarkers (other than the 
presence of filaggrin mutation) due to the unavailability of such data. To examine whether biomarkers can 
predict future AD severity scores, in this study, we developed a Bayesian state-space model to predict the 
evolution of AD severity scores using the longitudinal data of AD patients under a systemic therapy collected 
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in an already published study [13] [14]. We applied feature selection to identify potential biomarkers for 
patient stratification. 
 
METHODS 
Data 
We used the data from an already published longitudinal clinical study [13] [14] where 42 adult AD patients 
received systemic therapy with either azathioprine (AZA) or methotrexate (MTX) for over 24 weeks. The 
concentrations of 26 serum biomarkers were measured for each of 42 patients before the start of the 
treatment (week 0). The values were log-transformed and standardised to have a mean 0 and a variance 1. 
Three out of 1092 (= 26 x 42) measurements of the biomarkers were missing and imputed by the population 
mean value of the corresponding biomarker. 
The AD severity for each patient was assessed by SCORAD [15], oSCORAD (the objective component of 
SCORAD), EASI [16] and POEM [17] at weeks 0, 2, 4, 8, 12 and 24 from the start of the therapy. Our model 
assumed a constant interval of two weeks from week 0 to week 24 and treated the absence of the AD severity 
measurement at weeks 6, 10, 14, 16, 18, 20 and 22 as missing values. It resulted in 56.2% missing values for 
EASI. Patients were genotyped for mutations in the gene coding filaggrin. The missing filaggrin mutation 
status for six patients was imputed by “no mutation”. The patients’ age was standardised to have a mean 0 
and a variance 1. 
 
Model overview 
We developed a Bayesian state-space model to make probabilistic predictions of future AD severity scores 
(either EASI, SCORAD, oSCORAD or POEM). The Bayesian model describes uncertainties in parameters and 
severity scores as probability distributions. We assume that the observed severity score is an imperfect 
measurement of the true latent (unobserved) score and model how the latent score changes over time (Fig. 
1). Modelling the measurement errors also allows us to estimate the minimum detectable change (MDC), 
that is “the smallest change that can be considered above the measurement error with a given level of 
confidence” [18]. 
For the 𝑘-th patient at time 𝑡, we assume that the measurement of a score, 𝑆!(𝑡), is generated from a 
truncated Gaussian distribution, 𝑆!(𝑡)	~	𝑁[#,%]*𝑆+!(𝑡), 𝜎m'-, centred around the latent score, 𝑆+!(𝑡). The 
distribution is truncated between 0 and the maximum value, 𝑀, of the severity score (72 for EASI, 83 for 
oSCORAD, 103 for SCORAD and 28 for POEM). The standard deviation of the measurement process, 𝜎m, 
quantifies the measurement error and the minimum detectable change for the default 95% confidence level 
is determined by 𝑀𝐷𝐶 = 	1.96	𝜎m. 
The latent dynamics of 𝑆+!(𝑡) was modelled by a mixed effect autoregressive model, 𝑆+!(𝑡 + 1) ∼
	𝑁*𝛼!𝑆+!(𝑡) 	+	𝑏! 	+ 𝒙!(𝜷, 𝜎l'-, where 𝛼! is the autocorrelation parameter, 𝑏! is the intercept, 𝒙! 	is a 
covariates vector (including biomarkers) with their coefficients, 𝜷, and 𝜎l is the standard deviation of the 
latent dynamics. We performed feature selection on the covariates 𝒙! by assuming a regularised horseshoe 
prior for 𝜷 [19]. The horseshoe prior shrinks small coefficients toward 0 while allowing strong signals to 
remain large, thus limiting overshrinkage unlike 𝐿) or 𝐿' regularisations [20]. We assumed a hierarchical prior 
for 𝛼! and 𝑏! and weakly informative priors for the other parameters (detailed in Supplementary A). 
Model inference was performed using the Hamiltonian Monte-Carlo algorithm in the probabilistic 
programming language Stan [21] with four chains and 2000 iterations per chain including 50% burn-in. Prior 
predictive checks and fake data checks were conducted. Convergence and sampling were monitored by 
looking at trace plots, checking the Gelman-Rubin convergence diagnostic (𝑅>) [22], and computing effective 
sample sizes (Neff). 
 
