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Abstract  

Background By extracting the spectrum features from urinary proteomics based on 

an advanced mass spectrometer and machine learning algorithms, more accurate 

reporting results can be achieved for disease classification. We attempted to establish 

a novel diagnosis model of kidney diseases by combining machine learning with an 

extreme gradient boosting (XGBoost) algorithm with complete mass spectrum 

information from the urinary proteomics. 

Methods We enrolled 134 patients (including those with IgA nephropathy, 

membranous nephropathy, and diabetic kidney disease) and 68 healthy participants as 

a control, and for training and validation of the diagnostic model, applied a total of 

610,102 mass spectra from their urinary proteomics produced using high-resolution 

mass spectrometry. We divided the mass spectrum data into a training dataset (80%) 

and a validation dataset (20%). The training dataset was directly used to create a 

diagnosis model using XGBoost, random forest (RF), a support vector machine 

(SVM), and artificial neural networks (ANNs). The diagnostic accuracy was 

evaluated using a confusion matrix. We also constructed the receiver 

operating-characteristic, Lorenz, and gain curves to evaluate the diagnosis model. 

Results Compared with RF, the SVM, and ANNs, the modified XGBoost model, 
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called a Kidney Disease Classifier (KDClassifier), showed the best performance. The 

accuracy of the diagnostic XGBoost model was 96.03% (CI = 95.17%-96.77%; Kapa 

= 0.943; McNemar’s Test, P value = 0.00027). The area under the curve of the 

XGBoost model was 0.952 (CI = 0.9307-0.9733). The Kolmogorov-Smirnov (KS) 

value of the Lorenz curve was 0.8514. The Lorenz and gain curves showed the strong 

robustness of the developed model.  

Conclusions This study presents the first XGBoost diagnosis model, i.e., the 

KDClassifier, combined with complete mass spectrum information from the urinary 

proteomics for distinguishing different kidney diseases. KDClassifier achieves a high 

accuracy and robustness, providing a potential tool for the classification of all types of 

kidney diseases. 

Key words: Kidney Disease Classification; Urinary Proteomics; Machine Learning 

Algorithm; Diagnosis 
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INTRODUCTION 

Chronic kidney disease (CKD), as a major public health problem, has more than a 10% 

global incidence rate and is a significant burden globally1, 2. Persisting renal damage 

and loss of renal function are the main clinical characteristics of CKD. Despite the 

continuous effort of nephropathologists, the incidence, prevalence, mortality rate, and 

disability-adjusted life years of CKD remain extremely high, and have even increased 

significantly in recent decades2. Kidney diseases are mainly evaluated based on 

persistent proteinuria, hematuria, and clinical impairment of the renal function, as 

well as a decrease in the glomerular filtration rate (GFR)3, 4. However, the clinical 

characteristics of kidney diseases with different pathological categories are obviously 

different, including primary glomerular diseases such as IgA nephropathy (IgAN) and 

membranous nephropathy (MN), and secondary glomerular diseases such as diabetic 

kidney disease (DKD). How to distinguish the diseases more easily and early, and 

how to treat them more precisely, are important aspects for improving the outcomes of 

CKD.  

  With the innovation of puncture biopsy technology, renal biopsies have become the 

most critical technology for the pathological diagnosis of kidney diseases in recent 

years as well for the elucidation of various renal diseases5-7. A renal biopsy is the gold 

standard in terms of diagnosis, treatment, and prognosis of kidney disease through a 

pathologic analysis. A series of important advances in renal pathology have promoted 

our understanding of the pathogenesis of renal diseases, and in the future, an artificial 

intelligence assisted pathological analysis will expand our understanding of renal 
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pathological lesions and the pathogenesis of kidney disease7-9. However, as an 

invasive procedure, a kidney biopsy may incur some ineluctable complications, the 

most frequent being macrohematuria with or without the need for a blood 

transfusion10, 11. In addition, many patients are unable to receive a renal biopsy 

because of relative or absolute contraindications. It is therefore necessary to find 

novel noninvasive biomarkers or methods to improve the diagnostic efficiency, 

monitoring, and treatment of CKD. 

  Some existing studies have shown that urine, serum metabolite, and protein have 

potential clinical application as biomarkers12-14. Proteins are considered as the final 

products of gene-environment interactions and a physiological steady-state. A single 

highly specific and unique biomarker (such as an M-type phospholipase A2 receptor 

for MN) is certainly the best choice15; however, such biomarkers are unavailable for 

clinically noninvasive diagnosis in numerous kidney diseases, such as IgAN or DKD. 

