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Abstract

In the case of airborne diseases, pathogen copies are transmitted by droplets of
respiratory tract fluid that are exhaled by the infectious and, after partial or full drying,
inhaled as aerosols by the susceptible. The risk of infection in indoor environments is
typically modelled using the Wells-Riley model or a Wells-Riley-like formulation, usually
assuming the pathogen dose follows a Poisson distribution (mono-pathogen assumption).
Aerosols that hold more than one pathogen copy, i.e. poly-pathogen aerosols, break this
assumption even if the aerosol dose itself follows a Poisson distribution. For the largest
aerosols where the number of pathogen in each aerosol can sometimes be several hundred
or several thousand, the effect is non-negligible, especially in diseases where the risk of
infection per pathogen is high. Here we report on a generalization of the Wells-Riley
model and dose-response models for poly-pathogen aerosols by separately modeling each
number of pathogen copies per aerosol, while the aerosol dose itself follows a Poisson
distribution. This results in a model for computational risk assessment suitable for
mono-/poly-pathogen aerosols. We show that the mono-pathogen assumption
significantly overestimates the risk of infection for high pathogen concentrations in the
respiratory tract fluid. The model also includes the aerosol removal due to filtering by
the individuals which becomes significant for poorly ventilated environments with a
high density of individuals, and systematically includes the effects of facemasks in the
infectious aerosol source and sink terms and dose calculations.

Introduction 1

It is well known that some diseases such as influenza, the common cold, Mycobacterium 2

tuberculosis, measles, Severe Acute Respiratory Syndrome Coronavirus 1 and 2 3

(SARS-CoV-1 and SARS-CoV-2), are airborne; meaning they are transmitted by 4

particles (also called liquid droplets, aerosols, or droplet nuclei) exhaled by infected 5

individuals. These particles come from the fluid of the lungs, vocal chords, mouth, and 6

nose; which hereafter are all noted as “respiratory tract”. Risk of getting infected from 7

such particles for an individual or a population has been subject of numerous studies 8

and analyzes [1, 2, 2–8]. Many of the transmission mitigation strategies rely on results 9

obtained by models that take into account a variety of factors to assess the likelihood of 10
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transmission, a good example of which is the World Health Organization’s 2009 11

guidelines Natural Ventilation for Infection Control in Health-Care Settings [9]. Two 12

well-known families of models are dose-response and Wells-Riley models, which have 13

been extensively used to model spread of airborne diseases [10]. 14

There are several dose-response models for various diseases in existence which 15

consider the risk of infection for an average dose of pathogen copies, taking full account 16

of the counting statistics [11]. Two common models are the exponential and 17

beta-Poisson models, which are described in great detail by Haas, Rose & Gerba [11]. 18

Many diseases follow the exponential model, which has the added simplicity of having 19

only a single adjustable parameter. Both the exponential and beta-Poisson 20

modelassume that the minimum number of pathogen copies required for infection, the 21

threshold, is one; but other models exist for non-unity thresholds. Both models, along 22

with many others, assume that the number of pathogen copies absorbed follows a 23

Poisson distribution; though modification of the exponential model for doses following a 24

beta or gamma distribution has been conducted [2]. 25

The Wells-Riley model, in its original form, takes the steady state balance of sources 26

and sinks of infectious pathogen copies (in units of quanta) over a period of time in a 27

well-mixed indoor environment such as a room or several rooms connected via 28

ventilation to calculate the average dose received by susceptible individuals over a time 29

period, which is then run through an exponential dose-response model [1]. The original 30

model measures pathogen copies in units of quanta, which is defined as ID63.21 31

pathogen copies [10]. Sources such as exhalation by infectious individuals in the 32

environment and air exchange with other environments with infectious aerosols and 33

sinks due to fluxes with outside, filtering by the ventilation, filtering by masks, 34

inactivation, settling, and deposition have all been considered as well as full temporal 35

modelling of infectious aerosol concentration rather than assuming 36

steady-state [1, 2, 2–8]. At their heart, it is essentially a conservation of infectious 37

aerosols model, choosing some sources and sinks to explicitly include and considering 38

others to be negligible, to get the pathogen concentration and then the average inhaled 39

dose, before using a dose-response model (usually the exponential model) for the 40

infection risk. Note, in the literature the term “Wells-Riley model” is sometimes used to 41

refer only to when this formulation is used with an exponential model, and the terms 42

“Wells-Riley equation” and “dose-response model” used if other dose-response models are 43

used instead (e.g. [10]). We will use the term “Wells-Riley formulation” to refer to both. 44

In the past, various generalizations and improvements have been applied to the 45

Wells-Riley formulation for situations beyond its original design and to address its 46

limitations [10]. For example; Nicas, Nazaroff & Hubbard [6] included sink terms for 47

pathogen inactivation, aerosol settling, and deposition as well as less than unitary 48

efficiency of the respiratory tract absorbing infectious aerosols. Wells-Riley formulations 49

have also been combined with SIR (Susceptible-Infectious-Removed) and SEIR 50

(Susceptible-Exposed-Infectious-Removed) models [3, 12]. Noakes & Sleigh [13] made a 51

stochastic model with compartmentalization of the environment into well-mixed 52

subregions that have less mixing with other regions that can work for periods of time 53

longer than the incubation period. Recent Wells-Riley based analyzes during the 54

ongoing SARS-CoV-2 pandemic also include the effects of masks (such as [8]) unless 55

they are investigating scenarios in which individuals are not wearing any mask [7], 56

though including the effect of masks predates the pandemic by decades [2–5]. 57

One of the biggest assumptions of the Wells-Riley formulation is that the indoor 58

environment considered is sufficiently well-mixed [1,4–8,10,13]. Essentially, it assumes 59

that the infectious aerosol concentration is homogeneous enough that the concentration 60

inhaled by susceptible individuals and at all sinks is approximately equal to the volume 61

average concentration [1, 4–8,10,13]. The practice of social distancing, using fans to 62
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better mix the room, etc. all improve the quality of this assumption, but room 63

conditions in real-world situations can be far away from the well-mixed state. 64

Besides the well-mixed assumption, there are several other assumptions associated 65

with the Wells-Riley formulations, which are not necessarily always true. As an 66

example, there is an additional loss term that has not been considered yet that is the 67

loss of the infectious aerosols absorbed by the individuals themselves. This is despite 68

the fact that this is exactly the reason that susceptible individuals get infected. In some 69

cases this can be safely neglected, e.g. if the combined breathing volume exchange rate 70

of all individuals in the environment is negligible compared to that of ventilation. But 71

in a poorly ventilated room with many individuals inside, this sink term must be taken 72

into account – not incorporatinhg it leads to false risk predictions. 73

Another large assumption is that the absorbed doses follow a Poisson distribution, 74

which is implicit in the use of the exponential dose-response model even if not stated 75

explicitly [1, 3, 6–8], though there has been work on doses following beta and gamma 76

distributions [2]. The Poisson distribution assumption requires that the 77

pathogen-carrying aerosols have at most one pathogen inside, i.e. a mono-pathogen 78

assumption. However, this assumption is violated if the pathogen concentration in an 79

infectious individual’s respiratory tract is high. For this poly-pathogen situation the 80

Wells-Riley formulation and the dose-response models must be generalized to consider a 81

larger number of pathogen in an individual aerosol explicitly. We will use the term 82

multiplicity to refer to the number of pathogen copies in an aerosol. 83

Ignoring multiplicity causes the infection risk to be overestimated even though the 84

expected average pathogen dose does not change.Using a modified version of the worked 85

example later in this manuscript, Fig 1 shows this effect on the time required to reach a 86

50% infection risk for different pathogen concentrations in the respiratory tract fluid 87

with and without considering multiplicity. For low pathogen concentrations and small 88

infection probabilities per pathogen, ignoring multiplicity has only a small effect. But for 89

high pathogen concentrations and/or pathogen copies with a high infection probability 90

per pathogen, ignoring multiplicity has a significant impact. For a respiratory tract 91

pathogen concentration of 1011 cm−3 where the average number of pathogen copies per 92

aerosol is approximately 6500 for a 50 µm in diameter at production, if the single 93

pathogen infection probability (r) is large enough that multiplicity matters, this means 94

taking into account multiplicities up to approximately 7000. 95

In this manuscript, we will consider the following generalizations and modifications 96

to the Wells-Riley formulation: 97

• Fully accounting for the multiplicity of pathogen copies in aerosols and the effect 98

on the dose-response models. 99

• Additional sink terms due to the filtering of air by people inhaling and then 100

exhaling it back out, including the effects of masks. 101

• Working exclusively in units of pathogen copies and aerosols instead of quanta 102

(note: quantum is undefinable when accounting for multiplicity). 103

We will first generalize dose-response models that assume Poisson distributed doses 104

for the distribution that results from poly-pathogen aerosols being present. Then we 105

will develop the general pathogen concentration model that is a generalization of the 106

Wells-Riley formulation. This results in a linear inhomogeneous coupled system of 107

ODEs (Ordinary Differential Equations) for each initial aerosol diameter at production 108

(diameter when exhaled), and one equation for each multiplicity that must be 109

considered. We then derive the general solution, and then simplify the general solution 110

for coefficients that are constant in time. Requirements and heuristics are developed for 111

finding the appropriate cutoff in the multiplicity, Mc. This is important because the 112
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Fig 1. Effect of Ignoring Multiplicity. Ratio of the time required to reach a 50%
infection risk when multiplicity is ignored τ50,ignore to when it is fully accounted for
τ50,full for single pathogen infection probabilities r (an average dose of r−1 Poisson
distributed pathogen copies gives a mean infection risk of 63.21%) and different
pathogen concentrations ρp in the respiratory tract fluid of the infectious individual as
in the worked example later in the manuscript with a disease following the exponential
model, but at steady-state with just the speaking mask-less infectious individual and
the risk to a mask-less susceptible individual whose exposure starts after steady state is
reached. This is a simplified version of Fig 5.

number of ODEs to solve is equal to Mc; and the computational effort scales as O
(
M2
c

)
, 113

or worse than for O
(
M2
c

)
or O

(
M3
c

)
for the different analytical solutions for 114

coefficients constant in time. Some circumstances allow small Mc = 1 or close to one. 115

We consider a full hypothetical example situation for SARS-CoV-2 with very high viral 116

loads to apply the generalized Wells-Riley formulation developed in this manuscript. 117

Finally, we discuss the effects of poly-pathogen aerosols, the filtering by the people in 118

the environment, the effects of face-masks, and the model limitations. 119

Fundamentals 120

Throughout this manuscript, we will use the Poisson distribution, which describes the 121

probability of counting some number, m, of independent events/objects/etc. as a 122

function of the ensemble mean of the number counted, µ. The Probability Distribution 123

Function (PDF) of the Poisson distribution is 124

PP (µ,m) = e−µ
(
µm

m!

