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Abstract

When a sponsor carries out a single-arm trial of a novel oncology compound, it may wish to
assess the efficacy of the compound via comparison of overall survival to an external control
arm, constructed using patients included in some retrospective registry. If efficacy of the
novel compound is compared to efficacy of physician’s choice of chemotherapy, patients in
the retrospective registry might qualify for inclusion in the external control arm at multiple
different points in time, when they receive different chemotherapy treatments. For example,
a patient might qualify at the start of their second, third and fourth lines of therapy. From
the start of which line of therapy should this patient’s survival be compared to survival of
participants in the single-arm trial?

Some sponsors have elected to include patients in the external control arm from the last
available line of therapy in the retrospective database. Another possibility is to randomly
select a line of therapy for each external control arm patient from among those available. In
this paper, we show, via probabilistic arguments and also via simulation based on real data,
that both of these methods give rise to a bias in favor of the single-arm trial. We further
show that this bias can be avoided by instead including external control arm patients multiple
times in the external control arm, once for each time they receive qualifying treatment.

Introduction

Imagine that a sponsor is carrying out a single-arm trial of a novel oncology compound for
patients with advanced non-small cell lung cancer. Since this is the first clinical trial for the
compound, heavily pre-treated participants have been enrolled. In particular, participants
are required to have been treated with prior platinum chemotherapy. Initial regulatory
approval of novel oncology compounds could be based on such a single-arm trial [1, 2].
However, to provide additional context to regulators, the sponsor has decided to construct
an external control arm for the trial, using data retrospectively collected from an electronic
health records system [3, 4]. The sponsor will compare overall survival for patients in the
external control arm to overall survival for patients in the single-arm trial, after reweighting
to account for differences in patient characteristics.

One of the first steps in constructing an external control arm is to apply appropriate inclusion
and exclusion requirements to the retrospective database. Here, one such inclusion criteria
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might be that the patient has started physician’s choice of anticancer treatment after pre-
vious treatment with platinum chemotherapy [5]. Survival from the start of this anticancer
treatment for patients in the external control arm will be compared to survival from receipt
of the first dose of the novel oncology compound in the single-arm trial.

One problem in applying this criterion is that the sponsor may very well find that some
patients in the retrospective database satisfy it at multiple different points in time [6, 7].
For example, consider the two patients in Table 1. Patient P2 has only one line of therapy
(docetaxel) after their platinum line, and so would only qualify for inclusion in the external
control arm with respect to that line of therapy. On the other hand, Patient P1 has two lines
of therapy (first docetaxel plus ramucirumab, and then pemetrexed) after their platinum line,
and so qualifies for inclusion in the external control arm twice. From what ”time zero” should
overall survival be measured for patient P1 in the external control arm: the beginning of
their second or the beginning of their third line of therapy? The timepoint selected may have
a large effect on the results of the comparison to the single-arm trial, since a patient clearly
survives longer from an earlier line of therapy than from a later line of therapy. Patient P1,
for example, survived for nearly a year from the start of second-line treatment with docetaxel
plus ramucirumab, but for less than three months from the start of third-line treatment with
pemetrexed.

Table 1: Treatment history and known vital status for two fictitious patients in a retrospec-
tive database

patient id event date

P1 Starts Carboplatin + Vinorelbine (line 1) 2015-07-09
P1 Starts Docetaxel + Ramucirumab (line 2) 2015-10-02
P1 Starts Pemetrexed (line 3) 2016-06-21
P1 Date of death 2016-09-12

P2 Starts Carboplatin + Pembrolizumab + Pemetrexed (line 1) 2018-02-01
P2 Starts Docetaxel (line 2) 2019-01-14
P2 Administrative censor date 2019-07-31

Hernán and Robins have discussed the problem of patients in retrospective databases with
multiple eligible time zeros, in the context of studies that compare two groups both extracted
from the same retrospective database. They suggested that for patients with multiple eligible
time zeros, there were two unbiased approaches [8]. A single eligible time, like the first eligible
time or a random time, could be chosen as the time zero for each patient. Alternatively, all
eligible times could be used, so that different versions of the same patient would be included
in the comparison, each with a different time zero.