The measurement of various urinary proteins can be combined with the available 

clinical biochemistry indexes, which have the potential for clinical diagnosis, patient 

stratification, and therapeutic monitoring16. Proteomics provide new insight into 

biomarker discovery and have dramatically widened our appreciation of pathological 

mechanisms. New analytical tools with high accuracy have made proteomics easier 

and quantifiable, allowing an exploration of information from biological samples17.  

  The mass spectra of urinary proteome produced by liquid chromatography tandem 

mass spectrometry (LC-MS/MS) are big datasets containing rich information. 

Existing software cannot interpret all spectral information. With the development of 
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mass spectrometry and machine learning algorithms, the extraction of spectrum 

features from the urinary proteome of each disease entity based on an advanced mass 

spectrometer and machine learning algorithms can save a lot of time and obtain more 

accurate reporting results. Therefore, we believe that the use of all mass spectrum 

information from a urinary proteome, as provided through advanced mass 

spectrometry, can be an effective potential research direction to improve the accuracy 

of CKD diagnosis. 

With this study, we attempted to train and validate a diagnostic machine learning 

model using more than 600,000 mass spectra from the urinary proteome produced by 

LC-MS/MS in CKD patients. This method permits the rapid extraction of the 

spectrum features in human urine (including soluble proteins, exosomes, and other 

membrane elements). We compared four machine learning models, namely, an 

artificial neural network (ANN), a support vector machine (SVM), a decision tree 

(DT), and extreme gradient boosting (XGBoost). We chose the most accurate model 

and evaluated its performance in terms of the classification of CKD patients and a 

group of healthy control (HC) participants. Finally, the XGBoost model, called a 

Kidney Disease Classifier (KDClassifer), showed the best performance in 

distinguishing different CKD patients using the mass spectra from the urinary 

proteome of the IgAN, MN, and DKD patients, and the HC group. The mass spectra 

data on the urinary proteomics were deposited into the ProteomeXchange Consortium 

through the PRIDE partner repository using the dataset identifier PXD018996. 

RESULTS 
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Basic Characteristics of Kidney Disease Dataset 

In this study, we enrolled 134 CKD patients with different pathological classifications 

(IgAN = 50, MN = 50, and DKD = 34) and 68 healthy control participants (HC = 68), 

the characteristics of which are shown in Table 1. Among the four groups, the gender 

ratio of each group was between 0.5 and 2. The average ages of the four groups were 

ranked from oldest to youngest as DKD, MN, HC, and IgAN. The difference in 

average age was statistically significant (P < 0.01, ANOVA test). However, this was 

consistent with the age distribution trend of different types of kidney disease. The 

workflow of this study is shown in Figure 1. The urinary proteome was treated using 

an ultrafiltration tube-assisted digestion method that can maintain the urinary 

exosomes and other membrane elements. The tryptic peptides were then analyzed 

using a high-resolution mass spectrometer. Finally, a total of 610,102 urinary 

proteomic mass spectra were produced for training and validation of the diagnostic 

model, including 165,521 spectra from the IgAN group, 151,159 spectra from the MN 

group, 46,187 spectra from the DKD group, and 247,235 spectra from the HC group. 

All spectra in each group were randomly divided into a training dataset (80%) and a 

validation dataset (20%). As shown in Figure 2, the distribution of the different 

patient types in the training and validation datasets and the proportion of kidney 

disease types were nearly consistent.   

Comparison of Diagnostic Accuracy between XGBoost and other Machine 

Learning Models 

After training, the accuracy of the diagnostic XGBoost model was validated as 96.03% 
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(CI = 95.17%–96.77%) (Table 2). The Kapa value was 0.943 and the P-value of the 

McNemar’s Test was 0.00027, which showed the perfect performance of XGBoost. 

The RF, SVM, and ANN models were trained in the same way, with an accuracy of 

92.35%, 86.12%, and 87.28%, respectively. The accuracy of all machine learning 

models tested was relatively high. However, compared with the other models, 

XGBoost achieved the best performance, and was thus applied as our machine 

learning algorithm (Table 2). 