)
. (1)

Most dose-response models assume that the number of pathogen copies absorbed 125

follows a Poisson distribution. For the case of a dose-response model, the average 126

number of pathogen copies absorbed over some period of time would be the µ and then 127

PP would give the probability that a person absorbed exactly m pathogen copies. For 128

clarity in the rest of this manuscript, we will now define ∆ to be the number of 129
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pathogen copies absorbed (instead of m) and the average number of pathogen copies 130

absorbed is 〈∆〉, where we have used 〈·〉 to denote the average. The use of a Poisson 131

distribution for the doses requires that the pathogen copies are independent (i.e. no 132

clumping); and as we will later show, that the number of pathogen copies in aerosols is 133

assumed to be one or zero. 134

Let R(∆) denote the infection probability when exactly ∆ pathogen copies are 135

absorbed, and R(〈∆〉) denote the average infection probability when the average 136

number of pathogen copies absorbed is 〈∆〉. For a disease where the threshold 137

(minimum number of pathogen copies required for infection) is greater than one, the 138

threshold must be included into the its definition of R(∆) such that it is zero for ∆ less 139

than the threshold, which makes R(∆) be a piece-wise function. 140

There are two ways to construct R(〈∆〉) from R(∆). We use the method of taking 141

the sum over all possible ∆ ∈ [1,∞) of the product of the probability of absorbing each 142

particular ∆ and the resulting infection risk R(∆) [10]. If the number of pathogen 143

copies absorbed follows a Poisson distribution, then 144

R (〈∆〉) =
∞∑

∆=1

PP (〈∆〉 ,∆)R(∆) . (2)

The other method instead considers the number of pathogen copies that survive to 145

try to infect, ∆i, and does a double sum over ∆i (starting from the threshold) and ∆ of 146

the product of the probability of the dose ∆ and the probability of exactly ∆i out of ∆ 147

surviving to try to infect [11] (this is NOT R(∆)). The two methods are equivalent, 148

with this extra sum being implicitly included in the definition of R(∆). This is why 149

R(∆) is a piece-wise function when the threshold is not one. For some models it may be 150

easier to do this other method explicitly rather than try to construct R(∆). 151

The exponential model assumes that all pathogen copies are identical, all people are 152

equally vulnerable to infection, that the pathogen copies are acting independently of 153

each other, and that each pathogen has an equal probability of causing infection r [11]. 154

These assumptions implicitly means that the threshold is one. Each pathogen has a 155

probability 1− r to not infect. Then the exponential model’s infection risk for an exact 156

dose ∆ is just one minus the probability that all ∆ pathogen copies did not infect. 157

RE(∆) = 1− (1− r)∆ . (3)

If the dose follows a Poisson distribution, then Eq (2) can be calculated for the 158

exponential model [10], yielding 159

RE (〈∆〉) = 1− e−r〈∆〉 . (4)

Note that often, the parameter D ≡ 1/r is used instead of r (the symbol k is also 160

used [14]), which is the ID63.21 (Infective Dose required for 63.21% chance of infection). 161

We will be making non-Poissonity corrections to this later. 162

The beta-Poisson model is essentially the exponential model but considers instead of 163

everyone being equally vulnerable, each person has their own value for r which comes 164

from the beta distribution [10,11]. The beta distribution PDF [11] is 165

PB(r) =
Γ(ε+ θ)

Γ(ε)Γ(θ)
rε−1(1− r)θ−1 , (5)

where r ∈ [0, 1] and the symbols ε and θ have been used in place of the conventional 166

alpha and beta parameters respectively to avoid clashing with symbols used later in this 167

manuscript. This means that to get mean infectou risk for a beta-Poisson model 168

RBP (∆), we must include an integral over all r ∈ [0, 1]. Specifically, 169
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RBP (∆) =

∫ 1

0

PB(r)RE(∆)dr . (6)

Since the integral commutes with the sums used to calculate R(〈∆〉), the integral can 170

be calculated as an outer integral rather than an inner integral yielding [11] 171

RBP (〈∆〉) =

∫ 1

0

PB(r)RE(〈∆〉)dr . (7)

Wells-Riley formulations, both the original model and many subsequent uses, 172

measure pathogen copies in units of quanta [1, 5–8,10,13]. A quanta is defined as 173

ID63.21 pathogen copies [10]. This means that one quantum is equal to D = 1/r 174

pathogen copies. For the case of r = 1 such as Mycobacterium tuberculosis, one quantum 175

is one pathogen [6, 10]. Using these units, the exponential model from Eq (4) becomes 176

RE (〈Q〉) = 1− e−〈Q〉 , (8)

where Q is the number of absorbed quanta [1, 5–8,10,13]. 177

Let NI be the number of infectious individuals, σ be the average production rate of 178

infectious quanta per infectious individual, λ be the volumetric breathing rate of 179

susceptible individuals, Q be the volumetric rate that clean air is brought into the 180

particular indoor environment, and τ be the time period of exposure of susceptible 181

individuals. Then, in its simplest form, the Wells-Riley Model’s infection probability for 182

time periods smaller than the incubation period of the disease [1] is 183

RWR (τ) = 1− exp

[
−
(
NIσ

Q

)
λτ

]
. (9)

For time periods longer than the incubation period of the disease, one must either break 184

the time period into subintervals smaller than the incubation period [1] or model both 185

R and the number of infectious and susceptible individuals over time with a SIR or 186

SEIR model [3, 12]. 187

Dose-Response Models for poly-Pathogen Aerosols 188

General 189

If the pathogen concentration in an infectious individual’s respiratory tract fluid ρp is 190

low enough, almost all exhaled pathogen copies will be the only pathogen in their 191

aerosols, i.e. mono-multiplicity aerosols, and poly-multiplicity aerosols can reliably be 192

ignored. We will use the tailing subscript k to denote aerosols with k pathogen copies 193

inside them. An aerosol cannot contain more pathogen copies than will fit in its volume, 194

and there is a limit to how large an aerosol a person can exhale. Let M be the 195

maximum number of pathogen copies that can fit in the largest aerosol that can 196

possibly be exhaled. This is the hard cutoff/limit on k. There also exists a soft 197

cutoff/limit Mc ≤M for which contributions of aerosols with k > Mc is negligible. In a 198

worst case Mc = M , but in practice it can be much lower since the pathogen volume 199

fraction of respiratory tract fluid is quite low even at the upper pathogen load for some 200

diseases. For example, SARS-CoV-2 at the very upper end of its concentration range at 201

1011 cm−3 [15, 16] would give a volume fraction of approximately 5× 10−5, if we treat 202

the virus as a 100 nm sphere (approximate size of the SARS-CoV-2 virus [17]). This is 203

important because an aerosol with a diameter of 1 µm could contain up to 204

approximately 740 spherical pathogen copies with diameter 100 nm, if we assume 205

hard-sphere packing (packing fraction of 74%). An aerosol with a diameter of 10 µm 206
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could contain up to approximately 7.4× 105 of the same pathogen copies for the same 207

packing fraction. 208

To properly account for higher multiplicities, we must consider the separate doses for 209

each multiplicity. Let ∆k be the number of pathogen copies absorbed from aerosols 210

with multiplicity k, and let mk be the number of aerosols absorbed with multiplicity k. 211

The aerosol and pathogen doses are related by ∆k = kmk. The total pathogen dose 212

from all aerosols is just the sum of the doses for each multiplicity, which is 213

∆ =
∑∞

k=1
∆k. Let µk = 〈mk〉 = 〈∆k〉 /k be the average number of absorbed aerosols 214

with multiplicity k. 215

As long as the aerosols are randomly distributed in space (well-mixed with no 216

clustering nor avoidance), then the PDF of each mk follows a Poisson distribution with 217

mean µk. Since ∆k = kmk, the PDF of ∆k is not a Poisson distribution for k > 1. It is 218

instead a scaled-Poisson distribution of the form 219

Pk (µk,∆k) =

{
PP
(
µk,

∆k

k

)
if ∆k mod k = 0 ,

0 otherwise .

The deviation from the Poisson distribution is most visible in the fact that this 220

distribution has holes. For example with k = 2, Pk = 0 for all odd ∆k. Since ∆ is the 221

sum of a Poisson distribution k = 1 and some number of possibly non-negligible 222

scaled-Poisson distributions, the PDF of ∆ will not be a Poisson distribution unless the 223

contributions from k > 1 are negligible compared to k = 1. So we can’t just naively put 224

the expected average dose into dose-response models expecting a Poisson distribution. 225

Instead, we must change the summation in Eq (2) to get the infection risk R. Let us 226

consider the p’th moment,Mp, of the infection probabilities as a function of the average 227

aerosol doses µk (note, we use p in later sections of this manuscript as a summation 228

index). To determine Mp, we must sum over all possible combinations of exact aerosol 229

doses mk of each multiplicity for k ∈ [1,∞) of the product of the Poisson probabilities 230

of each mk and the infection risk for the dose raised to the power of p. This is 231

Mp (µ1, . . . , µ∞) =

all combinations︷ ︸︸ ︷
∞∑

m1=0

· · ·
∞∑

m∞=0

probability of dose︷ ︸︸ ︷[ ∞∏
k=1

PP (µk,mk)

] [ infection probability︷ ︸︸ ︷
R
( ∞∑

k=1

kmk︸ ︷︷ ︸
pathogen dose

)]p
, (10)

where we have written out the dose ∆ inside R. The mean infection risk is the first 232

moment (p = 1), which is 233

R (µ1, . . . , µ∞) =
∞∑

m1=0

· · ·
∞∑

m∞=0

[ ∞∏
k=1

PP (µk,mk)

]
R

( ∞∑
k=1

kmk

)
. (11)

Exponential Model Corrections 234

Then, putting RE from Eq (3) into Eq (11), the exponential model mean infection risk is 235
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RE (µ1, . . . , µ∞) =
∞∑

m1=0

· · ·
∞∑

m∞=0

[ ∞∏
k=1

PP (µk,mk)

] [
1− (1− r)

∑∞
k=1 kmk

]

= 1−
∞∑

m1=0

· · ·
∞∑

m∞=0

∞∏
k=1

e−µke(1−r)kµke−(1−r)kµk

[
(1− r)k µk

]mk

mk!

= 1− exp

[
−
∞∑
k=1

(
1− (1− r)k

)
µk

]
, (12)

where the fact that the sum of all probabilities over the Poisson distribution is equal to 236

one has been used extensively. The final sum has a finite number of terms due to the 237

cutoff M as long as the µk are finite for k ≤M . For small Mc, we can truncate the risk 238

probability and get an easier to calculate approximation. Except for Mc = 1, this is 239

different from Eq (4) due to the non-Poissonity in ∆. The expression for the first few 240

values of Mc are 241

RE ≈


1− e−rµ1 if Mc = 1 ,

1− e−rµ1e−r(2−r)µ2 if Mc = 2 ,

1− e−rµ1e−r(2−r)µ2e−r(3−3r+r2)µ3 if Mc = 3 .