In this article, we describe a general model of cancer patient survival, of enrollment in clinical
trials and of inclusion in retrospective database, and show that several methods of choosing
a single time zero, like choosing the start of the last available line of therapy as in [6, 7], or
choosing a randomly selected line of therapy, are not unbiased for an overall survival endpoint
when, unlike in Hernán and Robins’ setting, comparison is made between a retrospective
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database and a clinical trial (as opposed to solely within a retrospective database). We then
demonstrate how the other method suggested by Hernán and Robins, in which the same
patient is included multiple times in the same comparison, but with different time zeros, can
be used to obtain an unbiased comparison of overall survival between a single-arm trial and
patients in a retrospective database.

Model

Here we describe a general model of the survival of cancer patients, of how they enroll in a
clinical trial and of how they are included in a retrospective database. As above, we take
as an example population of interest non-small cell lung cancer patients who have received
platinum chemotherapy and go on to receive subsequent therapy. We will see how survival
of patients enrolled in a hypothetical control arm of a trial in which patients are treated
with physician’s choice of standard of care therapy compares to the survival of patients in
an external control arm treated with physician’s choice of standard of care therapy, given
various choices of time zero for external control arm patients. We should choose a time zero
for external control arm patients such that the survival distribution of patients in the external
control arm is the same as the survival distribution of patients in this hypothetical control
arm, assuming all other requirements for causal inference, e.g., no unmeasured confounders,
are satisfied [9]. We call the trial control arm hypothetical since our focus here is on single-
arm trials, in which there is no control arm.

Assume that each patient i in the population of interest has a time Si, measured from some
arbitrary common timepoint, for example, January 1, 2000, at which they start their first
post-platinum therapy, and has Ni post-platinum lines of therapy before they die, where
Ni ≥ 1. The length of patient i’s jth post-platinum line of therapy is Dij. We assume that
patients die immediately after the end of their Nith line of therapy. We further assume that
the Dij are independent of Si, so that there is no time trend in survival, but that the Dij

can depend on Ni, so that patients with more lines of therapy can have longer (or shorter)
lines of therapy. Conditional on Ni, however, we assume that Dij is independent of Dik for
all j 6= k. Since we are focusing on patients receiving standard of care therapies, we assume
that Dij and Dik, for k > j, do not depend on whether patient is enrolled in a clinical trial
in line j. Due to censoring, Ni and some of the Dij may not be observed for some patients.

Clinical trial

We assume that a trial enrolls participants from this population between times t1 and t2,
measured from the same common baseline time as the Si, and that every patient in the
population that finishes first-line platinum therapy during this time period, or that finishes
a subsequent line of therapy during this time period and that doesn’t die at the end of that
line of therapy, enrolls in the trial with probability α.

Let Ei be independent random variables that are each equal to 1 with probability α and
equal to 0 with probability 1− α. Under the model above patient i will enroll in the trial if
Ei = 1 and if there exists a k in 0 . . . Ni − 1 such that
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t1 ≤ Si +
k∑

j=1

Dij ≤ t2.

The sum in this expression equals 0 if k = 0, in which case the patient enrolls in the trial at
time Si, as their first line of therapy after platinum therapy. The line of therapy, counting
starting with the first post-platinum therapy, in which patient i will enroll in the trial is

Li = 1 + min{k such that t1 ≤ Si +
k∑

j=1

Dij ≤ t2 and k ≤ Ni − 1}

The survival of patient i from enrollment in the trial until death is Yi =
∑Ni

j=Li
Dij. For some

patients Yi may be censored and not known at the time of comparison to the external control
arm.

Retrospective registry

We assume that a retrospective registry of cancer patients includes, with probability β, any
patient from this population for whom Si < tc, where tc is the data cutoff date for the
registry. That is, if the patient starts their line of treatment after platinum chemotherapy
after the date tc, then they won’t be included in the registry. Let Fi be independent random
variables that are each equal to 1 with probability β and equal to 0 with probability 1−β. We
assume that the registry includes complete information until time tc on the treatment history
of any patient with Fi = 1 and Si < tc. Any events occurring after time tc are censored. The
number of post-platinum lines of therapy observed for a patient in the registry depends on
the relationship between Si, tc, Ni and the Dij. Letting Mi be the number of post-platinum
lines of therapy whose start time is observed for patient i in the retrospective database,
which may be lower than Ni due to censoring, we have that

Mi = 1 + max{k such that Si +
k∑

j=1

Dij ≤ tc and k ≤ Ni − 1}.

