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ABSTRACT 

 

Objective: Retrospective study of COVID-19 positive patients treated at NYU Langone Health 

(NYULH) to identify clinical markers predictive of disease severity to assist in clinical decision triage 

and provide additional biological insights into disease progression. 

 

Materials and Methods: Clinical activity of 3740 de-identified patients at NYULH between January and 

August 2020. Models were trained on clinical data during different parts of their hospital stay to predict 

three clinical outcomes: deceased, ventilated, or admitted to ICU.  

 

Results: XGBoost model trained on clinical data from the final 24 hours excelled at predicting mortality 

(AUC=0.92, specificity=86% and sensitivity=85%). Respiration rate was the most important feature, 

followed by SpO2 and age 75+. Performance of this model to predict the deceased outcome extended 5 

days prior with AUC=0.81, specificity=70%, sensitivity=75%. When only using clinical data from the 

first 24 hours, AUCs of 0.79, 0.80, and 0.77 were obtained for deceased, ventilated, or ICU admitted, 

respectively. Although respiration rate and SpO2 levels offered the highest feature importance, other 

canonical markers including diabetic history, age and temperature offered minimal gain. When lab values 

were incorporated, prediction of mortality benefited the most from blood urea nitrogen (BUN) and lactate 

dehydrogenase (LDH). Features predictive of morbidity included LDH, calcium, glucose, and C-reactive 

protein (CRP).  

 

Conclusion: Together this work summarizes efforts to systematically examine the importance of a wide 

range of features across different endpoint outcomes and at different hospitalization time points. 
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BACKGROUND AND SIGNIFICANCE 

 

The first cluster of SARS-CoV-2 was reported in Wuhan, Hubei Province on December 31, 2019. Inciting 

symptoms remarkably similar to pneumonia, the disease quickly traveled around the world, earning its 

pandemic status by the World Health Organization on March 11, 2020. Although the first wave has since 

passed for hardest-hit regions such as New York City (NYC) and most of Asia, a resurgence of cases has 

already been reported in Europe and record new cases tallied in the Midwest and rural United States (US). 

As of November 12th, the US alone logged its highest tally to date with a 317% growth over the preceding 

30 days1. The coronavirus disease (COVID-19) is far from seeing the end of its days and there remains a 

compelling need to prioritize care and resources for patients at elevated risk of morbidity and mortality. 

 

Previous work building machine learning models used patient data from Tongji Hospital2,3 (Wuhan, 

China), Zhongnan Hospital4 (Wuhan China), Mount Sinai Hospital5 (NYC, US), and NYU Family Health 

Center6 (NYC, US). Surprisingly, clinical features selected varied widely across studies. For example, 

while McRae et al.’s 2-tiered model6 trained on 701 NYC patients to predict mortality was based on 

actual age, C-reactive protein (CRP), procalcitonin, and D-dimer, Yan et al.’s model2 trained on 485 

patients from Wuhan selected lactate dehydrogenase (LDH), lymphocyte count, and CRP as the most 

predictive for mortality. Variations in selected features differed greatly even when trained to predict 

similar outcomes on data from patients of the same city. Yao et al.’s model3 was trained on 137 patients 

from Wuhan and relied on 28 biomarkers in their final model to predict morbidity. Given the differences 

among prior models, some of which were driven by domain-specific knowledge, we decided to 

systematically examine the importance of a wide range of features across different endpoint outcomes and 

at different hospitalization time points. 

 

This study analyzes retrospective PCR-confirmed COVID-19 inpatient data collected at NYU Langone 

Hospital spanning 1/1/2020 to 8/7/2020 to predict three sets of clinical outcomes: alive vs deceased, 
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ventilated vs not ventilated, or ICU admitted vs not ICU admitted. The clinical information of 3740 

patient encounters included demographic data (age, sex, insurance, past diagnosis of diabetes, presence of 

cardiovascular comorbidities), vital signs (SpO2, pulse, respiration rate, temperature, blood pressure), and 

the 50 most frequently ordered lab tests in our dataset. Models were developed using two methods: 

logistic regression with feature selection using Least Absolute Shrinkage and Selection Operator7 