(13)

Beta-Poisson Model Corrections 242

The integral over r commutes with the sums in Eq (10). So as was with the case when 243

multiplicity is not considered in Eq (7), we can get the moments by taking the result for 244

the exponential model and integrating it times the beta distribution PDF over r. This is 245

MBP,p (µ1, . . . , µ∞) =

∫ 1

0

PB(r)ME,p (µ1, . . . , µ∞) dr . (14)

Unfortunately, as is the case for when the dose is Poisson distributed [11], the 246

integral cannot be solved analytically and must be solved numerically or approximated 247

though now it is harder with the extra terms for Mc > 1. 248

General Pathogen Concentration Model 249

Looking Ahead 250

Now that we have dose-response models corrected for the multiplicity via Eq (11), we 251

must determine the average aerosol doses µk for each multiplicity before the infectiou 252

risk can be calculated. We now generalize the Wells-Riley formulation for 253

multi-pathogen aerosols to get this. In the following sections, we will describe the 254

environment, people, aerosols, sources, sinks, etc. to get the model equations. Let 255

nk(d0, t) be the concentration density of aerosols with original diameter d0 and k 256

pathogen copies in them over time, which has units of [L]−4 where [L] is the unit of 257

length since nk(d0, t)dd0 is the concentration of infectious aerosols with diameters 258

between d0 and d0 + dd0. To get a concentration, nk(d0, t) must be integrated with 259

respect to d0. 260

In the end, we will get the following system of ODEs (Ordinary Differential 261

Equations) in time t and the original diameter at production d0 for the nk, which is 262
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dnk
dt

=

sinks︷ ︸︸ ︷
−α(d0, t)nk +

flux from inactivation︷ ︸︸ ︷
(k + 1) γ(t)nk+1 − kγ(t)nk +

sources︷ ︸︸ ︷
βk(d0, t) , (15)

where α(d0, t) is the sum of all sink term coefficients, βk(d0, t) is the sum of all sources 263

for each k, γ(t) is the pathogen inactivation rate, and we have assumed that the time 264

period considered is shorter than the incubation time of the disease. Then the combined 265

source and sink terms are 266

βk(d0, t) = βr,k + βI,k , (16)

α(d0, t) = αo + αr + αv + αg + αd + αI,f + αS,f + αO,f , (17)

which don’t depend on nk(d0, t) (i.e. no quadratic or higher order terms), though they 267

may depend on t. The different sources and sinks are summarized in Table 1. See their 268

relevant sections for the meanings of their terms, their assumptions, and where they 269

come from. 270

Table 1. Source And Sink Term Summary Summary of all the source (the β) and sink (the α) terms considered in this
manuscript. See their relevant sections for details on where they come from and the meanings of their terms.

Term Meaning Form

βr,k (d0, t) transport from other rooms qr(t)nr,k (d0, t)

βI,k (d0, t) production by infectious individuals NI

V 〈λI(t)nI,k(d0, t) [1− EI,m,out(d0)]〉I
αo(t) air exchange with outside qo(t)
αr(t) air exchange with other rooms qr(t)
αv (d0, t) filtering by ventilation qv(t)Ev (w(d0, t)d0)
αg (d0, t) gravitational settling ≈ 1

hug (w(d0, t)d0)
αd (d0, t) deposition on surfaces found elsewhere

αI,f (d0, t) filtering by infectious individuals inhaling 1
V

∑NI

j=1 λI,j(t) [1− SI,m,in,j(d0, t)SI,r,j,k(d0)SI,m,out,j,k(d0)]

αS,f (d0, t) filtering by susceptible individuals inhaling 1
V

∑NS

j=1 λS,j(t) [1− SS,m,in,j(d0, t)SS,r,j,k(d0)SS,m,out,j,k(d0)]

αO,f (d0, t) filtering by other individuals inhaling 1
V

∑NO

j=1 λO,j(t) [1− SO,m,in,j(d0, t)SO,r,j,k(d0)SO,m,out,j,k(d0)]

Environment 271

Like most Wells-Riley formulations, we consider the infection risk in one sufficiently 272

well-mixed indoor environment such as a room or set of rooms sufficiently coupled 273

together with respect to their air that they have the same infectious aerosol 274

concentration densities. The environment could also be split into coupled well-mixed 275

zones with weaker mixing between them [4,13], but that shall not be considered here. 276

Let the volume of the environment be V . Air is exchanged with outside, with other 277

rooms, and circulated internally through the ventilation system. Let Qo, Qr, and Qv be 278

the volumetric rate of air exchange with outdoors, other rooms, and the circulating 279

ventilation of the environment (ventilation system that pulls air out of the environment 280

and puts it back in). These will be normalized by the environment volume; yielding 281

qo ≡ Qo/V , qr ≡ Qr/V , and qv ≡ Qv/V since target values of these parameters are 282

often the design goals for HVAC systems. 283

Aerosols 284

Consider the concentration of infectious aerosols over time. To be completely accurate, 285

we need to consider the concentration density for each multiplicity k as a function of 286
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time, current diameter d while in the environment, and the solute content (including 287

inactivated pathogen copies). We have to consider both d and the solute content 288

because an exhaled aerosol’s equilibrium diameter is a function of its solute content, the 289

humidity, and the temperature [18]. Higher solute concentrations decrease the vapor 290

pressure of the aerosol, which allows equilibrium to be reached as long as the 291

environment isn’t super-saturated close to saturated [18,19]. For higher humidities, an 292

aerosol will continue to grow by condensation indefinitely, though the growth rate slows 293

towards a crawl for d > 20 µm [19,20]. But such super-saturated conditions can cause 294

clouds/fog, which rarely occur in indoor environments. So we will assume the 295

environment is sub-saturated. If the environment is dry, the aerosols can evaporate at 296

most to the point where they are purely precipitated solid with no water left. 297

This means that we have four different diameters to consider, which are 298

d current diameter in the environment (spherical equivalent diameter if it is completely 299

dry or almost dry and the solute causes a non-spherical shape) 300

de equilibrium diameter in the environment 301

d0 wet diameter at production (original diameter), which determines the distribution of 302

initial multiplicities 303

dD spherical equivalent dry diameter when all water is evaporated away and just solute 304

remains (note that the aerosol may no longer be spherical, so the spherical 305

equivalent diameter for the same volume must be used) 306

For any aerosol; d0 and dD are fixed and never change as long as collisional-coalescence 307

and shattering don’t occur (can be treated as fixed if these processes are negligible), de 308

is dynamic in time if the environment’s temperature and/or humidity changes, and d is 309

dynamic in time unless the environment’s temperature and humidity exactly match 310

those inside the respiratory tract at the point of production. 311

Small aerosols respond very quickly to the humidity and temperature, 312

evaporating/condensing to their equilibrium diameter in a very short period of time due 313

to their high surface area to volume ratio [6, 19,21]. Assuming the environment is 314

well-mixed enough that the time between exhalation from an infectious individual and 315

inhalation by any person is long compared to the evaporation/condensing time scale, we 316

can make the approximation that all aerosols are at their equilibrium diameter when in 317

the environment (d ≈ de). This means that we just need to worry about the equilibrium 318

diameter and its changes, and not the non-immediate response to shifting equilibrium 319

diameters. There is one complication, however. Aerosols will initially stay in the 320

exhaled plume where the humidity is higher, so they won’t reach the well-mixed 321

equilibrium diameter till they leave the plume or the plume is diluted and mixed with 322

the environment, which brings us back to the well-mixed environment assumption. We 323

will also make the assumption that the temperatures and humidities in different 324

individuals’ respiratory tracts (and the volume under their facemasks if they are 325

wearing any) are similar enough and that the aerosols grow fast enough that the 326

aerosols approximately return to their original diameters at production when inhaled 327

into the respiratory tracts of other people (or the person who generated them if they 328

breath them back in). Combined, our assumption/approximation is 329

d(t) ≈

{
de(t) if in the environment outside of the respiratory tract ,

d0 if in anyone’s respiratory tract .
(18)

Let us define ratios between the remaining diameters: the evaporation ratio w, the 330

dilution ratio δ, and the initial solute ratio ζ as 331
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w ≡ de
d0

, (19)

δ ≡ de
dD

, (20)

ζ ≡ dD
d0

. (21)

Note that w and δ are potentially functions of time, as well as diameter due to the 332

effect of surface curvature (through surface tension) on equilibrium vapor 333

pressure [18, 19]. Also, different solutes have different molar densities, different practical 334

osmotic coefficients, and maximum concentrations before the precipitate; and therefore 335

different functional relationships between the saturation vapor pressure and the 336

concentration [18]. So different solute compositions will cause w and δ to be different 337

even for aerosols with the same ζ. 338

But, in the folloowing we will make the assumption that the value of ζ and the 339

solute composition (except for the pathogen copies) is approximately constant from each 340

infectious individual to the next and over time with each infectious individual, and we 341

will ignore the contribution of the pathogen copies (both active and inactivated) to the 342

equilibrium vapor pressure and therefore de. We will also assume that ζ has no diameter 343

dependence (i.e. attraction and repulsion of solutes from the liquid surface at production 344

has a negligible effect on solute fraction and composition). With these approximations, 345

we have a single constant value of ζ and single functions for w and δ, possibly over time 346

and d0 (or equivalently dD), for all infectious aerosols in the environment. 347

This means we can choose to track one of de, d0, or dD and always know the other 348

two through the ratios that are the same for all infectious aerosols at the same moment 349

of time with the same value of the chosen diameter parameter. Thus we have two 350

independent variables, t and one diameter parameter. 351

Processes such as gravitational settling, deposition, filtering or exchange by the 352

ventilation, filtering by facemasks when inhaling are all functions of the current 353

diameter, which is approximately de, making de convenient. Additionally, any 354

non-drying aerosol instruments can be used in the environment to measure de. But, 355

because de can change over time for a fixed dD or d0, the equations for the aerosol 356

concentration density in terms of t and de have a flux term (from evaporation/growth) 357

with a partial derivative with respect to de; making the equations PDEs (Partial 358

Differential Equations) which adds complications and can be avoided in the analysis. 359

This can be seen by considering the total time derivative of the aerosol concentration 360

density ñ expressed in terms of t and de, which is 361

dñ(de, t)

dt
=
∂ñ

∂t
+
∂ñ

∂de

de
dt

. (22)