The survival of patient i from the start of their kth post-platinum line, 1 ≤ k ≤ Ni, is
Wik =

∑Ni

j=kDij, although this survival may be censored.

Overall survival observed in clinical trial

We want to check if P (Yi ≥ y|Li = l, Ei = 1), the survival function for patients enrolling

in the trial in line setting l, is the same as P
(∑Ni

j=lDij ≥ y|Ni ≥ l
)

, the marginal survival

function for patients in the population, from that line setting, regardless of enrollment in
the trial. We have
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P (Yi ≥ y|Li = l, Ei = 1) = P

(
Ni∑
j=l

Dij ≥ y|Si +
l−2∑
j=1

Dij < t1, t1 ≤ Si +
l−1∑
j=1

Dij ≤ t2, Ni ≥ l, Ei = 1

)

= P

(
Ni∑
j=l

Dij ≥ y|Ni ≥ l, Ei = 1

)

= P

(
Ni∑
j=l

Dij ≥ y|Ni ≥ l

)
(1)

The first line above follows since a patient will enroll in the trial in line setting l only if
the patient’s l− 1th post-platinum line is the first line of that patient to end in the interval
between t1 and t2 (if l = 1 then the first inequality conditioned on is ignored). The second
line follows from mutual independence of the Dij and from mutual independence of the Dij

and the Si, and the third line follows from independence of the Dij and Ei. Therefore,
under the model posed above, the survival of patients enrolling in the trial in a particular
line setting l, i.e., those with Li = l, is the same as the marginal survival of patients in the
population from the lth line.

Conditioning on Ni = n, we can also write this marginal probability as follows:

P

(
Ni∑
j=l

Dij ≥ y|Ni ≥ l

)
=
∞∑
n=l

P

(
n∑
j=l

Dij ≥ y|Ni = n

)
P (Ni = n) (2)

Note that equations 1 and 2 would not hold if the Dij were not conditionally independent
given Ni. Here we sum to infinity, although in practice the Ni are bounded. In the appendix,
we show, assuming that the times at which patients start post-platinum therapy Si are
uniformly distributed, that if the lengths of the Dij are positively correlated within a patient
then patients with better survival may be over-represented in a clinical trial.

Overall survival observed in retrospective database, choosing one
eligible line per patient

One potential way to set up an external control arm is to measure survival for each patient
in the retrospective database from one post-platinum line of therapy chosen using some rule
from the available post-platinum lines of therapy for that patient. Let Ri be the selected
post-platinum line of therapy from which survival is measured for patient i. The selection
of Ri could depend on Mi. For example, one line might be chosen randomly from among
the available lines of therapy in a database for a patient, or the last available line of therapy
might be chosen for a patient. Alternatively, the selection of Ri could be independent of
Mi. For example, the first line could always be chosen, R1 = 1. As another example, Ri

could equal 1 with probability 0.5 and 2 with probability 0.5, irrespective of Mi. With this
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scheme, a patient with Ri > Mi would be excluded from the external control arm, and so
sample size would be affected.

We first assume that we have complete capture for each patient in the retrospective registry,
i.e., Ni is observed for each patient in the registry, so that Ni = Mi. The survival for
patients from line setting l in an external control arm so constructed, P (Wil ≥ y|Ri = l), is,
conditioning on Ni and then applying Bayes’ rule:

P (Wil ≥ y|Ri = l) =
∞∑
n=l

P (Wil ≥ y|Ri = l, Ni = n)P (Ni = n|Ri = l)

=
∞∑
n=l

P (Wil ≥ y|Ni = n)P (Ri = l|Ni = n)
P (Ni = n)

P (Ri = l)
(3)

=
∞∑
n=l

P (Wil ≥ y|Ni = n)
P (Ri = l|Ni = n)P (Ni = n)∑∞

m=l P (Ri = l|Ni = m)P (Ni = m)
(4)

Here we sum Ni from l to ∞, but the Ni in practice are bounded above. Note that in the
second line we assume that Wil is independent of Ri given Ni, i.e, that the selection of Ri

may depend on how many lines of therapy a patient has, but not on other features of the
survival history of the patient.

