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Abstract  

Background In the absence of an established gold standard, an understanding of the testing cycle 
from individual exposure to test outcome report is required to guide the correct interpretation of 
SARS-CoV-2 reverse transcriptase real-time polymerase chain reaction (RT-PCR) results and optimise 
the testing processes. Bayesian network (BN) models have been used within healthcare to bring 
clarity to complex problems. We use this modelling approach to construct a comprehensive 
framework for understanding the real world predictive value of individual RT-PCR results.  

Methods We elicited knowledge from domain experts to describe the test process from viral 
exposure to interpretation of the laboratory test, through a facilitated group workshop.  A 
preliminary model was derived based on the elicited knowledge, then subsequently refined, 
parameterised and validated with a second workshop and one-on-one discussions.  

Results Causal relationships elicited describe the interactions of multiple variables and their impact 
on a RT-PCR result.  Some interactions are infrequently observable and accounted for across the 
testing cycle such as pre-testing factors, sample collector experience and RT-PCR platform. By setting 
the input variables as ‘evidence’ for a given subject and preliminary parameterisation, three 
scenarios were simulated to demonstrate potential uses of the model. 

Conclusions The core value of this model is a deep understanding of the total testing cycle, bridging 
the gap between a person’s true infection status and their test outcome. This model can be adapted 
to different settings, testing modalities and pathogens, adding much needed nuance to the 
interpretations of results.  

 

Keywords: SARS-CoV-2, RT-PCR test, diagnostic decision support, false negative, causal diagram, 
Bayesian belief model
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Introduction  

Effective containment of COVID-19 disease caused by the severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) rests upon the rapid and accurate identification of cases. Although 
nucleic acid amplification tests, including real time reverse transcriptase polymerase chain reaction 
(RT-PCR), are widely used, the absence of an established gold standard diagnostic method has 
hindered the assessment of test performance 1. The potential for false negative results is well-
recognised; such results can significantly undermine the public health response, facilitating ongoing 
chains of transmission. Similarly, at the patient level, it may delay case recognition, place other 
patients and healthcare workers at risk and, importantly, impede the commencement of emerging 
treatments. A wide variation in rates of false negatives has been reported, ranging from 1.8 to 58% 2; 
this variability may be attributable to heterogeneity in disease prevalence, patient age, timing of 
testing, type of specimen, other components of the pre-analytical phase and the RT-PCR assay 
employed across studies 3.  

Although better standardisation of data collection and reporting may add further clarity, a 
comprehensive understanding of the mechanisms involved in testing is required to help develop 
strategies to improve testing systems and importantly, guide the correct interpretation of test 
results within the associated context. This includes a true understanding of the positive and negative 
predictive values of a test at a national, regional and patient level and the potential to permit the 
early identification of false negative results. The limitations in available data undermine these 
efforts. An alternative method is required to bridge the current gaps in knowledge.  

Bayesian network (BN) modelling offers an approach to understanding complex problem domains by 
organising information, whether directly observable or not (i.e. latent), under a causal inference 
framework 4,5.  A BN is a probabilistic graph model that integrates available data with subject-matter 
knowledge from domain experts to describe how a system operates 6. BNs have been used within 
healthcare to improve clinical decision-making7, bringing clarity to complex problems, especially 
where there is little quality data available7.  

We elicited knowledge from a range of domain experts to construct a causal BN which describes the 
testing process for SARS-CoV-2 by RT-PCR, from individual exposure through to the interpretation of 
the laboratory test result. In explicitly modelling the latent trajectory of a pathogen through its 
diagnostic pathway, we have generated a common framework which accounts for a range of factors 
that plausibly influence test results, and which may be generalizable to other pathogens and assay 
formats.  

 

Methods 

A BN comprises two parts: 1) a graph that uses nodes to represent the factors (or variables) which 
are relevant to describing and understanding the system, and arrows to represent the direct 
statistical (and often causal) dependencies between them; and 2) a set of conditional probability 
distributions that specifies the strength of each of those dependencies, which then forms a joint 
probability distribution over all variables.  