(LASSO) and gradient tree boosting with XGBoost8. An explainable algorithm, such as logistic 

regression, provides easy to interpret insights into the features of importance. Conversely, the larger 

model capacity of XGBoost better handles data complexities to explore the extent that predictive 

performance can be optimized. Together, these methods ensure a holistic survey that explores the clinical 

underpinnings of disease etiology and the prospects of building models that are sufficiently competent to 

be effective decision support tools. 
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RESULTS 

 

More than half of all patients in our dataset were over the age of 65, with pediatric patients (0-17) having 

the lowest representation (Fig. 1A, Supplemental Table S1). Generally, the proportion of deceased 

patients increased with age, peaking at 38% for 75+, 16% for 45-64, and 0% for pediatric patients. Most 

patients who were either ventilated or admitted to the ICU belonged to the 65-74 age group followed by 

45-64 and 75+.  

 

Aggregation of values for commonly acquired clinical metrics over normalized time courses offered 

meaningful insights into disease progression. Each patient’s hospitalization stay was segmented into 5% 

windows and clinical metrics were averaged within each bin (Fig. 1B). We first examined the difference 

of average vital sign measurements between cohorts with different outcomes. The value of SpO2 was 

statistically different for all three outcome comparisons in the first 5% of hospitalization time (W=1.22e8, 

p<2.2e-16; W=1.17e8, p<2.2e-16; W=1.22e8, p<2.2e-16). Over the clinical time course, the difference in 

SpO2 means increased the most for those that deceased, followed by ICU admitted and ventilated. 

Differences in respiration rate followed a similar adverse trend with breaths/min increasing the most for 

those that deceased, followed by ventilated and ICU admitted. The divergence was present even after 

accounting for overlapping deceased patients. When subsetted for only those that survived, ventilated 

patients had 2.91 more breaths/min (W=2.16e7; p<2.2e-16), and ICU admitted patients had 2.90 more 

breaths/min (W=2.15e7; p<2.2e-16). At beginning of time course, differences in temperature were small 

(0.05°F, 0.11°F, and 0.06°F respectively), and not statistically significant for those deceased (W=2.61e7, 

p=0.13), but was for those ventilated (W=3.70e7, p=3.13e-10) or admitted to ICU (W=3.66e7, p=5.64e-

5). Pulse differences at beginning were not significantly different for those ventilated (W=1.45e8, 

p=0.29), but was for those deceased (1.16e8, p=7.61e-5) and ICU admitted (W=1.48e8, p=1.29e-4). 

Systolic and diastolic blood pressures were continuously lower for patients with worse outcomes in this 

dataset. 
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To assess the effectiveness of these vital signs to triage clinical outcomes, logistic regression and 

XGBoost models were trained only on data collected in the first 24 hours after admission. A total of 3740 

encounters were recorded and all clinical values in the specified time range were averaged. For logistic 

regression, features were selected using LASSO with 10-fold cross validation. Grid search was used to 

optimize XGBoost parameters (Supplemental Table S2). The logistic model had AUC performances of 

0.79, 0.80, 0.77, specificities of 59%, 78%, 79%, and sensitivities of 86%, 74%, 68% respectively (Fig. 

2A). XGBoost performed similarly with AUC performances of 0.80, 0.80, 0.77, specificities of 59%, 

83%, 69%, and sensitivities of 86%, 70%, 77% respectively (Fig. 2B).  

 

In both logistic regression and gradient tree boosting settings, features of importance varied across 

clinical outcomes (Fig. 2C). For logistic regression models of the three outcomes, respiration rate, SpO2 

and comorbidity were among predictive features, but age groups were selected only for predicting 

mortality. For boosting tree models, feature importance measures showed that respiration rate was 

consistently the most important feature for all three outcomes, and age_18-44 was the second most 

important feature only for vital status. Respiration rate and SpO2 were important for predicting all three 

outcomes. Differences in temperature were not strongly predictive in any cohort in either model, and its 

insignificant difference in the deceased outcome group together suggests that its role in screening for 

increased disease severity may not be dependable.  

 

The 50 most frequently collected labs and their relative importance were also studied. A t-SNE plot (Fig. 