Since dD and d0 are fixed for a given aerosol over time regardless of how the 362

temperature or humidity in the environment might be changing, the equivalent flux 363

term is zero and thus the equivalent functions are ODEs, which are much easier to solve. 364

Thus, we eliminate de as a choice for the diameter parameter. 365

The model in this manuscript can be conducted with either choice of d0 or dD, with 366

w appearing in places if d0 is chosen and both δ and ζ appearing in places, if dD is 367

chosen. We choose d0 because then we only need one of the ratios (w only), the diameter 368

limits are easier to express in it, and the literature on the diameter distributions of 369

exhaled aerosols generally work hard to convert their measurements (vary between 370

whether they are de or dD) into expressions in terms of d0 rather than dD. 371

Now, nk(d0, t) be the concentration density of aerosols in terms of t and the original 372

diameter d0. Let ñk be the concentration density in terms of t and de, and n̆k be the 373
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concentration density in terms of t and dD. To make conversions between them; 374

consider the original diameter interval d0 to d0 + dd0, and its corresponding intervals de 375

to de + dde and dD to dD + ddD. The number of aerosols in each interval must all be 376

equal: nkdd0, ñkdde, and n̆kddD. Thus, the conversions are 377

ñk =
nk
w

, (23)

n̆k =
nk
ζ

, (24)

ñk =
n̆k
δ

. (25)

Let n0,k(d0) be the initial concentration density in the room for a multiplicity k at 378

the initial time t = t0 and nr,k(d0, t) be the volume averaged concentration density of 379

the air coming in from other rooms. We are assuming that the concentration density 380

outdoors is negligible. 381

Diameter Limits 382

For the model, we will limit ourselves for each multiplicity to the range d0 ∈ [dm,k, dM ] 383

where dm,k is the minimum aerosol diameter required to hold k pathogen copies, and 384

dM is a diameter cutoff separating larger aerosols that are more ballistic and 385

gravitationally settle to the ground too quickly to become well mixed and smaller 386

aerosols that more closely follow the flow and mix. Let Km(d0) be the largest number 387

of pathogen copies that can fit in an aerosol at production.. We will consider 388

nk(d0, t) = 0 ∀ d /∈ [dm,k, dM ], k > Km(d0) . (26)

All of these limits have problems, but there is no obvious better choice without adding a 389

lot more complexity to the model. 390

For a spherical pathogen with diameter dp, we can use the crude approximation of 391

just considering the total pathogen volume and a packing efficiency e = 0.74 (hard pack 392

spheres) with a minimum of 1 and completely neglect the aerosol shape that small 393

number of pathogen copies would force (two pathogen copies, for example, can’t be 394

arranged into a configuration that even vaguely resembles a sphere). We can use the 395

same idea to get Km(d0). Both of them are 396

dm,k ≈

{
dp if k = 1 ,(
k
e

)1/3
dp if k > 1 ,

(27)

Km(d0) ≈ max

[
1, e

(
d0

dp

)3
]

. (28)

At the lower limit near dm,k, the pathogen/s take up a disproportionate amount of 397

the space in the aerosol compared to other solutes and the assumption of approximately 398

equal solute concentrations at production is violated and the evaporation ratio has a 399

strong dependence on d0 and the initial multiplicity, the latter of which we aren’t 400

tracking at all. However, as long as the total liquid volume of exhaled aerosols with 401

diameters close to dm,k (say, those whose diameters are small enough that their volume 402

is only a few times larger) is small compared to total liquid volume of the rest of the 403

range in d0, this problem will have a negligible effect. Additionally, the diameter 404

dependence of many of the sink terms may be much smaller close to dm,k for submicron 405

pathogen copies which means that the effect of assuming the wrong evaporation ratio 406

November 27, 2020 12/37

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 2, 2020. ; https://doi.org/10.1101/2020.11.30.20241083doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.30.20241083
http://creativecommons.org/licenses/by/4.0/


may be small. The smaller the pathogen, the less issues this will pose. It will be least 407

important for small viruses, and possibly quite important for large bacteria and 408

eukaryotic pathogens.. 409

The upper limit is rather imprecise since there is no single hard separation scale that 410

could be chosen unless the air is completely still in which case one can use a so called 411

“Wells curve” (same Wells as of the Wells-Riley model) for the environment’s humidity 412

to determine the largest size that won’t settle to the ground before evaporating to their 413

equilibrium diameter, such as the original one [22] or newer ones [21]. But mixing of any 414

sort complicates this. One might think that one could just rely on the fact that the 415

gravitational settling sink term keeps growing with diameter and not bother with the 416

problem. But, the well-mixed assumption breaks down and the lifetime of the aerosols 417

converges towards depending solely on the initial diameter and the height of the 418

infectious individual’s mouth and nose from the ground. Additionally, the time to 419

evaporate to the equilibrium diameter increases with increasing size. And from a 420

practical standpoint, it is necessary in order to keep Mc from getting too large since 421

Mc ∼ O(d3
M ) for sufficiently large dM and pathogen concentration in the infectious 422

individual’ respiratory tract fluid ρp. If we assume that the aerosols are approximately 423

spherical (reasonably true except potentially when completely dried out) and their 424

density is approximately equal to that of water ρw, the aerosols’ inertial response times 425

τp to fluid motions from Stokes drag (we are assuming they are small enough that 426

contributions beyond Stokes drag are negligible) and gravitational settling terminal 427

velocity ug are 428

τp =
ρwd

2

18ρaνa
, (29)

ug =
(ρw − ρa) gd2

18ρaνa
≈ gτp , (30)

where ρa is the density of air, νa is the kinematic viscosity of air, and g is the 429

acceleration due to gravity. 430

Both grow quadratically with diameter, which does not lend itself to a well defined 431

cutoff scale. And additionally one must consider that once exhaled, the aerosols will 432

tend to evaporate (relative humidity in the environment is typically lower than in the 433

respiratory tract where it is close to 100%) thereby reducing their inertia and terminal 434

velocities. For 10 µm, 20 µm, and 50 µm diameter aerosols; the terminal velocities at 435

20 ◦C and atmospheric pressure are 3.0 mm s−1, 1.2 cm s−1, and 7.5 cm s−1 respectively. 436

However, larger aerosols take longer to evaporate/grow to their equilibrium diameter 437

and therefore will settle at a faster rate initially than their final equilibrium diameter 438

suggests, which makes them even more likely to be lost due to settling than smaller 439

aerosols. 440

The simulations of Chong et al. [23] indicate that 100 µm aerosols are quite ballistic 441

and quickly fall out of the exhaled plume, but 10 µm aerosols are carried along with the 442

plume and stay in the air despite their evaporation being greatly slowed. This suggests 443

that dM should be chosen somewhere in the 10–100 µm range, which is further 444

supported by the Wells curves found by Xie et al. [21]. For lack of a better suggestion; 445

we suggest the use of dM = 50 µm, which will be explored in the Discussion. Before 446

evaporating, the terminal velocity is 7.5 cm s−1. If the evaporation ratio is a typical 447

value in the 1
2– 1

5 range, the final evaporated diameter would be in the 10–25 µm range 448

and have terminal velocities in the 3–19 mm s−1 range which is still in the range that 449

indoor environment air flow can keep suspended (though with a high loss rate). 450
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People and Infectious Aerosol Production 451

We will denote infectious individuals by the subscript I, susceptible individuals by the 452

subscript S, and other individuals by the subscript O. The Other category is all the 453

individuals who are non-infectious non-susceptible. This includes individuals that are 454

immune before they enter the environment (following Jimenez [8]), all of the Removed 455

group SIR and SEIR models except for the individuals who died or leave the 456

environment, and all of the Exposed group in SEIR models. If one wants to make a full 457

SEIR model from the model presented in this manuscript, the two subgroups (Exposed, 458

and the part of Removed that is still within the environment and breathing plus the 459

previously immune individuals) within this group will have to be treated explicitly. Let 460

the number of individuals in category C be NC . The total number of individuals is 461

N = NI +NS +NO. The subscript A will be used to refer to all individuals in all 462

categories. Each count is potentially a function of time as individuals can come in and 463

out of the environment. Let 〈·〉C denote taking the average over all individuals in 464

category C. 465

Let λC,j(t) be the volumetric breathing rate of the j’th person in category C. Let 466

EC,m,in,j(d) and EC,m,out,j(d) be the filtering efficiency of the mask (if any) of the j’th 467

person in category C for inhalation and exhalation respectively. 468

The filter efficiencies of most masks vary significantly with aerosol diameter. Note 469

that it is important that the leak rate of the mask be included in its filtering efficiency. 470

These two filtering efficiencies are generally not equal because masks tend to leak more 471

during exhalation than inhalation and aerosols have higher velocities on exhalation than 472

inhalation. We will assume that all infectious aerosols caught by the mask aren’t later 473

re-aerosolized. 474

Let EC,r,j(d) be the filtering/absorption efficiency of the respiratory tract of the j’th 475

person in category C. This term is non-zero, but it is also not equal to one since the 476

respiratory tract does not absorb all infectious aerosols that pass through it [2, 4, 6, 10]. 477

The best example of this is the observation that individuals can inhale smoke (which is 478

composed of many aerosols) and then exhale some of it back out. The diameter will be 479

de = wd when passing through the mask on inhalation, and d0 when in the respiratory 480

tract and when passing through the mask on exhalation since the humidity between the 481

mouth and nose and the mask is high and the distance is short, so there is little time for 482

evaporation. It is often easier to work with the survival efficiencies rather than the 483

filtering efficiencies, defined as 484

SC,m,in,j(d0, t) = 1− EC,m,in,j (w(d0, t)d0) , (31)

SC,r,j,k(d0) = 1− EC,r,j(d0) , (32)

SC,m,out,j,k(d0) = 1− EC,m,out,j(d0) . (33)

We will assume that the number of infectious pathogen copies in each exhaled 485

droplet/aerosol follow a Poisson distribution where the mean count is equal to the 486

aerosol’s initial volume times the pathogen load in respiratory tract fluid at the point of 487

production. This excludes diseases where pathogenic agents stick together and clump. 488

Note that this implicitly means we are assuming that the pathogen volume fraction in 489

the respiratory tract fluid is small. Otherwise, the non-Poissonity caused by there being 490

a maximum number of pathogen copies that can fit in a finite sized drop will NOT be 491

negligible. 492

Let ρj (d0, t) dd0 be the number density in exhaled air of the aerosols with diameters 493

between d0 and d0 + dd0 exhaled by the j’th infectious individual at time t. Let ρp,j(t) 494

be the pathogen concentration in the j’th person’s respiratory tract fluid where the 495

aerosols are being produced. The mean/expected multiplicity for infectious aerosols 496
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produced by the j’th infectious individual for any d0 is 497