Classification Performance of Kidney Disease Diagnostic XGBoost Model  

To characterize the performance of the diagnostic XGBoost model for different types 

of kidney diseases, we compared the predictive ability of this model for the three 

types of kidney diseases detailed above and the HC. We chose 20% of the total dataset 

to test. Although the number of test errors was large, the error rate was low. As shown 

in Table 3 and Figure 3, the false rate of the four different types (IgAN, MN, DKD, 

and HC) was 2.76%, 5.73%, 10.19%, and 2.37%, respectively. The XGBoost model 

achieved the highest error rate for DKD and the lowest error rate for IgAN. The 

accuracy of the three types of kidney disease and the HC were 97.67%, 96.64%, 

94.86%, and 97.35%, respectively (Table 4). Although the accuracy of the diagnosis 

for each of the four different types was extremely high, the diagnostic accuracy of the 

DKD was the lowest. Specifically, comparing four performance items, namely, the 

sensitivity, specificity, positive predictive value, and negative predictive value, we 

found that the positive predictive rates for the IgAN and HC groups were relatively 

low, as was the sensitivity for both the MN and DKD groups. In addition, we 
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specifically analyzed the misclassification of the four types. As shown in Figure 4, the 

IgAN and MN groups were relatively easy to be misjudged as the HC group, whereas 

the DKD and HC groups were relatively easy to be misjudged as the IgAN group. 

Evaluation of Diagnostic XGBoost Model for Kidney Disease 

The discrimination of kidney disease when applying the diagnostic XGBoost model 

was assessed based on the receiver operating characteristic (ROC) curve and area 

under the curve (AUC) (Figure 5). The AUC value of this model was 0.952 (CI = 

0.9307–0.9733), demonstrating a strong generalization. In addition, the slope of the 

gain curve was adequately steep. When the test sample rate was 18.7%, the TPR 

reached 92.3%, which showed the high TPR of the model (Figure 6). The 

Kolmogorov-Smirnov (KS) value of the Lorenz curve was 0.8514, which was much 

higher than 0.2 (Figure 7). The gain and Lorenz curves also demonstrate the strong 

robustness of the model.  

DISSCUSSION 

CKD represents a major public health issue in terms of its substantial financial burden 

and consumption of healthcare resources1. In addition, CKD is a risk factor for 

hypertension and cardiovascular disease, which together constitute a substantial cause 

of death in most societies18. How to accurately identify and achieve an early screening 

of CKD in the population has long been an important topic. The development of a 

non-invasive and accurate early diagnosis is needed. The diagnostic ability of a single 

biomarker is slightly weak, and a renal biopsy is invasive with a risk of major 

bleeding. With the development of mass spectrometry, we can detect the urinary 
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proteome both quantitatively and qualitatively17. Our study was devoted to artificial 

intelligence assisted noninvasive diagnostic methods of different types of kidney 

disease based on mass spectra information from the urinary proteomics. 

  Previous studies have shown that the application of a single protein in the clinical 

diagnosis of CKD does not take advantage of the overall value and macro efficiency 

of the proteomics17. In addition, the feasibility of using a single protein in the clinical 

diagnosis of CKD requires further research and validation. The use of several or even 

dozens of protein panels can improve the accuracy of the diagnosis. Existing mass 

spectrometry applied to proteomics is used in the identification of differential proteins 

and the selection of individual proteins for further differential studies. In fact, the 

overall data from a mass spectrometry analysis is not applied. Moreover, the efficacy 

of its clinical application requires further evaluation. Using big data, we can apply 

machine learning by integrating all information from a mass spectrometry analysis. 

We strived to analyze all data to take full advantage of the overall efficiency of 

proteomic mass spectrometry. Therefore, for CKD classification, considering the 

comprehensiveness of a mass spectrum analysis, as the feature data of our AI 

algorithm, we apply a first-order mass spectrum analysis of the proteomics without 

further processing. Artificial intelligence algorithms such as an ANN, an SVC, a DT, 

and XGBoost incorporated with medical or biological experience have obtained 

remarkable results19, 20. Through the training of big datasets, a machine learning 

model can predict a classification. Machine learning outperforms conventional 

statistical methods with its ability to better identify variables, achieves a better 
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predictive performance and a better modeling of complex relationships, has the ability 

to learn from multiple modules of data, and it robust to data noise. It has therefore 

been applied to the diagnosis of certain diseases, such as lung cancer21, cardiovascular 

disease22, and chronic kidney disease23. Machine and deep learning algorithms can not 

only impute missing data in the training sets they can also identify existing 

characteristics that we otherwise cannot recognize. Most existing machine models for 