3A) suggests lack of clustering among lab features, and overall low correlation (Fig. 3B) in pairwise 

comparisons (|μ| = 0.08, |σ| = 0.10). Local pockets of correlation (|cor|>=0.83) were identified between 

(hemoglobin, hematocrit, red blood cell count), (absolute neutrophils, white blood cell count), and 

(bilirubin direct, bilirubin total). Each of these sets measures variables that are clinically interdependent 

and thus expected. 
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Incorporating lab features into the predictive models marginally improved performance. Logistic 

regression had AUC performances of 0.83, 0.81, 0.78, specificities of 68%, 70%, 69%, and sensitivities 

of 85%, 83%, 74% respectively (Fig. 4A). The XGBoost model performed better with AUC increasing to 

0.84, 0.79, 0.78, specificities of 71%, 72%, 65%, and sensitivities of 83%, 73%, 78% respectively (Fig. 

4B). For logistic regression, blood urea nitrogen (BUN) and albumin were among the lab features (Fig. 

4C) predictive of mortality. The XGBoost model found most performance gain from BUN and LDH. 

Feature importance for predicting ventilation or ICU admission differed between models. For ventilation, 

logistic regression selected calcium, glucose, and CRP with large absolute coefficient values, while 

XGBoost identified calcium, glucose, CRP, and LDH as important features. For those admitted to ICU, 

XGBoost benefited from the same lab features, while monocyte percentage and carbon dioxide were 

additionally selected for by logistic regression. Of note, for XGBoost, no lab feature showed higher 

importance measure than respiration rate and SpO2 did for all three outcomes.  

 

Finally, models trained on data collected in the last 24 hours excelled at predicting deceased. The logistic 

regression model (Fig. 5A) had AUC performance of 0.91, specificity of 88% and sensitivity of 84%. The 

XGBoost model (Fig. 5B) had AUC performance of 0.92% specificity of 86% and sensitivity of 85%. 

The importance of respiration rate increased for XGBoost (Fig. 5C), accounting for more than 50% of the 

gain. Values of SpO2 and age 75+ were the next most important features. 

 

Using the same coefficients and tree weights/structures, both models were assessed based on clinical data 

from the preceding 30 days. With cutoffs of 0.80 for AUC, and 70% for specificity and sensitivity, 

logistic regression was able to predict deceased 4 days in advance (AUC = 0.82, specificity = 85%, 

sensitivity = 71%) and 5 days in advance (AUC = 0.81, specificity = 70%, sensitivity = 75%) for 

XGBoost. Models were not trained on those ventilated or ICU admitted, as these events are unlikely to 

occur in the final 24 hours preceding discharge/deceased. Labs were not incorporated because few blood 

tests were ordered in the final 24 hours.   
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To explore whether patient status can be dynamically predicted based on history data, we also built time 

series models using simple recurrent neural network (RNN), gated recurrent unit (GRU) and long short-

term memory (LSTM) architectures and compared the performance metrics to single time point models of 

logistic regression (LR) and multilayer perceptron (MLP). The vital status of each patient was converted 

to a time series that flagged positive for time points within 3-day intervals before the patient deceased. 

Model comparison was carried out with three different feature sets: vital signs (body temperature, pulse, 

respiration rate, systolic blood pressure, diastolic blood pressure, SpO2) only, vital signs and 46 lab 

results with nonzero coefficients in the single time point LASSO regression model, vital signs and lab 

results plus ‘static’ demographical information of sex, age group, diabetic history and comorbidities 

(Supplemental Table 3). As the time series data were recorded with uneven and irregular intervals, the 

progression time (in days) was included in all models as an additional feature. For models only including 

vital sign features, time series models showed better performance (Fig. 6) compared to single time point 

models, but performance was comparable among all models when lab results and demographical 

information was added to the feature set.  
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DISCUSSION 

 

Retrospective analysis of COVID-19 positive patients identified recognizable clinical markers such as 

respiration rate and SpO2, but also provided insights distinguishing morbidity (ICU admitted or ventilated 

outcomes) from mortality (deceased outcome). Our results aligned with previous work9 analyzing patient 

data from NYU Langone to predict absence of adverse events within a 96-hour window as opposed to 

negative outcomes. Several features of importance overlapped both studies, notably respiration rate, 

SpO2, LDH, BUN, and CRP. However, other selected features such as temperature, platelet count, pulse, 

and eosinophil percentage were found to not be important in our model.  