Clinical experts in microbiology, infectious diseases and general medicine contributed their relevant 
subject matter knowledge. Key variables were identified through literature review and an online 
discussion with the experts. Knowledge elicitation was guided by trained facilitators, defined as 
knowledge engineers, and supported utilising graphical representations of interactions between 
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variables within the proposed structure 6,8. A preliminary model structure was created via a 
subsequent group knowledge elicitation workshop; this was then reviewed and refined in one-on-
one discussions with the experts. A preliminary parameterisation of the model was performed to 
produce qualitative behaviour that matched the modellers’ and the experts’ high level 
understanding of the problem domain. The refined model structure was reviewed and validated by 
experts in a second workshop and one-on-one discussions.  

We provide a narrative description of the model structure and illustrate its potential application in 
three scenarios. All nodes are labelled and referred to by numbers 1-31. The term ‘virus’ and all 
described events relate to SARS-CoV-2, unless stated otherwise. The model was built in GeNIe 
(https://www.bayesfusion.com/downloads/). Appendix A provides a comprehensive variable 
dictionary for this model, with references to justify each node and arc where possible. Detailed 
conditional probability tables can be accessed via ‘testing_v7.6_params.xdsl’ on the OSF platform, 
which will also include any future updates.i 

 

  

Figure 1 Definitions of true and false positives and negatives for laboratory results. (Left) The true positive rate 
is the probability of Detected amongst those infected and the false negative rate is the probability of NotDetected 
also amongst those infected. (Right) The false positive rate is the probability of Detected amongst those who are 
not infected and the true negative rate is the probability of NotDetected also amongst those who are not 
infected. 

 

Results 

Figure 1 shows the simplest possible BN for representing true and false positive and negative rates 
produced by laboratory results.ii The figure illustrates this simple BN in two scenarios: when a person 
is infected now (left) and when a person is not infected now (right). According to this BN, there is an 
85% chance of detecting the virus if a person is infected at the time of testing, giving a corresponding 
false negative probability of 15%; and a 0.1% chance of falsely detecting the virus if a person is not 
infected, giving a corresponding 99.9% probability of a true negative. Obtaining accurate estimates of 
these rates is challenging because we cannot directly observe (nor perfectly control) the true infection 
status at the time of testing – the very reason a test is needed – and hence must make do with general 
estimates based on controlled samples. We can, however, make improved case-specific estimates by 
incorporating factors involved in the process of sampling and testing into our model. We can also 

 
i Link to OSF https://osf.io/x5c4u/?view_only=afbdfb3e22c2406cad1ae142a3e5a3b2 
ii Node numbers have been kept consistent with the full network in Figure 2. 
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improve our assessment of whether a person is truly infected by incorporating background factors 
(such as age) that may influence both the prior probability of an infection as well as other factors 
related to the testing process (such as the chance of finding virus at a particular sample site). The 
model we present next describes how we have expanded this simple model to include other relevant 
variables that interact to drive changes to sensitivity, specificity and, ultimately, the probability of 
infection.  

 

 

Figure 2 The causal Bayesian network of RT-PCR testing of SARS-CoV-2. This diagram presents the model 
structure, variable values, and marginal distributions (i.e. when nothing is known, other than that a test has been 
conducted). Appendix A provides a comprehensive variable dictionary for this model. Detailed conditional 
probability tables can be accessed ‘testing_v7.6_params.xdsl’ on the OSF platform. 
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Model description  