CKD are based on records and detection indicators that are currently used in clinical 

practice24. However, the training data types of these models vary, and the accuracy of 

an artificial collection is relatively low with a poor clinical application. To date, there 

have been no studies on machine learning models for diagnosis based on the full 

spectra of CKD urinary proteomics. In addition, in many existing machine learning 

models, XGBoost achieves an outstanding classification performance without a high 

computation time and is a practical approach. XGBoost is a type of tree-structured 

model, the basic idea of which is to design an ensemble approach for several 

rule-based binary trees. GXBoost is derived from the most famous tree ensemble 

method, called a gradient boosting decision tree (GBDT). GXBoost has gained 

popularity by winning numerous machine learning competitions since its initial 

development25. Advances in big data and artificial intelligence have enabled clinicians 

to process information more efficiently, and make diagnosis and treatment decisions 

more accurately26. It is unquestionable that big data and artificial intelligence are 

transforming medicine from various perspectives, including precision medicine and 

clinical intelligence. Based on the big data applied in urinary proteomic mass spectra, 
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the strategy of artificial intelligence and a machine learning algorithm have been used 

to provide a new direction for the classification of kidney diseases. To the best of our 

knowledge, our study is the first to combine artificial intelligence and urinary 

proteomic mass spectra information to the diagnosis and classification of kidney 

diseases.  

  Compared with RF, SVM, and ANNs, the XGBoost model with mass spectra 

information for urinary proteomics has shown a perfect performance for the diagnosis 

of kidney disease. This is consistent with the classification ability of XGBoost models 

when applied to other clinical diseases. Therefore, compared with other machine 

learning algorithms, the advantages of the XGBoost algorithm are as follows27: First, 

XGBoost adds a regularization term to the objective function, which reduces the 

variance of the model, simplifying the model while preventing an over fitting. Second, 

XGBoost not only uses the first derivative, it also uses the second derivative to make 

the loss more accurate. Third, when the training data are sparse, the default direction 

of the branch can be specified for a missing or specified value, which can 

significantly improve the efficiency of XGBoost. Fourth, XGBoost supports column 

sampling and parallel optimization, thereby reducing the number of computations and 

improving the efficiency. The peak value of the urine proteome mass spectrometry 

data is presented in the form of a set of numbers in abscissa and ordinate coordinates, 

which is used in the construction of the XGBoost model to provide full play to such 

advantages. 

  In our study, the overall accuracy of the diagnostic XGBoost model for the four 
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groups was 96.03%, which is basically consistent with the accuracy of a renal biopsy. 

Therefore, it highlights the advantages brought about by a non-invasive diagnostic 

method used for an artificial intelligence model applied to proteomics. In addition, we 

conducted a detailed assessment of the modelling accuracy for each type of kidney 

disease and the HC. The specificity of the diagnosis model for the four types was 

more than 95% (97.07%–99.91%), and thus its misdiagnosis rate is extremely low and 

its ability to distinguish each type of disease shows excellent stability. Although the 

sensitivity of the four types was approximately 90% (89.81%–97.63%), the sensitivity 

of the three types of kidney disease, excluding the HC group, were lower than that of 

the specificity. Therefore, the missed diagnosis rate of this model is higher than the 

misdiagnosis rate, which indicates that this model may be more suitable for an 

accurate disease diagnosis than for disease screening. The next steps of this research 

will focus on an improvement of the prediction sensitivity of the model. For all four 

types, the sensitivity of this model regarding a DKD diagnosis is the worst (89.81%), 

the reason for which may be the smaller number of DKD patients included, the 

smaller average number of spectra, or the significant differences with the other groups. 

Among them, the low average number of urinary proteomic mass spectrum analyses 

is a response to the state of a real disease, which cannot be avoided. The authors hope 

that more samples will be included in the next study to reduce the problems caused by 

a data imbalance. In addition, through an analysis of the ROC curve, gain plot, and 

Lorenz curve, this study showed that the model achieves strong robustness and a high 

accuracy. 
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  At present, a few existing XGBoost models for kidney disease diagnosis have been 

constructed using data on the clinical characteristics and individual laboratory test 

indicators. Ogunleye et al.7 applied 250 CKD cases and 150 HC groups to train and 

validate the XGBoost model with 22 clinical features. The accuracy, sensitivity, and 

specificity of this XGBoost model were all 100%. Xiao et al.23 also constructed a 

XGBoost model for the prediction of CKD progression, including 551 patients with 

proteinuria. A total of 13 blood-derived tests and 5 demographic features were used as 

variables to train the model. The accuracy of this progression model was 0.87. 

Applying 36 characteristics of 2,047 Chinese patients from 18 renal centers, Chen et 

al.28 used a XGBoost model for a prediction of the end-stage CKD. The C statistic of 

this XGBoost model was 0.84. Because all of these reports were constructed using 

clinical information and the outcome indicators were inconsistent, poor comparability 

with our diagnostic XGBoost model was achieved. However, the accuracy of our 

model is high. 