Let us consider some rules for selecting a post-platinum line of therapy for each patient in
the external control arm. First we assume that we select a line uniformly at random for each
patient from the available lines of therapy, that is, P (Ri = l|Ni = n) for l ≤ n equals 1/n.
Then equation 4 equals

∞∑
n=l

P

(
Ni∑
j=l

Dij ≥ y|Ni = n

)
P (Ni = n)/n∑∞

m=l P (Ni = m)/m
(5)

so we see that, by comparison to the weighted sum for the marginal survival probability
observed in the trial (equation 2), probabilities for patients with more lines of therapy, and
hence longer survival, are given smaller weights in this expression, leading to bias if this
method is adopted.

In fact, by inspecting equations 2 and 3, we find that in general, in order to avoid bias, the
selection of Ri for each patient must not depend on Ni. So, for example, choosing the last
line for each external control arm will lead to bias. In this case P (Ri = l|Ni = n) = 1 for
l = n and 0 otherwise, so that equation 3 becomes P (Wil ≥ y|Ni = l), and we are only
estimating survival from line setting n using patients who died immediately after that line
setting.

By contrast, always choosing the first line for each patient, P (Ri = 1) = 1, will not lead to
bias, but then no external control arm patients will be able to be compared to trial patients
who received active comparator in a line after their first post-platinum line of therapy.
Choosing a line of therapy at random for each patient where the random selection does not
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depend on Ni will avoid bias, but this choice will mean that many patients will be excluded
from the external control if they did not survive until the randomly chosen line of therapy.

Before, we ignored the fact that we did not collect data for patients in the registry after the
data cutoff date tc. Now we take this into account. First, we consider selection rules where
Ri is independent of Mi and of the survival history of the patient. For example, assume
we let Ri = 1 with probability 1

2
and Ri = 2 with probability 1

2
. We want to check that

P (Wil ≥ y|Ri = l,Mi ≥ l, Fi = 1), the survival of external control arm patients selected
from the registry, is the same as P (

∑Ni

j=lDij ≥ y|Ni ≥ l), the marginal survival of patients
from that line setting. If so, then we can use such selection rules to select an external control
arm whose survival distribution can be compared without bias to the survival distribution
of patients in the trial.

We have:

P (Wil ≥ y|Ri = l,Mi ≥ l, Fi = 1) = P

(
Ni∑
j=l

Dij ≥ y|Ri = l,Mi ≥ l, Fi = 1

)

= P

(
Ni∑
j=l

Dij ≥ y|Si +
l−1∑
j=1

Dij ≤ tc, Ni ≥ l

)

= P (

(
Ni∑
j=1

Dij ≥ y|Ni ≥ l

)
(6)

The second line here follows from the independence of Fi and Ri with all other variables, and
the third line follows from the mutual independence of the Dij and from mutual independence
of the Dij and Si.

The appendix discussed the the bias arising from a selection rule that selects a line uniformly
at random for each patient from the available post-platinum lines of therapy of that patient,
in this general case where only Mi line starts are observed for each patient.

Overall survival observed in retrospective database, choosing all
eligible lines per patient

Instead of choosing a single eligible line for each patient, Hernán and Robins suggested that
all eligible timepoints could be used. Applying this idea to our context, the comparison of
external control arm patients to trial patients could be stratified by line, and an external
control arm patient could be included in multiple strata, once for each line they had after
platinum therapy. In each strata, the patient’s survival would be measured from the ap-
propriate line of therapy and compared to patients enrolling in the clinical trial in that line
setting. By equation 6, this would be an unbiased comparison, since the selection probabili-
ties for patients in the external control arm would be P (Ri = l|Ni = n) = 1 regardless of the
value of n. However, the correlations between survival times for patients included in multiple
strata need to be accounted for. Here we account for these correlations using the grouped
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approximate jackknife estimate of the variance described in [10], which is implemented in
standard statistical software [11].

Simulation study

As shown above, if we choose a line of therapy at random for each patient in a retrospective
database, but the random selection does not depend on Mi, the number of lines observed for
that patient, then our estimate of survival from each line setting will be unbiased. We can
use this method to carry out a simulation in which we construct repeated single-arm trials,
along with external control arms. Here the patients in both arms receive the same therapy
and come from the same source population, so that if the external control arm is constructed
correctly outcomes should be the same as in the single-arm trial.