The expanded BN (Figure 2) models the trajectory of SARS-CoV-2 as it’s sampled, transported, 
extracted and amplified, along with the conditions and operations that can affect the sample 
throughout this process.iii The SARS-CoV-2 trajectory itself is modelled via a sequence of latent nodes 
(coloured yellow, 1-10), running down the centre of the graph, with the previously introduced infected 
now (3) and detection of target (10) sitting at almost opposite ends of this sequence. The probability 
of being infected by a known viral exposure (2) is driven by the intensity of that exposure (1). If 
infected by the known exposure (2), age (11) and the number of days since the exposure (12) 
influence the probability of being infected at the time of testing (3), and also drive the days since first 
compatible symptom onset (13). The probability of infection from an unknown exposure is possible 
and currently parameterised to be low, although this risk is influenced by the background prevalence 
of the virus in a given population at a given time, and therefore needs to be calibrated according to 
the setting. The background probability of compatible symptoms unrelated to a known exposure 
(potentially non-SARS-CoV-2) is also set to be low, and as a result, the presence of symptoms predicts 
a high probability of being infected by a recent exposure. However, this background probability is also 
driven by the circulation of other symptom-compatible pathogens. 

Among those with SARS-CoV-2 infection at the time of testing (3), the viral load at a given sample 
site (4) is influenced by the number of days since first symptom onset (13)iv, body site sampled (15) 
and age (11). In particular, the model assumes the viral load in the upper airway is initially highest, 
followed by increasing amounts in lower respiratory tract and faeces over time.  

When collecting a sample, the quantity of virus obtained from the viral load at sample site (4), 
equating to the quantity captured in sample (pre-transit) (5) depends on the specimen quality (18), 
a latent variable which captures the technical and operator-dependent factors which affect the 
adequacy of collection. Specimen quality (18) is therefore improved by a good collection 
performance (17) (e.g., indicated by collector’s experience), the use of a flocked type of swab (16) (if 
applicable) and a site that requires a simpler collection technique, such as specimen sampled from 
Saliva and Mouth sites (15). The quantity of virus in sample post-transit (6) may be affected by the 
quantity of virus in the sample pre-transit (5), the conditions of transport (19) and body site 
sampled (15); for example, faecal specimens may contain substances which accelerate the 
degradation of viral nucleic acid. 

In the laboratory, the extraction and amplification processes (21, 24) are assumed to be 
predominantly automated, meaning a testing process that is less affected by operator performance 
(22), compared with manual methods. In addition, a high level of inhibitors (26) and a poor match of 
primer to target (in the virus) (25) can reduce amplification efficiency (27). Low extraction and 
amplification efficiency (23, 27) (both latent) may increase the probability of a false negative results 
if the quantity of virus is low in the post-transit (6) and purified samples (7), respectively. The 
probability of a false negative result may also increase if the detection Ct threshold (29) is lowered 
(e.g., to 35). A false positive result may occur if the specimen contains a shared target from a non-
SARS-CoV-2 organism (9). Similarly, if the detection Ct threshold (29) is set higher (e.g., 40 and 

 
iii For specific variable definitions, see appendix A, the variable dictionary. 
iv The arrow from node (13) to node (4) is the only non-causal link in this model, it summarises events that 
occur during the time from first symptom onset to testing that may affect viral load at sample site 
(accumulation or decrease).  
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above), the risk of non-specific amplification increases and, consequently, the risk of a false positive 
result. These events are assumed to be rare by the current model. 

Finally, the lab report (30) will be detected if the viral target is detected (10), often described as a 
positive result. If the target is not detected, the test result will be reported as not detected if the 
specimen has passed both the specimen and amplification quality controls (20, 28) (a negative 
result), and as indeterminate otherwise (where a repeat test may be requested). In cases where the 
SARS-CoV-2 target (10) is not detected, there is a high likelihood that this represents a true or false 
negative result if the probability of being infected now (3) is low or high, respectively, and likewise 
for true or false positive. This relationship is now described using the node predicted classification 
(31). 

Example scenarios 

Three illustrative scenarios were developed in conjunction with the experts. The model outputs 
were obtained by setting the input variables as ‘evidence’ for a given constructed scenario. Please 
access appendix B for detailed models with input variables selected for each scenario.  