  The KDClassifier classified the characteristic differences for different pathological 

types of CKD at the level of integrated information of mass spectrometry proteomics 

found in urine. There are no specific proteins or laboratory indicators of clinical 

concern, such as GFR, urine protein, or creatinine. This is significantly different from 

our normal assumption. The information captured by a machine learning model is 

more abundant than the comparative analysis of differential proteins. How to explain 

the specific content of the information captured by machine learning with human 

logic requires further research and discussion. 
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Overall, the KDClassifier, an XGboost diagnostic model, established in this study 

showed its feasibility and superiority for clinical application. However, in terms of 

economics, the cost of a mass spectrometry analysis of the proteomics is at present 

relatively high, and there is still a long way to go regarding its clinical application. 

With further innovations in science and technology, however, we expect the cost of 

mass spectrometry analysis to inevitably decline. The KDClassifier is not only 

suitable for the classification of the three types of kidney disease considered, it also 

has the potential to be extended to all types of kidney disease. The diagnostic 

advantages of this model will be fully demonstrated. 

Our study also has certain limitations. First, the cohort used is not from a 

prospective trial, and selective bias is inevitable. Second, only three common types of 

kidney disease were included. Whether this learning machine diagnostic method is 

suitable for other types of kidney diseases needs further research and validation using 

a larger sample size. Third, owing to a relatively small sample size, we did not include 

more clinical parameters for an AI-assisted analysis. If we include more clinical data, 

it will further improve the diagnostic power. Fourth, this study only attempted to 

compare four mainstream machine learning methods with certain limitations. Fifth, 

only the mass spectra of urinary proteomic information was used, and the clinical 

information of the patients was omitted. If both types of information are combined, 

the patients can be better diagnosed. We expect to develop more suitable artificial 

intelligence algorithms for a noninvasive and accurate diagnosis of kidney diseases. 

CONCLUSION 
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In conclusion, KDClassifier, a machine learning classification model that applies 

information on mass spectra from urinary proteomics showed a high accuracy in the 

diagnosis of different types of CKD. This study provided a new idea for applying 

artificial intelligence in the accurate and non-invasive diagnosis of kidney diseases. In 

addition, KDClassifier provides a potential tool for the classification of all types of 

kidney diseases. 

 

METHODS 

Study Population 

In this study, a total of 202 urine samples from IgAN (n = 50), MN (n = 50), and 

DKD (n = 34) patients and from a healthy control (HC) group (n = 68) were collected 

in tubes in accordance with standard hospital operating procedures. All patients with 

kidney disease were examined through a renal biopsy, and secondary types of IgAN 

or MN were excluded. The urine samples were collected within 1 week before the 

renal biopsy. Briefly, the midstream urine from the second morning void was 

collected in appropriate containers and centrifuged at 1,000 × g for 20 min. The 

precipitate was discarded, and 500 μL of the supernatant (including the soluble 

proteins, exosomes, and other membrane elements) was collected in a 1.5-mL tube 

and stored at –80 °C until use. Diagnosis and pathological examinations of the kidney 

diseases were conducted at the Department of Nephrology, Sichuan Provincial 

People’s Hospital. Informed consent was obtained from the patients. The study 

protocol was approved by the Medical Ethics Committee of the Sichuan Provincial 
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People’s Hospital and West China Hospital.  

Urinary Protein Digestion 

Human urinary protein digestion was conducted using a filter-aided sample 

preparation. Each 100-μL urine supernatant was loaded onto a 30-kDa ultrafiltration 

device. After centrifuging at 13,000 × g for 15 min, a 100-μL UA solution with 20 

mM DTT was added and reacted for 4 h at 37 °C. An alkylation reaction was then 

achieved by adding a 100-μL UA solution with 50 mM iodoacetamide (IAA) and 

incubated in the dark for 1 h at room temperature. The buffer was replaced with 50 

mM ammonium bicarbonate. Finally, 10 μg trypsin was added to each filter tube and 

the reaction was maintained for 16 h at 37 °C. The digestion was collected, and the 

concentrations were measured at 480 nm. The urinary protein digestions were 

freeze-dried and stored at −80 °C. 