〈k〉(d0, t)j =
π

6
d3

0ρp,j(t) . (34)

If the pathogen copies are Poisson distributed in the fluid that makes up the aerosols 498

(no clumping, etc.), then 499

nI,j,k(d0, t) =

{
ρj (d0, t)PP

(
〈k〉(d0, t)j , k

)
if d0 ≥ dm,k ,

0 if d0 < dm,k .
(35)

Note that no infectious aerosols with multiplicity k can be generated with diameters too 500

small to contain them (i.e. no d0 < dm,k aerosols). 501

Sources 502

We will denote sources by the symbol β with a subscript denoting the individual source. 503

All of them are normalized by the volume of the environment, V . 504

First, ventilation with other rooms brings infectious aerosols inside at a rate, 505

normalized by the environment volume, of 506

βr,k(d0, t) = qr(t)nr,k (d0, t) . (36)

where we have lumped all other rooms that might be exchanging air with the room of 507

interest together rather than summing over them as done by Noakes & Sleigh [13]. A 508

coupled model for multiple rooms would have to split this into a sum and model the 509

whole system. Note that we are assuming, like elsewhere, the aerosols brought in from 510

other rooms reach their equilibrium diameter quickly compared to other processes. 511

The other source is the infectious individuals exhaling aerosols with pathogen copies 512

in them. The total production from the infectious individuals normalized by the 513

environment volume is the sum of the products of the breathing rate, the exhaled 514

aerosol concentration density, and the survival efficiency of the mask [4, 8]; which is 515

βI,k(d0, t) =
1

V

NI∑
j=1

production rate︷ ︸︸ ︷
λI,j(t)nI,j,k(d0, t)

mask survival︷ ︸︸ ︷
[1− EI,m,out,j(d0)]

=
NI
V
〈λI(t)nI,k(d0, t) [1− EI,m,out(d0)]〉I , (37)

where the j subscript has been dropped in the average. Any terms in the average of a 516

product (λI,j , nI,j,k, and 1− EI,m,out,j,k) that have no correlation with the others can 517

be pulled out to make a product of averages. But any correlated terms cannot be 518

separated, which means it must be kept as an average of a product. As an example, if 519

there are two infectious individuals in a room and one is singing and the other is 520

listening in silence; they will be strongly correlated. The singing person will on average 521

be breathing at a higher rate, could have a higher concentration density of infectious 522

aerosols in their exhaled air, and probably won’t be wearing a mask while the listener 523

might be wearing a mask. Now, if all individuals are wearing the same mask, the mask 524

term could be pulled out but the other two terms would remain since they could still be 525

correlated. 526

Other than not replacing the average of the product with the product of the averages, 527

following aerosols with a particular multiplicity rather than quanta, and consider each 528

diameter separately; this term is identical to the equivalent term by Nazaroff, Nicas & 529

Miller [4] and Jimenez [8] and, if masks are removed, that of the original formulation [1]. 530
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Sinks 531

Sinks are proportional to the concentration density nk. We will denote all sinks divided 532

the concentration density by the symbol α with a subscript denoting the individual 533

source. All of them are normalized by the volume of the environment, V . Unlike the 534

sources, none of the sinks (except inactivation, considered separately) depend on the 535

multiplicity and therefore the subscript k is dropped. Note that inactivation is treated 536

separately later since it is a flux term when considering each multiplicity separately, 537

unlike in the traditional formulation where it is a sink. 538

The volume normalized loss rate coefficients of infectious aerosols due to exchange of 539

clean air with outdoors and other rooms are just the concentration density times the 540

volume normalized flow rate [6, 13] and are 541

αo(t) = qo(t) , (38)

αr(t) = qr(t) , (39)

respectively. 542

Let Ev(d) be the filtering efficiency of the circulating ventilation system for aerosols 543

with diameter d. The diameter when an aerosol reaches this filter is d ≈ de = w(d0, t)d0. 544

Then the volume normalized loss rate coefficient from the circulating ventilation 545

system [1] is 546

αv(d0, t) = qv(t)Ev (w(d0, t)d0) . (40)

Aerosols also gravitationally settle and deposit onto surfaces. We will treat these 547

processes as simple loss rates proportional to their concentration densities just as one 548

does with radioactive decay. The volume normalized loss rates divided by the 549

concentration density, of gravitational settling and deposition are defined to be 550

αg(w(d0, t)d0) and αd(w(d0, t)d0) respectively; which depend on the room geometry, 551

aerosol diameter, and air flow in the room. A possible approximate expression for the 552

settling loss term [6] would be 553

αg (w(d0, t)d0) ≈ 1

h
ug (w(d0, t)d0) , (41)

where h is the characteristic height of the indoor environment and ug(d) is the terminal 554

velocity. For small spherical aerosols, Eq (30) provides ug(d). Larger aerosols need 555

additional diameter corrections [6, 21,24]. 556

Sinks from Individuals Inhaling Aerosols 557

Unfortunately, when individuals inhale infectious aerosols, some are absorbed thereby 558

causing a risk of infection. While this phenomena is not desired for susceptible 559

individuals, we must consider the loss rate from this process by the susceptible 560

individuals as well as the infectious individuals and the non-infectious non-susceptible 561

individuals. There are three steps to the filtering process for the j’th person of category 562

C: passing through the mask on inhalation, passing through the respiratory tract, and 563

then passing through the mask on exhalation. 564

The total survival probability of an aerosol surviving going through all three steps is 565

the product of the individual survival rates. The total filtering efficiency is then one 566

minus the total survival rate. But, there is a time delay between when the aerosols are 567

removed from the environment on inhalation and when the survivors are exhaled back 568

out. As long as this time is short compared to all other time scales such as mixing times 569

in the room, the time scales of all other sinks, the time scale of inactivation, etc.; we can 570
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ignore this time delay and consider the re-exhalation to occur at the same time. This 571

assumption implies that we can neglect possible changes in multiplicity by inactivation 572

while the aerosols are in the respiratory tract. In most situations, this is a reasonably 573

good assumption. But, at a swimming pool where people regularly hold their breath for 574

long periods of time, this assumption could be violated for the highest multiplicities 575

since the inactivation rate from k to k − 1 is proportional to k. 576

The number of aerosols that are inhaled by a person is equal to λC,j(t)nk(d0, t). The 577

volume normalized sink coefficient from this filtering is then 578

αC,f (d0, t) =
1

V

NC∑
j=1

volume rate︷ ︸︸ ︷
λC,j(t)

total filtering efficiency︷ ︸︸ ︷[
1−

mask in︷ ︸︸ ︷
SC,m,in,j(d0, t)

resp. tract︷ ︸︸ ︷
SC,r,j,k(d0)

mask out︷ ︸︸ ︷
SC,m,out,j,k(d0)

]
=

NC
V
〈λC(t) {1− [1− EC,m,in,j (w(d0, t)d0)]

• [1− EC,r,j(d0)] [1− EC,m,out,j(d0)]}〉C , (42)

where the j subscript has been dropped in the average over category C. As was the case 579

before with the average of a product, only terms that are uncorrelated with the others 580

can be pulled out or be replaced by their average value inside. 581

Flux: Inactivation 582

When a pathogen in an aerosol with multiplicity k inactivates, the aerosol’s multiplicity 583

changes to k − 1. We will model inactivation of pathogen copies as exponential decay 584

with inactivation rate γ(t), which might depend on time (e.g. dependence on UV light 585

intensity, humidity, etc. that could be fluctuating in time). For aerosols with a 586

multiplicity of k, the volume normalized loss rate to multiplicity k − 1 is just 587

fk,k−1(t)nk(d0, t) = kγ(t)nk(d0, t) . (43)

Two pathogen copies will never inactivate at exactly the same time; so we don’t have 588

to consider flux terms beyond the two neighboring multiplicities. 589

General Concentration Density Equations 590

All of the sources, sinks, and flux terms can be collected to make the system of total 591

differential equations describing the infectious aerosol concentration density, which is 592

dnk
dt

= −α(d0, t)nk + fk+1,k(d0, t)nk+1 − fk,k−1(d0, t)nk + βk(d0, t) . (44)

We have assumed that shattering and collisional coalescence of infectious aerosols, 593

whether from turbulent induced collisions or differential gravitational settling, is 594

negligible. Collisional coalescence could begin to be important if there are a significant 595

number of very large aerosols and/or nk is very large. Particularly, d > 100 µm 596

aerosols/droplets, even though they will generally settle to the ground/floor before 597

evaporating to their equilibrium diameter [21, 22], can capture smaller aerosols on their 598

way to the ground/floor [18–20]. This will generally be negligible unless individuals are 599

situated in the environment such that the large aerosols exhaled by one person (who 600

need not be infectious) will fall through the exhaled aerosol plume of an infectious 601

individual , and potentially negligible even then. If the aerosol concentration, including 602

non-infectious aerosols, reach the levels seen in atmospheric clouds, collisional 603
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coalescence might also have to be considered along with keeping track of k = 0 aerosols; 604

though this is very unlikely in indoor environments except and when there is a lot of 605

smoke or artificial fog machines are in use, like in a discotheque or theater. 606

Then, putting the flux terms into Eq (44), we have the following system of ODEs to 607

get the concentration density 608

dnk
dt

= −α(d0, t)nk + (k + 1) γ(t)nk+1 − kγ(t)nk + βk(d0, t) . (45)

Luckily this is a system of ODEs rather than PDEs with flux terms in diameter 609

(involving derivatives with respect to diameters). This is the advantage of choosing d0 610

or dD instead of de. For practical applications, this also means that we can also split 611

the diameter range into bins and solve it for each bin separately since there are no flux 612

terms between bins. (See S3 Appendix for how to bin the model with respect to 613

diameter.) 614

This is a linear inhomogeneous finite system of coupled ODEs at each d0. The 615

number of equations in the system is finite since k is non-negative and there is the 616

maximum theoretical multiplicity M . Moreover, we don’t even need to care about k = 0 617

since those aerosols are no longer an infection hazard. Additionally, the system that 618

needs to be solved is smaller if Mc < M . If Mc = 1, then we have only one ODE. This 619

situation occurs if the pathogen load of respiratory tract fluid is low enough that very 620

few aerosols have 2 or more pathogen copies in them. 621

Note that this model demonstrates superposition with respect to sources since it is 622

linear, as expected intuitively — each aerosol is independent of all others, therefore the 623

response (concentration density and expected dose) from each individual source is 624

independent of all other sources. If nk,1 and nk,2 are solutions for the same α and γ but 625

different sources βk,1 and βk,2 respectively, then the solution for βk = βk,1 + βk,2 is 626

nk = nk,1 + nk,2. 627

Infection Risk 628

Let µj,k be the average number of aerosols with multiplicity k absorbed by the j’th 629

susceptible individual from time t0 to time t. At any particular instant of time, the 630

average number of such aerosols of each original diameter d0 entering the person’s mask 631

if they are wearing a mask or their mouth and nose if they aren’t is λS,j(t)nk(d0, t). A 632

fraction SS,m,in,j(d0, t) will survive the mask to enter the respiratory tract [2–5,8,10]. A 633

fraction ES,r,j(d0) of those survivors will be absorbed by the respiratory 634

tract [2, 4, 6, 10], which contributes to the dose. The expected average aerosol dose is 635

then the double integral of this over the d0 and the time between t0 and t, which is 636