Scenario 1: The predicted probability of infection and testing results influenced by exposure 
intensity and presence of symptoms 

Consider an older adult (11) who had a light exposure (1) to the virus 1 to 7 days ago (12) (e.g. 
brief contact in a cafe) but with no symptoms (13) currently. The probability of this person 
currently being infected (3) is estimated to be 2.3%, and the probability of returning a positive 
nasopharyngeal swab (15) result is 1.9% (30) with predicted 0.5% chance being a false negative 
(31). However, if the intensity of exposure was heavy (1) (e.g., household contact), the risk of 
being infected (3) would be 44.2% and the probability of returning a positive test result (30) would 
be 35.3% with false negative prediction increased to 9.0% (31). Rather than having no symptoms, if 
the person experienced onset of symptoms 0 to 6 days (13) after that exposure (1), the probability 
of being infected (3) is estimated to be 98.7%, and the probability of returning a positive result (30) 
is 94.5% (false negative (31) 4.3%). 
 
Scenario 2:  Influence of specimen quality on the probability of a positive test result in those who 
are infected 
Consider the same older adult (11) who was heavily exposed (1) to the virus 1 to 7 days ago (12) 
and had onset of symptoms 0 to 6 days afterwards (13). Consider now that this person is infected 
(3). A nasopharyngeal swab (15) is taken for testing. If a poor collection (17) is performed with a 
non-flocked swab (16) and the conditions of transport (19) are poor, the probability that the lab 
reports a positive result (30) is 89.2%, the probability of an indeterminate result is 6.5%, and the 
probability of a false negative result (31) is 10.8%. However, for a good collection performance (17) 
using a flocked swab (16) and with good specimen transport conditions (19), the probability of a 
positive result (30) is 95.9%, the probability of an indeterminate result is 0.6%, and the probability of 
a false negative result (31) is 4.1%.  
 
Scenario 3: Understanding the patient characteristics of those with false negative test results  
Individuals who are truly infected at the time of testing (3) but who tested negative (30) (i.e. false 
negatives) are younger (11) and have a higher probability (63.7%) of having no symptom at the time 
of testing (13) than those who are infected and test positive (30) (22.4%).  
 
Discussion 
Accurate diagnosis of COVID-19 is critical to guide patient management, including infection control 
and public health responses9. Although there is increasing data on the performance of commercial 
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assays 10, these assessments typically use non-clinical samples and are performed in closely 
controlled environments. A range of variables, from the age of the subject, the nature of exposure, 
the presence and duration of symptoms, operator skill and assay technical complexity can all 
influence the positive and negative predictive value of a test and are therefore important 
considerations when interpreting any test result. The core value of this model is its explicit 
representation of these variables and their probabilistic interdependencies, allowing  a deeper 
understanding of test results by explicitly defining true positive, true negative, false positive, and 
false negative interpretations based on the discrepancy between a person’s true infection status and 
their test outcome. On a population level, the model can demonstrate how and where 
improvements in processes and procedures may improve the value of the test. Given a fully 
parameterised model, tracking changes in the distribution of these variables (depicted in scenario 
three) over time and across settings can help understand how public health responses can be 
optimised for the timely detection of cases9 so that effective containment strategies can be 
implemented. 
 
When the model is applied to a single patient, it can also inform individual-level management. The 
probability that a person is infected can be more correctly inferred by integrating the test result with 
knowledge of the background risk (or ‘pre-test probability’), the intrinsic assay characteristics, and 
the adequacy of the sampling and laboratory procedures. This is illustrated in scenario one where 
there is still a 4.3% chance that a false negative result will be obtained in an older patient with 
infection and symptoms, which could have significant ramifications in terms of that patient's 
outcome, and the risk of spread. Importantly, if a negative result was obtained, the model would 
allow this result to be reviewed in context, guiding the clinician’s interpretation of the result through 
a better understanding of the negative predictive value for that individual patient.  