Mass Spectrometer Analysis 

A urinary peptide analysis was conducted using an Orbitrap Fusion Lumos mass 

spectrometer (Thermo Fisher Scientific, Waltham, MA, USA). Briefly, the peptides 

were dissolved in 0.1% FA and separated into a 75-μm I.D. column 15 cm in length 

over a 78-min gradient (buffer A, 0.1% FA in water; buffer B, 0.1% FA in 80% ACN) 

at a flow rate of 300 nL min-1. MS1 was analyzed with a scan mass range of 

300–1,400 at a resolution of 120,000 at 200 m/z. The RF lens, automatic gain control 

(AGC), maximum injection time (MIT), and exclusion duration were set at 30%, 5.0 

e5, 50 ms, and 18 s, respectively. MS2 was analyzed in data-dependent mode for the 

20 most intense ions. The isolation window (m/z), collision energy, AGC, and MIT 
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were set at 1.6, 35%, 5.0 e3, and 35 ms, respectively. 

Spectra Establishment 

The RAW data from a mass spectrometer were converted into MGF format files, with 

each file containing thousands of pieces of mass spectrum information. The 

x-coordinate is the mass-to-charge ratio (m/z), and the y-coordinate is the relative 

peak intensity. The mass spectra from each file are used to profile the urinary 

proteome of each patient. The data on the mass spectrometry from the urinary 

proteomics were deposited at the ProteomeXchange Consortium through the PRIDE 

partner repository with the dataset identifier PXD018996. 

Data Pre-processing 

These mass spectra contain four classes of CKD urinary proteomic information (IgAN, 

MN, DKD, and HC). The MGF format files were processed using an illumination 

normalization method. The data of all original urinary proteomic mass spectra were 

transformed into double column arrays of indefinite length (with the abscissa and 

ordinate values of the peaks in the spectrum). Owing to the unequal length in the 

different arrays, we set an array with a length of 50 rows (the maximum value). We 

then merged every double column array into a single feature data line with a length of 

100. Data of insufficient length were considered as missing values. Finally, a dataset 

with four different data labels (IgAN, MN, DKD, and HC) were built and imported 

into the XGBoost model.  

XGBoost Model  

XGBoost is a machine learning technique developed by Chen et al. that assembles 
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weak prediction models25. It generates a series of decision trees in a gradient boosting 

manner, which means that it generates the next decision tree based on the current tree 

to better predict the outcome. After training, a classification prediction system 

composed of a series of decision trees is achieved. This is an extendible and 

cutting-edge application of a gradient boosting machine and has been proven to push 

the limits of computing power for boosted tree algorithms. Gradient boosting is an 

algorithm in which new models are created for predicting the residuals of the prior 

models, and then added together to make the final prediction. A gradient descent 

algorithm is used to minimize the loss when adding new models. XGBoost with a 

multi-core CPU reduces the look up times of the individual trees created. With this 

algorithm, the definition of the K additive function ensemble model (K trees) is given 

as follows:  

𝑦𝚤� = ∑ 𝑓𝑘(𝑥𝑖),𝑓𝑘 ∈  𝐹𝑘
𝑘=1                          (1) 

where 𝑥𝑖 indicates the 𝑖𝑡ℎ sample, F is the space containing all trees, and 𝑓𝑘 refers 

to the 𝑘𝑡ℎ function in functional space F.  

  To train the ensemble model, the objective is minimized as follows: 

𝐿(𝜑) = ∑ 𝑙𝑜𝑠𝑠(𝑦𝑖,𝑦𝚤�) +  ∑ Ω(𝑓𝑘)𝑘
𝑘=1

𝑛
𝑖=1                 (2) 

Here, 𝑙𝑜𝑠𝑠 is a loss function that measures the difference between the target 𝑦𝑖 

and prediction 𝑦𝚤� . In addition, Ω penalizes the complexity and is defined as 

Ω(𝑓) =  𝛾𝑇 + 1
2

 𝜆∑ ∥ 𝑤 ∥2𝑇
𝑗=1 .                    (3) 

The number of leaves in a tree is defined as T; in addition, 𝛾 indicates the 

minimum loss reduction, 𝜆 is the weight of the regularization, and ∥ 𝑤 ∥ represents 
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the corresponding score of the leaves.  

 The XGBoost algorithm can handle missing data automatically by adding a 

default direction for the missing values in each tree node. The default direction is 

learned during the training procedure. When a value is missing in the validation data, 

the instance is classified into the default direction. This means that we only need to 

input a reduced number of important variables while leaving the others as null values 

during the application stage. 

 We maintained 20% of the data as the validation set and the remaining 80% to 

train our diagnosis XGBoost model. The hyperparameters used in our analysis were 

as follows: the learning rate = 0.01, the minimum loss reduction = 10, the maximum 

tree depth = 10, the number of subsample = 0.8, the number of trees = 300, and the 

number of rounds = 100. A simultaneous grid search over gamma, reg lambda, and 

the subsample was used to re-examine the model and check for differences between 

the optimum values.  