To carry out this simulation study, we use the nationwide Flatiron Health electronic health
record (EHR)-derived de-identified database. The Flatiron Health database is a longitudinal
database, comprising de-identified patient-level structured and unstructured data, curated
via technology-enabled abstraction. During the study period, the de-identified data origi-
nated from approximately 280 cancer clinics ( 800 sites of care). The study included 15,243
patients diagnosed with advanced non-small cell lung cancer from January 2011 to April
2020. The majority of patients in the database originate from community oncology settings;
relative community/academic proportions may vary depending on study cohort. Lines of
therapy in this database are oncologist-defined and rule-based. The data are de-identiifed
and subject to obligations to prevent re-identification and protect patient confidentiality.
Flatiron Health, Inc. did not participate in the analysis of this data.

We imagine we are using this dataset to construct an external control arm for a new com-
pound being administered to lung cancer patients who have previously received platinum
therapy. We allow patients in the external control arm to receive any therapy, i.e., we are
comparing to physician’s choice of therapy, but we restrict to patients receiving therapy in
the 5th or earlier line. There are 15,243 patients who meet these criteria in one or more line.
37% of these patients meet these criteria in only one treatment line; 30% meet them in two
different lines and the remaining patients meet these criteria in three or four different lines.

We repeatedly simulate both a single-arm trial as well as an external control arm. Note that
here the therapy is the same in the single-arm trial as in the external control arm, so that
the survival distribution in both should be the same. To do this, for each simulation run
we start by splitting our overall sample into two parts. From one part we select patients for
the single-arm trial, using fixed probabilities to select patients in different line settings, so
that on average trial patients will be evenly distributed across line numbers 2, 3, 4 and 5.
From the other part we randomly select patients for the external control arm. We simulate
single-arm trials and external control arms with 40, 160 and 640 patients.

We use three different methods to select lines for external control arm patients to compare
to patients in the simulated single-arm trial: random selection of a line uniformly at random
from the observed post-platinum lines of the patient, selection of the patient’s last line, and
inclusion of all lines. We compare the three external control arms so constructed to the trial
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patients by calculating a hazard ratio (with the trial patients as the reference group), and
its associated p-value, stratifying by line in a Cox proportional hazards model. We calculate
bias as the mean hazard ratio (on the logarithmic scale) comparing the external control arm
patients to the trial patients. In the absence of this bias this log hazard ratio should be
equal to 0. We use 5,000 replicates per sample size.

Table 2 shows the bias that results from random selection of lines or using the last line
for external control arm patients. This bias alone results in a hazard ratio of between
1.12 and 1.15 comparing external control arm patients to single-arm patients; this is an
anti-conservative bias, as it will tend to exaggerate the effect of the therapy provided to
single-arm patients. Table 2 also illustrates the lack of bias from the method in which all
qualifying lines for all patients are used, with mean bias close to 0. Note that bias results
from using random selection as the random selection of a line for an external control arm
patient depends on how many lines a patient has in the database. Table 2 also shows the
inflation of Type I error that results when using the naive variance estimator while including
all lines for each external control arm patient; Type I error is more than doubled compared
to the nominal 5% rate. For 640 patients, type I error is adequately controlled using the
grouped approximate jackknife estimate, when all lines are used for each external control
arm patients. Type I error is inflated only for lower sample sizes.

Table 2: Simulation results. Mean bias is defined as the mean hazard ratio on the logarithmic
scale, comparing simulated external control arm patients to simulated single-arm trial pa-
tients. In the absence of bias this log hazard ratio should equal 0. Testing was carried out at
the 5% level so Type I error above 5% indicates inflation. For the all lines method, all avail-
able lines for external control arm patients were compared to the single-arm patients. For
the last available line method, survival was measured for external control arm patients from
the last line of therapy observed in the database. For the randomly selected line method,
survival was measured for each external control arm patient from a line of therapy selected
uniformly at random from among the available lines of therapy for that patient.