Causal BNs allow the exploration and characterisation of a complex problem based on elicited 
knowledge from domain experts, even when limited data is available; a valuable characteristic 
during an outbreak of a novel pathogen. The model allows inclusion of known components of the 
testing cycle, including specimen collection and transport11,12, elements that are often not known 
when interpreting the result. Specimen adequacy can influence the amount of virus present at the 
site that is “collected” for testing. Poor collection performance may reduce the advantage of the 
more technically difficult to collect specimen13. Scenario two underlines the importance of a good 
specimen collection, coupled with other factors, decreasing the probability of a false negative from 
10.9% to 4.1%. Similarly, although mouth and saliva swabs are technically easier to collect, better 
tolerated and may facilitate self-collection, they have a potentially lower predictive value due to the 
lower quantity of virus at that site 13.   

The expanding drive for testing and pressure of rapid turnaround times places enormous strain on 
laboratory staff and testing systems. Although capacity has increased, the impact of the human 
element can’t be underplayed14 and needs to be accounted for when considering the predictive 
value of a result; inexperienced staff, extended work hours and increased pressure can impact the 
numerous intricate steps of laboratory testing and thereby affect test performance. Automated 
processes can mitigate some potential errors, yet are not available in all settings across the globe. 
Laboratory quality assurance measures including extraction controls may help to identify systematic 
errors and reduce false negatives secondary to poor extraction or the presence of inhibitors.  

COVID-19 RT PCR assays have been designed to match the novel emerged virus. A future concern, 
included in the model, is the potential drift and divergence of COVID-19 strains into distinct lineages. 
These changes may alter the amplification site, reducing the RT-PCR ability to detect the presence of 
different lineages. Similar evolutionary changes have been observed in influenza, requiring re-tooling 
of the nucleic acid amplification15. 
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The model can be calibrated to account for the changing population incidence of COVID-19 and 
adjusted for low or high viral incidence rates. Rates of co-circulating pathogens can also be 
incorporated into the model. For example, respiratory syncytial virus and influenza were low in 
Australia16 during the winter of 2020; in the model this would increase the probability that 
respiratory symptoms after an exposure would be suggestive of COVID-19 infection. As the northern 
hemisphere enters their winter, the model can be calibrated to reflect their rates over their typical 
peak season. The model also has the flexibility to be modified based on application to account for 
the different performance of RT-PCR platforms used in different laboratories, as well as for other 
pathogens. 
 
Limitations  
To guide individual and public health decision-making, the model will need to be validated using 
data. Expert opinion may incorrectly guide the model, as current knowledge and experiences may 
not be generalizable to this outbreak. Further setting-specific parameterisation and validation of the 
model is required before introducing into a real-world setting. These should involve important 
parameters such as location and population specific prevalence of SARS-CoV-2 and other respiratory 
viruses with compatible symptoms, and the changing viral load at each sample site at the different 
time points post infection. 
 
Conclusion 
Bayesian networks have the potential to improve decision-making and clinical care, especially 
around the correct interpretation of a COVID-19 clinical diagnostic test, such as RT-PCR. This model 
could be further strengthened by expanding it to include other nucleic acid amplification platforms 
and other testing modalities.  
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Appendix A. Variable dictionary 

Variable name Description Potential values Status Parent nodes References 
Intensity of most 
recent known viral 
exposure (1) 

Intensity of most recent exposure to SARS-CoV-2. This 
variable can be influenced by many epidemiological 
factors not covered in this current model. 

Heavy,  
Light,  
Negligible 

Latent None 17 

Infected by exposure 
(2) 

Whether the person was infected due to the most 
recent exposure. 

True,  
False 

Latent Intensity of most recent 
known viral exposure 

 

Age (11) Age of person tested. YoungChild,  
Adult,  
OlderAdult 

Observable None 18,19 

Days since most 
recent exposure (12) 

On the day of testing, the number of days since most 
recent known exposure to SARS-CoV-2.   

MoreThanSeven,  
OneToSeven,  
LessThan24hrs 

Observable None 20-22 

Days since first 
compatible 
symptom onset (13) 

On the day of testing, the number of days since the 
onset of first (compatible) symptom. It is unknown 
whether the intensity of exposure influences the timing 
of symptom onset, so no corresponding arc has been 
included. 