Other Machine Learning Models 

Random forest (RF) is a type of classifier that uses randomly generated samples from 

existing situations and consists of multiples trees29. To classify a sample, each tree in 

the forest is given an input vector, and a result is produced for each tree, and the tree 

with the most votes is chosen as the result. RF divides each node into branches using 

the best randomly selected variables on each node. 

  An SVM is a controlled classification algorithm based on statistical learning 

theory30. The working principle of an SVM is based on the principle of predicting the 
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most appropriate decision function that separates the two classes; in other words, 

based on the definition of a hyperplane, it can distinguish two classes from each other 

in the most appropriate manner possible. Similar to a classification, kernel functions 

are used to process nonlinear states during the regression. In cases in which the data 

cannot be separated linearly, non-linear classifiers can be used instead of linear 

classifiers. An SVM transforms into a high dimensional feature space, which can be 

easily classified linearly from the original input space by means of a nonlinear 

mapping function. Thus, instead of finding values by repeatedly multiplying them 

using kernel functions, the value is directly substituted in the kernel function, and its 

counterpart is found in the feature space. In this way, there is no need to deal with a 

space with a very high-dimensional quality. An SVM has four widely used kernel 

functions, namely, linear, polynomial, sigmoid, and radial basis functions. 

  Artificial Neural Networks (ANNs) make up an information processing system 

inspired by biological neural networks and includes some performance characteristics 

similar to those of biological neural networks31. The simplest artificial neuron consists 

of five main components: inputs, weights, transfer function, activation function, and 

output. In an ANN, neurons are organized in layers. The layer between the input and 

output layers is called the hidden layer. The network is regulated by minimizing the 

error function. The connection weights are re-calculated and updated to minimize the 

error. Thus, it is aimed at bringing output values that are closest to the ground truth 

values of the network. 

Performance Evaluation and Statistical Analysis 
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We divided all mass spectrum data from the CKD urinary proteomics into a training 

dataset (80%) and a validation dataset (20%). The training dataset was directly used to 

train the framework and create a diagnosis model using XGBoost, RF, an SVM, and 

an ANN. The validation dataset was used to calculate the diagnostic accuracy. We 

compared the accuracy of the four machine learning models, and constructed a 

confusion matrix to calculate the sensitivity, specificity, positive predictive value, and 

negative predictive value of the XGBoost diagnosis model. 

  We also constructed ROC curves for the CKD diagnosis model. We calculated the 

AUC of the ROC curves to evaluate the prediction capabilities of the diagnosis model. 

Lorenz and gain curves were then constructed to evaluate the goodness of fit of the 

XGBoost diagnosis model. 

  The Lorenz and gain curves were established as graphical representations of the 

distribution of the econometrics, and have been proven to be valuable analytic tools in 

other fields as well, including in the evaluation of classifier models. Kendall and 

Stuart introduced a Lorenz curve arranged in ascending order according to the 

probability returned by the classification model. Dividing 0-1 equally into N parts, the 

divided points are the threshold (abscissa), and the true positive rate (TPR) and false 

positive rate (FPR) are calculated. Taking the TPR and FPR as ordinates, draw two 

curves, i.e., Lorenz curves (or KS curves). The cut-off point (KS value) is the position 

where the distance between the TPR and FPR curves is the largest. A KS value of 

more than 0.2 is considered a good prediction accuracy. The gain plot is an index used 

to describe the overall accuracy of the classifier models. With an increase in the depth, 
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the gain rate of the classifier model is compared with the natural random classification 

model. The steeper the curve and the larger the slope, the better the TPR obtained by 

the model. 

  Continuous variables are expressed as the mean ± standard deviation and are 

compared using a T test. Categorical variables are expressed as percentages, and a 

Chi-square test or Fisher’s exact test was employed to compare the differences in the 

variables. SPSS software version 22.0 (IBM Corp) was used for a comparative 

analysis of the basic characteristics. The machine learning models were developed 

using Python 3.4.3 (using the XGBoost library, DF library, SVM library, and ANN 

library). The evaluation and analysis method for determining the performance of the 

XGBoost model (KDClassifier) applied R (using the pROC, dplyr, caret, lattice, and 

ggplot2 packages) version 3.5.2. The 95% confidence intervals (CIs) were then 

calculated. All P values were two tailed, and a P of less than 0.05 was considered 

statistically significant. 
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Figure and Tables Legends 

Table 1. Basic information of the patients and healthy control group 

Table 2. Accuracy of different models in training and validation datasets 

Table 3. Confusion matrix of XGBoost for diagnosis of chronic kidney diseases 

Table 4. Performance of XGBoost model for diagnosis of chronic kidney diseases 

Figure 1. Workflow of spectrum analysis from urinary proteomics based on machine 

learning for classification of kidney diseases.  