Model validation 
The predictive performance of our model was assessed by K-fold cross-validation (𝐾 = 7, stratified by 
patients) in a forward chaining setting (Fig. S1), to reflect how the model would be used in a clinical setting. 
For each fold, the model was pre-trained with (𝐾 − 1) subsets of patients and validated on the remaining 
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subset of patients in a forward chaining setting, in which the model was trained with the first timepoint and 
tested on the remaining timepoints, then the model was trained with the first two timepoints and tested on 
the remaining timepoints, etc. 
The probabilistic predictions of AD severity scores were evaluated by a logarithmic scoring rule, the log 
predictive density (lpd). We compared the lpd of our model to that of four reference models, a uniform 
forecast model (Uniform), a random walk model (RW), an autoregressive model (AR) and a mixed effect 
autoregressive model (MixedAR). Details of the reference models are described in Supplementary B. 
 
RESULTS 
Model fit and validation 
The Bayesian state-space model that predicts EASI without covariates was fitted to the data successfully. We 
found no evidence of an absence of convergence. Population-level parameters were estimated with good 
precision with posterior distributions narrower than their prior distributions (Table S1). We confirmed that 
the patient-dependent parameters, 𝛼! and 𝑏! , vary between patients, within the range of [0.37, 0.99] for 
the expected autocorrelation (𝛼!) and [0.03, 2.3] for the expected intercept (𝑏!). The measurement process 
is responsible for 94.7% (90% credible interval 87.3-99.1%) of the total variance for prediction. The posterior 
mean of the minimum detectable change, MDC, is 8.6 (90% credible interval 7.6-9.6). The posterior predictive 
distribution of EASI trajectories demonstrated that the model could capture different patterns, despite the 
absence of several measurements (Fig. 2). 
Learning curves for two-weeks ahead predictions (Figs 3A and S2) demonstrated that the predictive 
performance improved as more data came in and that our state-space model (SSM) outperformed the 
reference models, thus supporting our model structure. The root mean squared error of the mean prediction 
for EASI at the next clinical visit (e.g. from week 0 to 2, 2 to 4, 4 to 8, etc.) was 6.3 ± 0.62 for our model and 
9.9 ± 0.43 for the random walk model. Counterintuitively, the performance of our model and the mixed 
autoregressive model tend to improve as the prediction horizon increased (Fig. 3B), possibly because most 
patients tend to recover before the end of the study. 
Similar results, with lower performance relative to the reference models, were obtained for the model 
predicting oSCORAD, SCORAD and POEM (Fig. S3). The posterior means (and 90% credible intervals) of the 
MDC were 9.1 (7.4-10.7) for oSCORAD, 11.4 (9.1-13.5) for SCORAD and 7.7 (6.7-8.9) for POEM. 
 
Effect of biomarkers on the model’s predictions 
Our model that predicts EASI with covariates was also fitted successfully. The covariates included the 26 
serum biomarkers measured at week 0, the presence of filaggrin mutation, the systemic therapy applied (AZA 
or MTX), sex and age. None of the covariates had a practically significant effect on the model’s prediction, as 
indicated by a small magnitude of the posterior mean and 90% credible intervals on both sides of 0 (Fig. 4A), 
and a resulting small and not practically significant contribution of the covariate, 𝒙!(𝜷, to the EASI prediction 
(Fig. 4B). The predictive performance of the model with covariates was similar to that of the model without 
covariates. Similarly, we found no practically significant covariates for the predictive models of oSCORAD, 
SCORAD and POEM. 
 