 

Although the goal of stratifying patients by disease severity aligned, the different approaches likely 

explain the differences in variable explanation. Our study differs in that our models are trained only on 

clinical data from the first 24 hours after admission, as compared to continuously updating predictions 

when new labs are reported. Thus, features that are important for outcome prediction at time of admission 

will differ from those that better model variations in disease severity over time. In addition, we stratify 

our negative outcomes into mortality and morbidity, and separate morbidity further to compare those 

requiring ICU admission versus ventilation. Eosinophil percentage was statistically different between all 

3 clinical outcomes, while temperature and pulse were only different for morbidity and platelet counts 

only for mortality (Supplemental Table S1). It is hypothesized that patients exhibiting symptoms of fever 

and increased pulse rate, likely a consequence of decreased SpO2 (cor = -0.21, -0.12 respectively) will 

likely be prioritized for ICU care and/or ventilation. Although SpO2 and respiration rate were consistently 

selected as predictive features across outcomes and modeling methods, age groups were informative 

predictors of mortality risk only. As expected, the mortality model performed better than morbidity 

models. These results suggest that disease severity and mortality risks may require unique modeling with 

different predictor subsets and weighting factors. It is also consistent with the observation that senior 

patients were the most vulnerable population, while mortality rate among the youth was relatively low10. 
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In addition, although current evidence suggests adults with type 2 diabetes mellitus are at increased risk 

for COVID-19 complications, our XGBoost model did not find a past diagnosis important for predicting 

morbidity or mortality. Only after incorporating lab features did we identify a positive correlation 

between exact glucose values and poorer outcomes. Together this observation suggests that the elevated 

blood sugar levels observed may be the result of physiological stress triggered by the disease. Indeed, 

prior work has shown that even when controlled for pre-existing diabetes, hyperglycemia was commonly 

observed in acutely ill hospitalized patients and linked to poorer outcomes11,12. 

 

Other lab features also identified routine chemistry data points that shed light on disease pathology. 

Values of LDH were elevated for all three clinical outcomes, a finding consistent with widespread tissue 

damage that has been shown in numerous studies to be a predictor of morbidity and mortality in a wide 

variety of diseases beyond COVID-1913–17. Mortality was also predicted for by BUN. To investigate 

further the possibility of any relations to acute kidney injury, we re-trained our models with 

BUN/creatinine ratio as an additional feature. While correlated with mortality (cor=0.17), the feature was 

not selected for by LASSO, and was only of importance when BUN was removed from training. Indeed, 

recent literature has revealed that BUN is emerging as an independent predictor of mortality in a variety 

of diseases, including heart failure18, aortic dissection19, and acute pancreatitis20. It has also been proposed 

that BUN is an important indicator for metabolic diseases and general nutritional status of patients, 

explaining its relative importance in the prediction for mortality. The relationship here is unclear and 

warrants further investigation.  

 

Interestingly, admission calcium level was a more important predictor of morbidity in our models than 

procalcitonin was. As a peptide precursor of calcitonin, a hormone involved in calcium homeostasis, 

procalcitonin is also an acute phase reactant that has been used historically (albeit controversially) to help 

diagnose bacterial pneumonia21–23. Although many studies24–26 have described a positive relationship 

between procalcitonin levels and mortality and morbidity in COVID-19 patients, few have commented on 
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the importance of calcium as a prognostic value, as we have found in our study. Calcium was negatively 

correlated with all 3 measured clinical outcomes, which is consistent with other studies linking 

hypocalcemia with increased morbidity and mortality in COVID-19 patients27–29. Theoretically, 

hypocalcemia could be a result of increased procalcitonin, since procalcitonin is the precursor of 

calcitonin whose function is to reduce serum calcium. Interestingly, it has been reported that in a systemic 

inflammatory response, serum calcitonin does not increase concordantly in response to increased 

procalcitonin. This situation could indicate that calcium is a predictive factor through an entirely different 

mechanism than the more well-established procalcitonin. One theory is that alteration of calcium 

homeostasis is perhaps used as a strategy by the SARS-CoV-2 virus for survival and replication since 

calcium is essential for virus structure formation, entry, gene expression, virion maturation and release. 

Another possibility is that patients who present with hypocalcemia have preexisting parathyroid hormone 

(PTH) and vitamin D imbalances that are exacerbated by SARS-CoV-2 infection. Our study could not 

evaluate the importance of PTH or vitamin D due to infrequent lab orders (0.21% and 0.08% 

completeness respectively).  