type number per arm Type I error Mean bias
All lines, approximate jackknife variance 40 0.078 -0.006
All lines, approximate jackknife variance 160 0.062 -0.007
All lines, approximate jackknife variance 640 0.051 -0.001
All lines, naive variance 40 0.101 -0.006
All lines, naive variance 160 0.109 -0.007
All lines, naive variance 640 0.108 -0.001
Last available line 40 0.069 0.149
Last available line 160 0.135 0.136
Last available line 640 0.390 0.132
Randomly selected line 40 0.064 0.134
Randomly selected line 160 0.120 0.123
Randomly selected line 640 0.320 0.121
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Conclusion

What should be done when a patient in an external control arm for an oncology trial satisfies
inclusion and exclusion criteria at the start of more than one line of therapy? Here we have
shown that some methods of selecting a single line of therapy for each external control arm
patient, like selecting a line of therapy uniformly at random, may lead to substantial bias,
exaggerating the effect of the treatment provided to single-arm trial patients. These methods
should therefore be avoided. By contrast, including all eligible lines for external control arm
patients avoids this bias. We have demonstrated this via a model of the survival of cancer
patients and their recruitment into a trial or inclusion in a retrospective database, as well as
via a simulation study using data from a retrospective database. We have also demonstrated
how to account for inflation of Type I error arising when more than one outcome for the same
patient is included. The approximate jackknife estimator whose performance is evaluated
here adequately controls Type I error, especially at larger sample sizes. Further work could
assess whether the bootstrap better controls Type I error at smaller sample sizes.

References

[1] Sharyl J. Nass, Mace L. Rothenberg, Rebecca Pentz, Hedvig Hricak, Amy Abernethy,
Kenneth Anderson, Amanda Wagner Gee, R. Donald Harvey, Steven Piantadosi, Mon-
ica M. Bertagnolli, Deborah Schrag, and Richard L. Schilsky. Accelerating anticancer
drug development —opportunities and trade-offs. Nature Reviews Clinical Oncology,
15(12):777–786, 2018.

[2] John R. Johnson, Yang-Min Ning, Ann Farrell, Robert Justice, Patricia Keegan, and
Richard Pazdur. Accelerated Approval of Oncology Products: The Food and Drug
Administration Experience. JNCI: Journal of the National Cancer Institute, 103(8):636–
644, 2011.

[3] Elodie Baumfeld Andre, Robert Reynolds, Patrick Caubel, Laurent Azoulay, and
Nancy A. Dreyer. Trial designs using real-world data: The changing landscape of the
regulatory approval process. Pharmacoepidemiology and Drug Safety, 2019.

[4] Bhakti Arondekar, Rachel Bhak, Maral DerSarkissian, Lynn Huynh, Kelsey Wang, Eric
Davis, Bryon Wornson, and Mei Sheng Duh. Role of real-world evidence for oncol-
ogy product registration in the United States: A review of approvals by the U.S.
Food and Drug Administration from 2015 to 2019. Journal of Clinical Oncology,
38(15 suppl):e14130–e14130, 2020.

[5] ASCENT-Study of Sacituzumab Govitecan in Refractory/Relapsed Triple-Negative
Breast Cancer. https://clinicaltrials.gov/ct2/show/NCT02574455, note = Ac-
cessed: 2020-09-23.

[6] Sundar Jagannath, Yi Lin, Hartmut Goldschmidt, Donna Ellen Reece, Ajay K. Nooka,
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1 Appendix

1.1 Overall survival observed in clinical trial if Dij are positively
correlated

Assume that the Dij are positively correlated even when conditioning on Ni, the total number
of lines of therapy, so that a patient that has one longer than average line of therapy is also
likely to have other longer than average lines of therapy. As an example of the selection bias
that can occur as a result, let us consider the probability that a patient who has n post-
platinum lines of therapy will be selected into the trial at the start of their 2nd post-platinum
line.