µj,k(t) =

∫ dM

dm,k

dφ

∫ t

t0

dv

absorption efficiency︷ ︸︸ ︷
ES,r,j(φ)

survive mask︷ ︸︸ ︷
SS,m,in,j(φ, t)

inf. aerosol inhalation rate︷ ︸︸ ︷
λS,j(v)nk(φ, v)

=

∫ dM

dm,k

dφ

∫ t

t0

dv ES,r,j(φ) [1− ES,m,in,j (w(φ, v)φ)]λS,j(v)nk(φ, v), (46)

where we have φ as the integration variable over d0. We will continue to use φ 637

exclusively for this purpose in the rest of the manuscript. 638

In order to use the µj,k in the multiplicity-corrected dose-response model for the 639

particular disease of interest R, we need to first assume that the aerosol dose for each 640

multiplicity follows a Poisson distribution with µj,k as the means and that each is 641

independent of each other (no correlations). This requires the well-mixed assumption 642

like many other parts of the model. 643
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But it also requires that the effect of turbulent inertial clustering is negligible. We 644

will now show that it is negligible except possibly at extremely high aerosol 645

concentrations. It will be negligible if the aerosol Stokes numbers St = τp/τη are very 646

small (St� 1) [25,26] where τp is the aerosol inertial response time scale from Eq (29) 647

and τη is the Kolmogorov time scale of the turbulence in the environment, which is 648

τη =
√
νa/ε where ε is the turbulent dissipation rate. It will also be small if the typical 649

inter-aerosol distance d̄a ∼ N−1/3, where N is the total infectious aerosol concentration 650

for all d0 and k, is much larger than the typical scale of turbulent inertial clustering (i.e. 651

the fraction of aerosols with a neighbor in the clustering range is low). The typical scale 652

of turbulent inertial clustering is about 10η [25, 26] where η = (ν3
a/ε)

1/4 is the 653

Kolmogorov length scale of the turbulence. This means that as long as St� 1 and/or 654

N−1/3 � 10η, the deviations of the aerosol doses from independent Poisson 655

distributions will be negligible. The situation will be worst for the largest w(dM , t)dM 656

sized aerosols in high enough humidity that w(dM , t) ≈ 1. For a low dissipation rate of 657

ε = 1 mW kg−1; St = 0.06 for a dM sized aerosol and the number density limit is 658

N � 4× 105 m−3. The Stokes number is small, so the turbulent inertial clustering’s 659

effect will be small even if N exceeded that limit. For a higher dissipation rate of 660

ε = 1 W kg−1; St = 2.0 for a dM sized aerosol and the number density limit is 661

N � 7× 107 m−3. While the Stokes number is large, the number density limit is very 662

high so turbulent inertial clustering’s effect will generally be small. For a high for 663

indoors dissipation rate of ε = 10 W kg−1; St = 6.3 for a dM sized aerosol and the 664

number density limit is N � 4× 108 m−3. While the Stokes number is large, the 665

number density limit is very high so turbulent inertial clustering’s effect will generally 666

be small. Thus, turbulent inertial clustering will have a negligible effect on the 667

Poissonity and independence of the aerosol dose distributions except possibly at 668

extraordinarily high aerosol concentrations. 669

Model Solution and Simplification 670

General 671

There is an analytical solution to Eq (45), though it is not closed form unless the time 672

dependence of α, β, and γ allow it. Eq (45) can be rewritten in matrix-vector form as 673

d~n

dt
= A(d0, t)~n(d0, t) + ~β(d0, t) , (47)

where ~n(d0, t) and ~β(t) are the nk(d0t) and βk(d0, t) for k > 0 in vector form and 674

A ≡



−α(d0, t)− γ(t) 2γ(t)
−α(d0, t)− 2γ(t) 3γ(t)

. . .
. . .

. . . Mcγ(t)
−α(d0, t)−Mcγ(t)

 . (48)

is an upper bidiagonal Mc ×Mc square matrix. For any fixed d0 or bin of d0, the 675

resulting system of ODEs is particularly amenable to efficient numerical solution even 676

for very large Mc because A is sparse with only one or two elements per row. 677

The general solution in matrix-vector form, shown in S1 Appendix, is 678

~n(d0, t) = exp

[∫ t

t0

A(d0, x)dx

]
~n0(d0) +

∫ t

t0

exp

[∫ t

s

A(d0, x)dx

]
~β(d0, s)ds . (49)
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Working this out using the structure of the diagonalization of A in S1 Appendix, the 679

general solution for each k is 680

nk(d0, t) = exp

[
−
∫ t

t0

α(d0, x)dx

]
exp

[
−k
∫ t

t0

γ(x)dx

]
•
Mc∑
p=k

(
p

k

)
n0,p(d0)

[
1− exp

[
−
∫ t

t0

γ(x)dx

]]p−k

+

Mc∑
p=k

(
p

k

)∫ t

t0

βp(d0, s)

• exp

[
−
∫ t

s

α(d0, x)dx

]
exp

[
−k
∫ t

s

γ(x)dx

] [
1− exp

[
−
∫ t

s

γ(x)dx

]]p−k
ds , (50)

where
(
k
m

)
= k!/(m!(k −m)!) is the notation for the binomial coefficient k choose m. 681

Coefficients Constant in Time 682

We cannot go further in simplifying the general solution from Eq (50) without knowing 683

the time dependence of α, ~β, and γ. In many situations; α, ~β, and γ are approximately 684

constant with respect to time. If this is so; the general solution from Eq (50) and its 685

time integral from t0 to t (needed for the dose) become (see S1 Appendix) 686

nk(d0, t) = n∞,k + zs
[
Uk(d0, ~β(d0), z) + Vk(~n0(d0), z)

]
, (51)∫ t

t0

nk(d0, v)dv = (t− t0)n∞,k(d0)

−Uk(d0, ~n0(d0), 1) + zsUk(d0, ~n0(d0), z)

− 1

γ
Wk

(
d0, ~β, z

)
, (52)

where 687

z(t) = e−(t−t0)γ ∈ (0, 1] , (53)

s(d0) =
α(d0)

γ
+ k , (54)

Vk(~y, x) =

Mc∑
i=k

(
i

k

)
yi(1− x)i−k , (55)

Uk(d0, ~y, x) = − 1

γ

Mc∑
i=k

(
i

k

)
yi

i−k∑
p=0

(
i− k
p

)
(−1)pxp

s+ p
, (56)

Wk(d0, ~y, x) =

∫ x

1

dv vs−1Uk(d0, ~y, v) , (57)

= − 1

γ

Mc∑
i=k

(
i

k

)
βi(d0)

i−k∑
p=0

(
i− k
p

)
(−1)p (zs+p − 1)

(s+ p)2
, (58)

and n∞,k(d0) is the concentration density as t→∞ which is 688
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n∞,k(d0) = −Uk
(
d0, ~β, 1

)
=

1

γ

Mc∑
i=k

(
i

k

)
βi(d0)

i−k∑
p=0

(
i− k
p

)
(−1)p

s+ p
, (59)

Note that s is a function of k and e−(α+kγ)(t−t0) = zs. 689

It is possible for λS,j to be a function of t but α not be (i.e. there is cancelation). 690

But if λS,j and w are constant, the expected average aerosol dose of multiplicity k for 691

the j’th susceptible individual in Eq (46) becomes 692

µj,k(t) = λS,j

∫ dM

dm,k

dφES,r,j(d0) (1− ES,m,in,j (wφ))

∫ t

t0

nk(φ, v)dv . (60)

Calculation of ~nk(d0, t), ~n∞,k(d0),
∫ t
t0
nk(d0, v)dv scales as O

(
M3
c

)
due to there 693

being Mc multiplicities and double sums in Uk and Wk that scale as Mc. There is a 694

recursive solution for ~n∞,k(d0) which is linear in Mc, and recursive solutions for all the 695

Uk and Wk which are quadratic in Mc. Additionally, the recursive formulas don’t 696

require as much numerical precision in the intermediate steps to get a desired final 697

precision as shown in S5 Appendix. From S1 Appendix, the recursive solutions start at 698

k = Mc and proceed downwards to k = 1. They are 699

Uk(d0, ~y, x) =

{
−yMc

γs if k = Mc ,
(k+1)x

s Uk+1(d0, ~y, x)− 1
γsVk(~y, x) otherwise ,

(61)

Wk(d0, ~y, x) =


yMc

γs2 (1− xs) if k = Mc ,
1
s

[
(k + 1)Wk+1 (d0, ~y, x)

+xsUk (d0, ~y, x)− Uk (d0, ~y, 1)
]

otherwise ,

(62)

Uk (d0, ~y, 1) =

{
−yMc

γs if k = Mc ,
(k+1)x

s Uk+1(d0, ~y, 1)− yk
γs otherwise ,

(63)

n∞,k =

{
βMc

γs if k = Mc ,
1
γs [βk + (k + 1)γ n∞,k+1] otherwise .