 

While the inclusion of lab features resulted in only modest improvement for ventilation and ICU 

admission prediction, lab values did result in larger increases in performance metrics for mortality 

prediction. However, time series modeling failed to improve prediction performance with more clinical 

features. This observation is likely due to the fact that laboratory results were sampled much less 

frequently than vital sign readings. As data was retrospectively gathered from Epic during the early stages 

of the pandemic when diagnostic and treatment protocols were still being developed, a concerted effort to 

gather novel biomarker tests that have later been shown to be linked with disease severity is not expected. 

Moreover, treating ‘static’ demographical as repeating time series measurements may be suboptimal for 

recurrent models. As discussed above, laboratory measurements may help modeling mortality risk of 

patients, and future work will focus on efficiently incorporating these static features for dynamic 

predictions30,31. 
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METHODS 

 

Data Collection 

Clinical activity of patients at NYULH was obtained from Epic between 1/1/2020 and 8/7/2020. The data 

has been stripped of all unique identifiers (MRN, names, etc.) and actual dates have been shifted by an 

arbitrary number of days for each patient, which ensures that no data is subject to HIPAA restrictions, 

thus does not require IRB approval.  

 

Clinical Data Pre-processing and Cleaning 

Our dataset contained 206,677 patients who were tested for COVID-19, of which 12,473 tested positive. 

Not all patients who tested positive sought hospital care, and without vital signs or lab values, these 

patients were excluded from analysis. In addition, a majority of the 175,507 patients diagnosed with 

COVID-19 did not receive in-house PCR tests, which makes it difficult to distinguish the hospital 

encounters related to seeking COVID-19 treatment. Thus, the decision was made to only include patients 

for which we could confirm a positive PCR test as reported by NYULH. The timestamp of the first 

encounter in which a PCR test returns positive was used as the starting date for each patient, and the 

ending date as either the time of discharge for that encounter or time of death. The clinical features that 

were collected for each patient along with their definitions are defined as follows:  

• Binned ages:  

o 0-17 

o 18-44 

o 45-64 

o 65-74 

o 75+ 

• Gender:  

o 0 for Female 
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o 1 for Male 

• Insurance type: 

o 0 for PPO 

o 1 for EPO, HMO, POS, Indemnity, Medicare, Medicare Managed Care, No Fault, 

Workers’ Compensation  

o 2 for Medicaid, Medicaid Managed Care 

• Length of hospitalization 

• Diabetes:  

o 1 for any past diagnosis mentioning diabetes 

o 0 otherwise 

• Cardiovascular Comorbidities:  

o 1 for any of the following ICD-10 diagnosis codes: I10-I16 (hypertensive diseases), I20-

I25 (ischemic heart diseases), I50 (heart failure), I60-I69 (cerebrovascular diseases), and 

I72 (other aneurysms) 

o 0 otherwise. 

• SpO2 (%) 

• Pulse (bpm) 

• Respiration Rate (bpm) 

• Temperature (°F) 

• Systolic Blood Pressure (mmHg) 

• Diastolic Blood Pressure (mmHg) 

• Living status:  

o 0 for Alive 

o 1 for Dead 

• Ventilation at any point during hospitalization:  
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o 0 for No 

o 1 for Yes 

• ICU admission for any duration during hospitalization: 

o 0 for No 

o 1 for Yes 

 

Clinical features that are variable were averaged by day. For example, day 0 represents the clinical data of 

all encounters on the first day, and day -1 corresponds to all clinical data from the last day. After 

averaging, continuous variables were standardized to a mean of zero and variance of one. For each day, 

encounters without all features listed above were removed and not imputed. Thus, the larger the number 

of days, the fewer the number of data points available since patients discharged prior would not be 

included. For example, an encounter that lasted only 7 days would not have data reported for days ≥ 8 or 

days < -8.  

 

Lab Data Selection and Cleaning 

Lab tests with at least 50% completeness during the first 24 hours for all encounters were considered. Of 

the 54 lab tests meeting these requirements, EGFR (non-African and African American) was removed due 

to the formula’s dependency on lab features already selected (creatinine). In addition, the placeholder for 

ordering a CBC with Differential test and COVID PCR tests were also removed. Missing lab values were 

imputed using the multivariate imputation by chained equations (MICE) algorithm. Five imputations were 

generated using predictive mean matching. After imputation, lab values were shifted up by one and log 

transformed. Model-building approaches that incorporated lab features had individual models built for 

each imputation.   