MoreThanSix, 
ZeroToSix, 
NoSymptom 

Observable Days since most recent 
exposure, age, infected 
by exposure 

12,20,22,23  

Any symptoms since 
exposure (14) 

On the day of testing, whether there have been any 
symptoms since the most recent exposure. This 
(deterministic) node was created for informational 
purposes. 

True,  
False 

Observable Days since first symptom 
onset 

23 

Infected now (3) SARS-CoV-2 infection (at any body site) at the time of 
testing. If not infected by the most recent known 
exposure, the risk of being infected now is currently set 
to be 0.1%. This probability should be driven by the 
spatial and temporal prevalence of the virus in a given 
setting. 

True,  
False 

Latent Days since most recent 
exposure, infected by 
exposure, age 

 

Body site sampled 
(15) 

Body site swabbed or bodily fluid collected for SARS-
CoV-2 testing. A non-uniform prior is used for this node, 
with the majority (85%) sample site set to nasopharynx. 

Nasopharyngeal, 
SalivaMouth, 
LowerAirway,  
Faeces 

Observable None 12,24,25 

Viral load at sample 
site (4) 

Amount of SARS-CoV-2 at sample site.  The CPT of this 
node may vary by site which interacts with the 
progression of disease. 

High,  
Moderate,  
Low,  

Latent Infected now, days since 
first compatible 

26-29 
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No symptom onset, age, 
body site sampled 

Swab type (16) Type of swab used to obtain SARS-CoV-2 sample. This 
variable is only applicable to the sites sampled by swab. 

Flocked, 
NonFlocked, 
NotApplicable 

Observable Body site sampled 30, 31 

Collection 
performance (17) 

The resulting performance of the sample collection 
process. This may be influenced by various factors (not 
explicated), including the ability of the person collecting 
the sample for SARS-CoV-2 testing.  

Good,  
Poor 

Observable None 32,33 

Specimen quality 
(18)  

This is a latent concept that summarises the quality of 
the specimen, collected for SARS-CoV-2 testing, in terms 
of its ability to confer an accurate result.   

Good,  
Poor 

Latent Collection performance, 
swab type, body site 
sampled 

12,21,24,34-38  

Quantity of virus in 
sample (pre-transit) 
(5) 

The number of viral particles obtained for testing within 
the sample. 

High,  
Moderate,  
Low,  
No 

Latent Viral load at sample site, 
specimen quality 

 

Conditions of 
transport (19) 

The conditions the specimen is subjected to, from 
collection to laboratory processing. This includes 
temperature, transport time, transport with/without 
viral transport media, which are observable but not 
explicitly described in the current model. 

Good,  
Poor 

Observable None 11,12 

Quantity of viable 
virus in sample 
(post-transit) (6) 

The remaining amount of detectable virus in the sample 
after exposure to transport conditions. 

High,  
Moderate,  
Low,  
No 

Latent Conditions of transport, 
body site sampled, 
quantity of virus in 
sample pre-transit 

 

Extraction process 
(21) 

The process by which the nucleic acid is extracted from 
the collected sample. Extraction process can differ with 
manual and automated processes. Prior distribution sets 
99% to be automated, however this might not be the 
case in resource-poor settings. 

Automated, 
Manual 

Observable None 12,39 

Operator 
performance (22) 

The accuracy of the scientist/technician performing the 
PCR testing procedures in the lab. In addition to 
experience, this may also be influenced by other factors, 
such as workload, which are not covered in the current 
model.  

Good, 
Poor 

Observable None 14,40 
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Extraction efficiency 
(23) 

The collective quality of the nucleic acid extraction 
process to produce a sample able to detected SARS-
CoV-2 if present. 

High,  
Low 

Latent Body site sampled, 
extraction process, 
operator performance 

41,42  

Quantity of viral 
RNA in purified 
sample (7) 

The amount of SARS-CoV-2 viral RNA extracted from the 
sample. 

High,  
Moderate,  
Low,  
No 

Latent Quantity of virus in 
sample post-transit, 
extraction quality, 
operator performance 

12 

Inhibitors (26) Any factor which prevents the amplification of SARS-
CoV-2 RNA during the PCR testing of the sample. 