Figure 2. Proportion of three types of CKD and healthy control samples for (A) 

training and (B) validation of the XGBoost model.  

Figure 3. Bar chart of the diagnosis error rate of three types of CKD patients and 

healthy control group for validation dataset of the XGBoost model. 

Figure 4. Bar chart of misclassification for three types of CKD patients and healthy 

control group. 

Figure 5. Receiver operating curve (ROC) for estimating the discrimination of 

XGBoost. 

Figure 6. Gain plot for evaluating the overall diagnostic accuracy of the XGBoost 

model. 

Figure 7. Lorenz curve (KS curve) for evaluating the goodness of fit of the XGBoost 

model diagnosis. The red, blue, and green lines are the true positive prediction rate, 

the false positive prediction rate, and the distance between the true positive prediction 

rate and the false positive prediction rate, respectively. The Lorenz value is the 

threshold value corresponding to the farthest distance between the red and blue lines, 
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which is the threshold value that can best divide the model. 

Table 1. Basic information of the patients and healthy control group 

Items IgAN MN DKD HC 

No. of patients 50 50 34 68 

Female 25 (50%) 25 (50%) 12 (35%) 47 (69%) 

Male 25 (50%) 25 (50%) 22 (65%) 21 (31%) 

Age (in years)* 37±14 51±13 52±10 45±12 

Average no. of 

spectra of each patient 
3310±214 3023±167 1320±256 3434±198 

"*" means p＜0.01. 
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Table 2. Accuracy of different models in training and validation datasets 

Model 
Accuracy (CI 95%) 

Training dataset Validation dataset 

Random Forest  
96.36% 

(95.63%~97.18%) 

92.35% 

(91.28%~94.23%) 

Support Vector Machine 
92.67% 

(89.56%~93.43%) 

86.12% 

(84.28%~89.71%) 

Artificial Neural Networks 
95.12% 

(93.96%~96.71%) 

87.28% 

(84.27%~90.16%) 

XGBoost  
99.21% 

(98.89%~99.48%) 

96.03% 

(95.17%~96.77%) 
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Table 3. Confusion matrix of XGBoost for diagnosis of chronic kidney diseases 

Actual 

type 

Prediction type 
Total 

False 

NO. 

False rate 

(1-Sensitiviy) IgAN MN DKD HC 

IgAN 31700 250 50 600 32600 900 2.76% 

MN 650 28800 50 1050 30550 1750 5.73% 

DKD 300 250 9250 500 10300 1050 10.19% 

HC 750 400 0 47450 48600 1150 2.37% 

Total 33400 29700 9350 49600 122050 4850 3.97% 
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Table 4. Performance of XGBoost model for diagnosis of chronic kidney diseases 

Items IgAN MN DKD HC 

Sensitivity 97.24% 94.27% 89.81% 97.63% 

Specificity 98.10% 99.02% 99.91% 97.07% 

Pos-Pred-Value 94.91% 96.97% 98.93% 95.67% 

Neg-Pred-Value 98.98% 98.11% 99.01% 98.41% 

Balanced accuracy 97.67% 96.64% 94.86% 97.35% 
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Figure 1. Workflow of spectrum analysis from urinary proteomics based on machine 

learning for classification of kidney diseases.  
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Figure 2. Proportion of three types of CKD and healthy control samples for (A) 

training and (B) validation of the XGBoost model.  
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Figure 3. Bar chart of the diagnosis error rate of three types of CKD patients and 

healthy control group for validation dataset of the XGBoost model. 
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Figure 4. Bar chart of misclassification for three types of CKD patients and healthy 

control group. 
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Figure 5. Receiver operating curve (ROC) for estimating the discrimination of 

XGBoost. 
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Figure 6. Gain plot for evaluating the overall diagnostic accuracy of the XGBoost 

model. 
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Figure 7. Lorenz curve (KS curve) for evaluating the goodness of fit of the XGBoost 

model diagnosis. The red, blue, and green lines are the true positive prediction rate, 

the false positive prediction rate, and the distance between the true positive prediction 

rate and the false positive prediction rate, respectively. The Lorenz value is the 

threshold value corresponding to the farthest distance between the red and blue lines, 

which is the threshold value that can best divide the model. 
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