 

Feature Selection and Model Building 
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All models were trained with a validation split of 10%. Using a seed, the same encounters were selected 

for data from each day. However, because the number of encounters considered varied day-to-day, the 

subset of encounters for training and validation will differ.  

 

Features for logistic regression were selected using Least Absolute Shrinkage and Selection Operator 

(LASSO) and optimized for a penalty parameter that was one standard error above the minimum deviance 

for additional shrinkage. Only predictors with nonzero coefficients were incorporated. The XGBoost 

parameters were identified using a hyper-parameter search within the following constraints: nrounds: 

1000, eta: 0.3, 0.1, 0.01, max_depth = 2, 3, 4, 5, 6, 7, 8, min_child_weight = 0 to 1 by 0.1 increments and 

gamma = 0 to 1 by 0.1 increments.  

 

For models that were trained on the final day of discharge/death, the performance on predicting outcomes 

in all previous days was evaluated on the entire dataset rather than just a 10% subset. Data from previous 

days was not used in the training of these endpoint models, and thus can all serve as validation.  

 

Time Series Modeling 

In each feature setting, all variables were combined and missing values at each time point were imputed 

with the immediate previous value (forward filling). After imputation, time points with incomplete feature 

measurements were discarded, and each patient record was segmented into non-overlapping sequences of 

length 8. Patients were randomly assigned to training, validation and testing groups in an 8:1:1 ratio for 

three independent splits. All models were implemented in Python with built-in units in TensorFlow 2 and 

Keras32. Logistic regression was fit as a neural network with the sigmoid output node immediately after 

the input layer. For MLP, RNN, GRU and LSTM models, a hidden layer of size 8 was added, and the 

time series models (RNN, GRU and LSTM) were unrolled over 8 time points and trained with true labels 

provided at each step. Five randomly initialized models were trained for all architectures on each 
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training/validation/testing split. Model performance was evaluated based on all single time point 

predictions and reported as mean value across all splits.  
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FIGURE LEGENDS 

 

Figure 1. Overview of clinical dataset. A. Patient ages were binned by predefined ranges and the ratio of 

outcomes compared across age groups. B. For each patient, hospitalization stay was normalized by length 

of stay and segmented into 5% windows. Within each window, all values for the measured clinical 

variable were averaged. Each line is colored by the 6 possible outcomes.  

 

Figure 2. Predictive performance using clinical data from the first 24 hours. A. ROC curve and PRC 

for logistic regression model. B. ROC curve and PRC for XGBoost model. C. Coefficient weights for the 

logistic model are recorded on the left. Model performance gains for XGBoost are listed on the right.  

 

Figure 3. Overview of lab features collected in the first 24 hours. A. t-SNE plot based on previously 

collected clinical features and new lab values. B. Pairwise Pearson correlation heatmap.  

 

Figure 4. Predictive performance after incorporating lab features. A. ROC curve and PRC for 

logistic regression model. B. ROC curve and PRC for XGBoost model. C. Coefficient weights for the 

logistic model are recorded on the left. Model performance gains for XGBoost are listed on the right.  

 

Figure 5. Predictive performance of deceased using clinical data from the final 24 hours. A. ROC 

curve and PRC for logistic regression model. B. ROC curve and PRC for XGBoost model. C. Coefficient 

weights for the logistic model are recorded on the left. Model performance gains for XGBoost are listed 

on the right. D. Performance of models to predict deceased outcome was assessed using clinical data from 

the preceding 30 days. Plots track the AUC, AUPRC, specificity, and sensitivity when using the threshold 

that maximized the sum of the sensitivity and specificity (Youden’s J statistic).  
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Figure 6. Time series model performance. Mean values of area under the precision-recall curve 

(AUPRC) and area under the receiver operating characteristics curve (AUROC) for five model 

architectures across three feature settings. Vital: only include progression time and vital signs. Lab: all 

vital sign features and 46 laboratory results. All: vital sign and laboratory variables and static 

demographic features. 
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