Low,  
High 

Latent Conditions of transport, 
body site sampled, 
extraction process, 
operator performance 

12,43,44  

Amplification 
process (24) 

The process of replicating the SARS-CoV-2 RNA 
sequence(s) millions of times. Prior distribution sets 99% 
to be automated, however this might not be the case in 
resource-poor settings. 

Automated, 
Manual 

Observable None 41 

Match of primer to 
target (25) 

The closeness in similarity of the nucleic acid sequence 
used in the PCR assay to the nucleic acid sequences in 
the extracted RNA from patient sample. Prior 
distribution sets 99.9% to be good match, especially as 
there is often more than one target selected for the 
primer. 

Good,  
Poor 

Observable None 45-48 

Amplification 
efficiency (27) 

The collective quality of the test sample after the 
amplification process.  

High,  
Low 

Latent Inhibitors, operator 
performance, match of 
primer to target, 
amplification process 

 

Quantity of target in 
amplified sample (8) 

The amount of RNA in the sample present after 
amplification that specifically matches the primers and 
probes of the PCR testing kit (summarised by 
amplification efficiency). 

High,  
Moderate,  
Low,  
No 

Latent Quantity of viral RNA in 
purified sample, 
amplification efficiency 

 

Specimen adequacy 
control (20) 

A Sample Adequacy Control (SAC) targets a single copy 
human gene that should be present in each specimen. 
The SAC confirms adequate patient sample has been 
collected and appropriate testing has occurred.  

Pass,  
Fail 

Observable Specimen quality, 
conditions of transport, 
extraction efficiency 

44 

Amplification quality 
control (28) 

A nontarget nucleic acid sequence coamplified with the 
sample to measure the quality of the amplification 
process.   

Pass,  
Fail 

Observable Amplification efficiency, 
extraction efficiency 

47,49 
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Detection Ct 
threshold (29) 

The number of cycles set within a PCR system 
determines when a fluorescent signal exceeds the 
background level indicating a positive sample. A higher 
threshold allows greater amplification, in turn allowing 
the system to be more sensitive. A low threshold may 
be 35 and a high threshold may be 40. The prior has 
been set to a 99% chance of using a high (and therefore 
more sensitive) Ct threshold. 

High, 
Low 

Observable None 20,26,49 

Shared target with 
non-targeted 
organism (9) 

The specificity of the SARS-CoV-2 nucleic acid sequence 
within the PCR assay to the SARS-CoV-2 within the 
sample tested. Prior distribution sets 99.9% to be false, 
however, if true, this (and this alone) introduces the risk 
of false positives. 

True,  
False 

Observable None 46,47  

Detection of target 
(10) 

Detection of the nucleic acid sequence specific to the 
SARS-CoV-2 virus targeted by the PCR assay. 

True,  
False 

Observable Shared target with non-
targeted organism,  
quantity of target in 
amplified sample, 
detection Ct threshold  

50 

Laboratory report 
(30) 

The reported result of the SARS-CoV-2 PCR assay. This is 
set to be a deterministic node that is Detected if 
detection of target was true; or, in the absence of 
detection, NotDetected if quality controls were passed 
and Indeterminate otherwise. 

Detected, 
NotDetected, 
Indeterminate 

Observable Detection of target, 
amplification control, 
specimen quality control 

51,52 

Predicted 
classification (31) 

Model prediction expressing the predictive probability 
of a true positive, true negative, false positive, and false 
negative 

TruePos, 
TrueNeg, 
FalsePos 
FalseNeg 

Latent Viral load at sample site, 
detection of target 
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Appendix B. Scenarios 

Scenario 1 
(a) Heavy exposure 
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Scenario 1 
(b) Heavy exposure with symptoms 
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Scenario 1 
(c) Light exposure 
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Scenario 2 
(a) Good specimen quality 
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Scenario 2 
(b) Poor specimen quality 
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Scenario 3 
(a) Infected tested negative 
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Scenario 3 
(b) Infected tested positive 
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