This probability is P (Si < t1, Si +Di1 > t1, Si +Di1 < t2, Ei = 1|Ni = n) . Let us assume
that Si, the time of starting first post-platinum therapy, is uniformly distributed conditional
on Ni, i.e., that treatment patterns have not changed recently. Then this probability is
proportional to P (t1−Di1 < Si < min(t1, t2−Di1)|Ni = n) = min(t1, t2−Di1)− (t1−Di1).
If Di1 ≥ t2 − t1, the length of the enrollment period, then this expression is equal to a
constant, t2− t1. Otherwise, it equals Di1. We therefore see that the probability of selection
in the trial is lower for patients with shorter Di1 than for patients with longer Di1. Since
the Dij are positively correlated, patients in the trial will then have longer post-enrollment
survival than patients in the general population, conditioning on Ni.
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1.2 Selecting a line uniformly at random for each patient with
censoring

WhenNi is not observed for some patients in the retrospective database due to administrative
censoring, then survival may be measured for each patient in the retrospective database from
a post-platinum line of therapy chosen using a rule that depends on Mi, the number of post-
platinum lines of therapy observed for a patient in the registry. The survival for patients
from line setting l in an external control arm so constructed is, conditioning on both Ni and
Mi and applying Bayes’ rule:

P (Wil ≥ y|Ri = l) =
∞∑
n=l

n∑
m=l

P (Wil ≥ y|Ri = l, Ni = n,Mi = m)P (Ni = n,Mi = m|Ri = l)

=
∞∑
n=l

n∑
m=l

P (Wil ≥ y|Ri = l, Ni = n,Mi = m)

× P (Ri = l|Ni = n,Mi = m)
P (Ni = n,Mi = m)

P (Ri = l)

If we assume that a post-platinum line of therapy is chosen uniformly at random from among
the Mi post-platinum lines of therapy for a patient, then this expression becomes

P (Wil ≥ y|Ri = l) =
∞∑
n=l

n∑
m=l

P (Wil ≥ y|Ni = n,Mi = m)
P (Ni = n,Mi = m)/m

P (Ri = l)
.

Here Wil is independent of Ri conditional on Mi since the selection of a line of therapy
depends only on Mi and not on other features of the survival of the patient.

Let us assume, to keep things simple, that Ni can only equal 1 or 2, i.e., that patients
can have at most 2 post-platinum lines of therapy. Had Ni been observed in this simple
case and Ri had been uniformly selected from among 1, . . . , Ni, then survival from the first
post-platinum line for the external control arm would have been estimated (see equation 5)
as

P (Wi1 > y|Ri = 1) =
P (Wi1 > y|Ni = 1)P (Ni = 1) + P (Wi1 > y|Ni = 2)P (Ni = 2)/2

P (Ni = 1) + P (Ni = 2)/2
(7)

This is a biased estimate, compared to the survival probabilities as measured in a single arm
trial (equation 2), due to the downweighting of the survival contribution from patients who
actually survive for two lines of therapy.

In the general case where Ni is not observed due to administrative censoring, then instead
survival from the first post-platinum line would be estimated as
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P (Wi1 > y|Ri = 1) =

(
P (Wi1 > y|Ni = 1)P (Ni = 1)+

P (Wi1 > y|Ni = 2,Mi = 1)P (Ni = 2,Mi = 1)+

1

2
P (Wi1 > y|Ni = 2,Mi = 2)P (Ni = 2,Mi = 2)

)
/(

P (Ni = 1) + P (Ni = 2,Mi = 1) +
1

2
P (Ni = 2,Mi = 2)

)
In this general case, we see that more weight is given in this weighted sum to survival from
line 1 of those patients who actually survived for 2 lines, as compared to the biased estimate
in equation 7. In particular, the contribution from patients who survive for 2 lines but whose
start of line 2 was administratively censored is not downweighted at all. These patients may
actually be expected to have better survival than those patients who survived for 2 lines but
whose start of line 2 was not administratively censored, since patients with shorter first lines
of therapy are less likely to be administratively censored. Therefore in this general case less
bias is to be expected than in the case where Ni is observed for all patients.

Although bias arising from uniform random selection among available lines of therapy is
attenuated as a result of administrative censoring, as compared to what would be expected
from equation 5, it is important to note that most patients in a retrospective database may
have observed dates of death, although the proportion will depend on how many years of
data the retrospective database includes and the survival of patients in the database.

2 Data availability

The data that support the findings of this study have been originated by Flatiron Health,
Inc. These de-identified data may be made available upon request, and are subject to
a license agreement with Flatiron Health; interested researchers should contact DataAc-
cess@flatiron.com to determine licensing terms.
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