(64)

(65)

This recursive analytical solution for ~n is checked against a numerical solution of 700

Eq (47) for a simple case and a very small time step in S2 Appendix. The relative 701

differences for the simple case are very small at less than 10−12. See S5 Appendix for 702

numerical considerations for evaluating the analytical solutions on a computer or solving 703

Eq (47) with a numerical ODE solver. The number of terms for both are discussed, as 704

well as the required precision and maximum magnitude required for floating point 705

numbers used to calculate the analytical solution formulas. 706

Determining The Cutoff Mc 707

In order to reduce the number of equations that have to be solved, we need to find a 708

suitable cutoff Mc < M if at all possible, whether for the whole diameter range or for 709

each diameter bin (advantage of doing a separate one for each bin is that Mc tends to be 710

small for the small diameter bins), such that the contribution of all higher multiplicities 711

is less than a threshold T ∈ (0, 1] fraction of the total contribution from all 712

multiplicities. In many cases, this depends only on the ρp,j of the infectious individuals 713

and one can skip directly to Eq (74) for the value of Mc to use (shown in Fig 2 for a few 714
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ρp,j). However, some cases such as when one starts the model after some number of 715

infectious individuals have left the environment, when there is significant transport from 716

other rooms, etc. require additional heuristics. These heuristics are developed below. 717

A cutoff is suitable if the total contribution for all k > Mc to the average pathogen 718

dose and therefore infection risk is small compared to the total contribution for k ≤Mc. 719

It is almost always true that Mc < M , and in many cases it can even be Mc = 1. This 720

depends on the distribution of exhaled aerosol sizes and the pathogen concentration ρp 721

in the respiratory tract fluid where the aerosols are produced. For very low pathogen 722

loading, one can use Mc = 1. Let d− and d+ be the bounds in d0 of the bin (or whole 723

range in which case d− = dm,1 and d+ = dM ) being considered. 724

The most reliable way to determine Mc is to use the model with the cutoff M and 725

determine Mc afterwards using the result, but that defeats the point of finding Mc since 726

the effort one wants to save has already been expended. So we need heuristics to 727

determine Mc ahead of time. All of them consider the dose contribution from high 728

multiplicity aerosols and consider a simplified kµj,k from Eq (46) with a particular 729

concentration density multiplied by the average absorption efficiency of susceptible 730

individuals. For each heuristic, we will define this parameter to be Hh,k(t) where the h 731

denotes the particular heuristic. Then, the heuristic for Mc is that we must find the Mc 732

such that 733

Mc∑
k=1

Hh,k(t)�
∞∑

k=Mc+1

Hh,k(t) ∀ h, t ≥ t0 . (66)

Note that we must take the largest Mc out of the values suggested by the individual 734

heuristics. 735

An equivalent way to express this heuristic is to look at the ratio of the sum of Hh,k 736

after the cutoff (k > Mc) to the total, defined as 737

Jh,Mc
(t) ≡

∑∞
k=Mc+1Hh,k(t)∑∞
k=1Hh,k(t)

. (67)

Now, Jh,Mc(t) ∈ [0, 1] and is approximately the ratio of the contribution of the higher 738

multiplicities k > Mc aerosols to the total, which we want to be small. An equivalent 739

statement of the heuristics is that one must find the Mc such that Jh,Mc
� 1 ∀ h, t ≥ t0. 740

One way to determine Mc is to say pick some threshold T ∈ (0, 1], and then find the 741

smallest Mc such that Jh,Mc
≤ T for all heuristics. Let Mc,h(T ) be the smallest value of 742

Mc that satisfies Jh,Mc,h
(t) ≤ T , which makes it the single heuristic value of Mc. Then, 743

Mc is just the maximum Mc,h. 744

First, we define the average absorption efficiency of the susceptible individuals as 745

AS(d0, t) ≡ 〈ES,r(d0) [1− ES,m,in (w(d0, t)d0)]〉S . (68)

If the α, β, γ, and w are constant in time; it is a lot less effort to calculate n∞,k(d0) 746

using Eq (59) than nk(d0). Then, each µj,k ∼ ASn∞,k. If qr(t) and nr,k(d0, t) are 747

non-zero, the doses from them have a similar scaling. If the initial concentration density 748

includes a lot of aerosols with high multiplicities, we will need to set Mc to be large 749

enough to include them even if they won’t matter after the initial time. We need to 750

consider this if n0,k � n∞,k for any k > 1, and they will have a similar scaling. These 751

heuristics are 752
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H∞,k = k

∫ d+

d−

AS(φ, t)n∞,k(φ)dφ , (69)

Hr,k(t) = k

∫ d+

d−

AS(φ, t)nr,k(φ, t)dφ , (70)

H0,k(t) = k

∫ d+

d−

AS(φ, t)n0,k(φ)dφ . (71)

The last heuristic is similar but considers the infectious individuals inside the 753

environment instead of the concentration density. This has the advantage of not needing 754

to determine n∞,k(d0). We essentially take the average over the d0 interval of βI,k(d0) 755

from Eq (36) times the absorption efficiency of the average susceptible individual. We 756

thus define the infectious individuals heuristic parameter 757

HI,k(t) ≡ k
∫ d+

d−

dφAS(φ, t)

NI∑
j=1

λi,j(t)nI,j,k(φ, t) [1− EI,m,out,j(φ)] . (72)

But there are practical difficulties in using it directly. So instead, we will define the 758

heuristic for each individual infectious individual using the largest diameter in the range 759

d+, and one would use the maximum Mc indicated by all of these. This has the 760

advantage that there is a simple form for the required Mc, which is derived in S4 761

Appendix. It is 762

Mc,I,j(d+, T ) = 1 + C−1
P

(
〈k〉(d+, t)j , (1− T )CP

(
〈k〉(d+, t)j ,Km(d+)− 1

))
, (73)

where CP is the CDF (Cumulative Distribution Function) of the Poisson distribution 763

and C−1
P (µ, c) is the inverse CDF to find the smallest k for which CP (µ, k) ≥ c. Note 764

that when Km(d+)� 1 and Km(d+)� 〈k〉(d+, t)j � 1, CP

(
〈k〉(d+, t)j ,Km − 1

)
' 1 765

and 766

Mc,I,j(d+, T ) ' 1 + C−1
P

(
〈k〉(d+, t)j , (1− T )

)
. (74)

When the assumptions don’t apply, this will give an overestimation, so it is usable to 767

get the value of Mc to use. It will just give a bigger value than necessary. 768

Fig 2 shows Mc,I,j as a function of d0 for several different ρp,j . Increasing ρp,j 769

approximately just shifts the curves for Mc,I,j to the left on a log-scale. Notice the very 770

strong effect of ρp,j on Mc, with values a little under 7000 being required for the largest 771

diameter bin for ρp = 1011 cm−3 and a value of 2 being required for the same bin for 772

ρp = 106 cm−3. Since Mc increases with d0, the vast majority of the effort to determine 773

the concentration density and the infection risk will be spent on the largest bins except 774

for small values of ρp. 775

Example for SARS-CoV-2 with High Viral Load 776

Room, People, and Filter Efficiencies 777

We consider a hypothetical example based on the ongoing SARS-CoV-2 pandemic — a 778

poorly ventilated seminar room with two infectious individuals with SARS-CoV-2 at the 779

very upper end of viral concentrations (viral load) and one of them continuously 780

coughing. Let the room have volume V = 200 m3 with a height of h = 4 m, with 781
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Fig 2. Required Mc Based on Pathogen Concentration in Infectious
Individuals. Mc,I,j required to capture 99% of pathogen production for each diameter
at aerosol production d0 from an infectious individual, with each line being a different
pathogen concentration in their respiratory tract fluid ρp,j (see legend).

ventilation qr = 0, qv = 0, and qo = 0.5 hr−1. We will ignore surface tension’s effects on 782

w. Let the humidity be such that the evaporation ratio is w = 1
3 , which is a constant 783

with respect to both t and d0. We ignore deposition (αd = 0). Let there be NS = 15 784

susceptible individuals in groups of 5 wearing no mask, a simple1 mask, and a simple2 785

mask (defined later); and no non-infectious non-susceptible individuals (NO = 0). The 786

susceptible individuals will be assumed to be sedentary/passive adults with a breathing 787

rate of λS,j = 0.3 m3 hr−1, which is in the range of mean breathing rates for this 788

activity from the U.S. EPA’s Exposure Factors Handbook Table 6.2 [27]. The pathogen 789

concentration for SARS-CoV-2 varies widely across individuals, location in the body, 790

and stage of the disease [15,16,28,29], and can sometimes get as high as the 791

1010–1011 cm−3 range [15, 16]. We will use this upper range because it makes the model 792

more challenging to solve due to the larger Mc and due to the interest in so called 793

“super-spreading events”. The situation is composed of two stages (Stages 1 and 2) that 794

each start when an infectious individual enters the room. Initially, there are no 795

infectious aerosols in the room, meaning n0,k(d0) = 0. Stage 1; at t = t0 = 0, one 796

infectious individual enters the room who is speaking, wearing no mask, breathing at a 797

rate λI,j = 0.5 m3 hr−1 (just below an 0.54 m3 hr−1 average value for reading out 798

loud [30]), and has a high respiratory tract fluid pathogen concentration of 799

ρp,j = 1010 cm−3. Stage 2; then at t = 3 hr, one more infectious individual enters the 800

room who is continuously coughing while wearing a simple2 mask, breathing at a higher 801

rate of λI,j = 2.0 m3 hr−1, and has a higher respiratory tract fluid pathogen 802

concentration of ρp,j = 1011 cm−3 at the very upper range for SARS-CoV-2. We chose 803

this estimated continuous coughing breathing rate by deducing a breathing rate range 804

from Hegland, Troche & Davenport [31] for continuous 3 cough cycles (heavily using 805

their Fig 1), getting a breathing rate range of 1.9–2.3 m3 hr−1 from which we chose 806
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2.0 m3 hr−1. 807

We use mask filter efficiencies of the functional form 808

EC,m,in,j(d) = EC,m,out,j(d) = E∞ − (E∞ − E0) e−d/Dm,c , (75)

where E∞ is the aerosol filtering efficiency as d→∞, E0 is the aerosol filtering 809

efficiency as d→ 0, and Dm,c is the scale of the mask efficiency transition. We will use 810

Dm,c = 10 µm. We consider individuals wearing no masks or one of two types of masks 811

two masks. Their filtering efficiencies are 812

none (no mask) E0 = E∞ = 0. 813

mask simple1 E0 = 0.2 and E∞ = 0.8. 814

mask simple2 E0 = 0.95 and E∞ = 0.99. 815

The filtering efficiences of both the simple1 and simple2 masks are shown in S6 Fig. 816

The mask parameters were chosen such that they are more efficient at filtering large 817

aerosols/droplets than small ones, with the simple2 mask being better than the simple1 818

mask. The simple1 and simple2 masks could reasonably correspond to a reasonably well 819

fitted home-made cloth mask and an excellently fitted FFP2 mask, though here we have 820

treated their leak rate to be the same during inhalation as exhalation (not true with 821

most real masks). At the largest sizes, leakage doesn’t matter as much since the aerosols 822

are more ballistic. Let us assume that EC,r,j(d0) = 1
2 for everyone. 823

Disease and Infectious Aerosol Production 824

We assume that an exponential-dose response model is the correct model to use for 825

SARS-CoV-2 since the exponential model works better than the beta-Poisson model for 826

two other human infecting corona viruses (SARS-CoV-1 and HCoV-229E) [14]. In 827

absence of a good value to use for r, we use the same value of r as found for 828

SARS-CoV-1 in mice which is r = 2.45× 10−3 and the same value of r as found for 829

HCoV-229E in humans which is r = 5.39× 10−2 [14]. We use γ = 0.64 hr−1 as the 830

inactivation rate for SARS-CoV-2 [32]. 831

We approximate the SARS-CoV-2 pathogen as a sphere with a diameter of 100 nm, 832

which is close to the correct size and the rough shape with the surface proteins removed 833