DISCUSSION 
We developed a Bayesian state-space model with covariates that can predict AD severity scores (EASI, 
SCORAD, oSCORAD and POEM) two-weeks ahead in the future at the individual level. The model describes 
the dynamics of the latent severity and the measurement process of the severity scores (Fig. 1). The model 
was trained on the data from 42 adult AD patients who received systemic therapy in a previously published 
clinical study [13] [14] (Fig. 2). Our model outperformed reference models for time-series forecasting (Fig. 3) 
and revealed that biomarkers’ concentrations measured before the start of the therapy did not carry 
information for prediction of future AD severity scores, the primary outcomes when we evaluate the efficacy 
of the therapy (Fig. 4). 
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These results provide some insights into the sought-after roles of biomarkers in prediction of therapeutic 
responses, while validation on different cohorts of patients is still required. We showed that the prediction 
error of future scores is primarily due to errors in the score measurement process, suggesting that the effect 
of (any combinations of) biomarkers on a prediction of severity scores, if any, is likely to be small or too subtle 
to be captured by our model. Further investigation of the effect of biomarkers therefore requires the data 
from a larger cohort.  
However, it is unclear how much new information we can expect to obtain by the inclusion of more 
biomarkers, as the biomarkers included in this study have been claimed to be most related to AD [4] and 
biomarkers usually demonstrate high multicollinearity between them. Instead, frequent measurements of 
biomarkers are required to evaluate their consistent effects to harness patient stratification [23]. The 
biomarkers’ concentrations measured at a single timepoint are likely to be noisy and may not capture the 
dynamic heterogeneity of complex disease such as AD. Whether the benefit of potentially more accurate 
predictions with biomarkers outweighs the cost of collecting data for such models remains as an open 
question. 
A key feature of our proposed model is the quantification of uncertainties in the model parameters by full 
Bayesian inference, which is especially suitable when dealing with small datasets. Bayesian inference 
provides a flexible modelling framework to develop bespoke models, for example, by using a regularised 
horseshoe prior to introduce sparsity in the regression parameters while avoiding a conservative feature 
selection. We also modelled uncertainties in the measurements, offering a flexible way to deal with missing 
values or observations at irregular intervals. Missing values were treated as an absence of the measurement 
process in a semi-supervised learning setting. Similar models could be developed to study the dynamic 
evolution of AD severity scores. For example, it will be interesting to fit our model to data with more frequent 
measurements to investigate the short-term dynamics of AD severity scores. We could also investigate the 
effects of other covariates, such as air pollutants and environmental factors, that are thought to be associated 
with AD development and aggravation [25]. 
Modelling the measurement process allowed us to estimate the minimum detectable change (MDC) for the 
AD severity scores. The estimated MDCs suggested that it may be easier to predict objective scores such as 
EASI and (o)SCORAD than subjective scores such as POEM, as the MDC for EASI and (o)SCORAD was estimated 
to be approximately 11% of their respective range, while that for POEM was 27% of its range. Our MDC 
estimates are larger than already published estimates of the minimal clinically important difference (MCID) 
for EASI, (o)SCORAD and POEM [24] (Table S2), indicating that the changes in an outcome that a patient may 
identify as important are not always detectable. Further research is needed to elucidate where this difference 
comes from and how we ensure that clinically important changes cannot be attributed to measurement 
errors. 
Our results suggest that a historical record of severity scores, rather than biomarkers measurements, 
provides rich and insightful dynamical information for prediction of therapeutic responses. While biomarkers 
could be used as substitutes to AD severity scores, measuring them may be costly, slow and inconvenient for 
routine cares. Using tools for auto-evaluation of AD severity scores from camera images, such as EczemaNet 
[26], may be another alternative to reduce systematic errors due to inter- and intra-rater variability in score 
measurement. 
 
DATA AVAILABILITY 
All the codes are available at https://github.com/ghurault/ssm-eczema-biomarkers 
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FIGURES 

 
Figure 1: A schematic diagram of the Bayesian state-space model for probabilistic predictions of AD severity 
scores. Grey and white ovals represent measured and latent (unobserved) scores, respectively. 
 
 

 
Figure 2: The posterior predictive distribution of four representative patients (A-D) by our model. Dots 
indicate the measured EASI scores, and the coloured ribbons represent stacked credible intervals. Lighter 
and darker ribbons correspond to wider and narrower highest density credible intervals, respectively. A: Slow 
recovery from a moderate EASI. B: Persistent severe EASI. C: Rapid recovery from a severe EASI. D: Slow 
recovery from a severe EASI. 
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Figure 3: Performance of our model (SSM) and reference models (MixedAR, AR, RW and Uniform) to predict 
EASI. The performance was evaluated by lpd (higher the better). A: Learning curves (mean ± SE) for two-
weeks ahead prediction after adjusting for different prediction horizons. B: Change in lpd as the prediction 
horizon is increased by two weeks. 
 

 
Figure 4: Effects of covariates in our model’s predictions of EASI (mean and 90% credible intervals). A: 
Estimates of the coefficients for the 26 serum biomarkers and FLG, sex, age and the treatment applied. A 
change of one standard deviation in the covariate corresponds to a change of 1.0 in EASI score. B: Total 
contribution of all covariates (𝒙!"𝜷) to EASI prediction for each patient. 
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