(actually an ellipsoid) [17]. We use the aerosol size distributions for speaking and 834

coughing from Johnson et al. [33], but extrapolate them to smaller diameters (from 835

800 nm to 100 nm). This is used with Eq (34) and (35) to get the βI,k They are shown 836

in the top-right panel of Fig 3. The aerosol size distributions have two peaks at 837

approximately 2 µm and 100 µm. This puts dM between the trough (between the two 838

peaks) and the second larger diameter peak. 839

Concentration Densities and Infection Risk 840

We now find the infectious aerosol concentration densities and doses, and mean infection 841

risks RE . First, we split the diameter range between dm,1 = 0.1 µm and dM = 50 µm 842

into 20 logarithmically spaced bins; and determine the bin average values for the 843

coefficients over each bin by integration following the scheme in S3 Appendix. The 844

infectious individuals source parameters for the i’th bin, βI,k|i, are calculated 845

numerically via Simpson’s rule for integration with 1000 equal linear width sub-bins in 846

each bin. The particular choice of the mask survival efficiency in Eq (75) and w being 847

constant lets the other binning integrals be calculated analytically. 848

The model is solved for Stage 1 and then the final values used as initial values for 849

Stage 2 because this makes it so that α and βk are constant in time when solving the 850
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Fig 3. Model Solution for Example Solution to the example case. (Top-Left) The total pathogen and infectious aerosol
concentrations over time. (Top-Right) The infectious aerosol concentration densities in the room as a function of d0 at
t = 6 hr compared to the aerosol concentration densities being exhaled by speaking and coughing individuals from
Johnson et al. [33] scaled by 10−4 to make them have a comparable magnitude. (Bottom-Left, Bottom-Right) The mean
infection risk RE for the susceptible individuals based on the mask they are wearing (none, simple1, or simple2) using the
same (Bottom-Left) r = 2.45× 10−3 (Bottom-Right) r = 5.39× 10−2.

model (all changes are between stages). For Mc, we used the maximum value of Mc,I,j 851

for each infectious individual present at each Stage with T = 10−3. Note that Mc 852

stayed the same or increased for each bin going from Stage 1 to Stage 2 with the 853

addition of one more infectious individual. 854

For the i’th bin, the nk|i (t) and µj,k|i (t) are solved analytically if Mc ≤ 500 using 855

the recursive solution and numerically if Mc > 500, both in IEEE-754 binary64 floating 856

point (also known as double precision and float64). This threshold between analytical 857

and numerical solving was chosen to use the analytical solution as much as possible 858

without overflow in Vk (see S5 Appendix). As shown in S5 Appendix, binary64 859

numbers provide sufficient precision and allowed maximum magnitude. Note that 860

overflow is easy to spot as infinities, which were not seen so this number format was 861
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sufficient to prevent overflow. When doing it numerically, Eq (47) is solved using 862

Runge-Kutta 4 with a time step of 10−4 hr, which is required for stability and an 863

accurate solution with the large α|i +Mcγ values in the largest bin. The time integral 864

of nk to get the dose is done by doing the cumulative sum of the integrand over the 865

time steps and multiplying by the time step. The main results are shown in Fig 3. 866

The total pathogen concentration is slightly less than double the infectious aerosol 867

concentration in Stage 1, and slightly higher than double in Stage 2. This means that 868

the average multiplicity in both stages is approximately two, and it increases slightly 869

from Stage 1 to Stage 2 which is expected with the higher viral load in the second 870

infectious individual. Also, as expected, increasing r (infection risk of each individual 871

pathogen) increases the infection risk. As expected, susceptible individuals wearing 872

masks decrease their infection risk and increasing exposure increases their infection risk. 873

Comparing the infectious aerosol concentration density in the room with the aerosol 874

concentration densities exhaled by the infectious individuals as a function of d0 (see 875

top-right panel of Fig 3); we can see how as d0 increases, the probability of an aerosol 876

being infectious increases (infectious aerosol concentration density decreases slower after 877

the first peak than the exhaled aerosol concentration densities) but at the largest 878

d0 > 15 µm the increasing α due to stronger gravitational settling causes the infectious 879

aerosol concentration density to grow slower after the trough than the exhaled aerosol 880

concentration densities from the infectious individuals (including the speaking individual 881

who is not wearing a mask). To see the latter, the strengths of the sinks α and total 882

sinks α+ kγ are shown in Fig 4 and we can see that settling causes α to increase by 883

over a factor of 10 from 100 nm to 50 µm. Fig 4 additionally shows the increase in the 884

total sink strength for the largest multiplicities Mc being considered due to inactivation. 885

10 1 100 101

d0 ( m)

100

101
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103

Si
nk

 S
tre

ng
th

 (h
r

1 )

 + 
 + Mc , Stage 1
 + Mc , Stage 2

Fig 4. Sink Strength by Bin. The strength of the sink terms for each bin with 80
bins, which is α without inactivation, α+ γ for k = 1, and α+Mcγ for k = Mc

(different values for Stage 1 and 2).

The pathogen concentrations as a function of d0 and k right after the beginning and 886

at the end of each Stage are shown in S7 Fig. For large diameters, the concentrations at 887

the beginning of each Stage are initially in a narrow band around the expected 888

multiplicity in each diameter bin but by the end of each Stage the distributions have 889

widened downward as inactivation fills in the lower multiplicities. 890
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The results of choosing different numbers of bins (5, 20, and 80) is shown in S8 Fig. 891

The difference in the concentration densities between 5 bins and 20 bins is substantial, 892

but the difference between 20 and 80 is small. This means that in our example; for 893

concentration densities, 20 bins is sufficient to capture the variation in α(d0) and βk(d0) 894

with respect to diameter, but 5 is too few and 80 is a lot more effort for little gain. But 895

for the RE , the difference between the solutions for different number of bins is very 896

small for the smaller r = 2.45× 10−3, but more noticeable but still small for the larger 897

r = 5.39× 10−2. 898

Discussion 899

Effect of Multiplicity on Dose-Response 900

We consider a few hypothetical examples to ellucidate the importance of multiplicity in 901

the dose-response using the corrected exponential model in Eq (12). Another 902

dose-response model could be chosen and the resulting values would differ, but the 903

general pattern would be the same. 904

First, let’s reconsider the example case but with all pathogen production forced to be 905

mono-multiplicity. We set the new β1,new =
∑Mc

k=1 kβk and all other βk,new = 0 ∀ k 6= 1 906

and then set Mc = 1 for all bins. This is equivalent to going to each bin, taking the 907

total aerosol volume production, finding the expected number of pathogen copies in that 908

volume, and redistributing the volume so that each pathogen is alone in an aerosol but 909

not changing d0 anywhere. Or put equivalently, making Eq (47) track pathogen copies 910

instead of aerosols and ignoring multiplicity. To quantify the difference, we took a 911

simplified version of the example where the second coughing infectious individual was 912

removed, the ρp of the first speaking infectious individual was adjusted, and we took the 913

steady state case where ~n0 = ~n∞ and calculated the constant dµj,k/dt for each 914

susceptible individual. Then using the constant dµj,k/dt and an initial dose of zero, we 915

found the time, τ50, required for RE to be 50% (note that the particular choice does not 916

matter, the curve is identical for any chosen risk). This was calculated for the 80 bins in 917

diameter example to keep errors from finite bin width small, and a range of r values up 918

to the maximum value r = 1. Ignoring multiplicity causes τ50 to be underestimated 919

(overestimation of risk). The underestimate of τ50 is shown in Fig 5. 920

The underestimation increases with increasing ρp and r, and decreases when wearing 921

a mask that is more efficient at filtering large aerosols than small aerosols. The largest 922

aerosols have the greatest multiplicities, which means that a mask that filters them out 923

better than small aerosols reduces the effect of ignoring multiplicity. As ρp increases, 924

the expected multiplicity range for each d0 increases which makes ignoring multiplicity 925

underestimate τ50 more. For the r values considered here, ρp ≤ 109 cm−3
926

underestimates τ50 by at most 20% and ρp ≤ 108 cm−3 underestimates it by at most 927

12%. While for ρp = 1011 cm−3, the underestimation up to 67%. To better understand 928

these patterns, we need to consider two more hypothetical situations. 929

Let the average pathogen dose be 〈∆〉 = r−1 and all infectious aerosols have the 930

exact same multiplicity k. Then, the µ for all other multiplicities is zero and 931

µk = 〈∆〉 /k. Essentially, we are dividing the same number of pathogen copies among 932

fewer and fewer aerosols as we increase the number of pathogen copies in each one. The 933

mean infection risk for this constant average dose is shown on the left side of Fig 6 as a 934

function of k for four different r. As the multiplicity increases, the mean infection risk 935

decreases even though the average dose is the same. For k � r−1, the effect of 936

multiplicity on RE is small. It starts to rapidly decrease near k ∼ r−1 and converges 937

towards zero, because the number of pathogen copies in each aerosol is large enough 938

that each aerosol has a high probability of causing infection by itself but the aerosols 939
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Fig 5. Effect of Ignoring Multiplicity, Full Version. Full version of Fig 1 with
more ρp and the effect of masks. Plot of the ratio of the time required to reach a 50%
infection risk when multiplicity is ignored τ50,ignore to when it is fully accounted for
τ50,full for different pathogen ρp. We are considering the same situation as in the worked
example, but at steady-state with just the speaking mask-less infectious individual and
the risk to a susceptible individual whose exposure starts after steady state is reached.
The ratio is shown for different combinations of mask on the susceptible individual
(none and simple2) and for different r. The legend lists the r, mask combinations in the
same order as the lines from top to bottom. We assumed a 100 nm diameter spherical
pathogen and used 80 diameter bins and chose the Mc (maximum multiplicity
considered) heuristic threshold to be T = 0.01 (include 99% of pathogen production).

are decreasing in number faster than the risk can increase. The risk per aerosol can’t 940

exceed 100% no matter how many pathogen copies are in an aerosol. 941

Another way to see this is to consider another hypothetical. Let’s consider the mean 942

infection risk if all aerosols have multiplicity k as we vary r 〈∆〉 for fixed r. This is 943

shown on the right side of Fig 6 for r = 10−2. For low k � r−1, the infection risk curves 944

are nearly identical. For k ≥ r−1, the infection risk decreases for increasing k. 945

Overall, this means that if the typical infectious aerosol multiplicity is on the order 946

of or greater than r−1, there can be a significant decrease in the infection probability for 947

the same average dose. This has implications for large aerosols when the respiratory 948

tract fluid pathogen concentration ρp,j is large. Large aerosols where 〈k〉 & r−1 will 949

contribute less to the infection risk than would otherwise be expected from their 950

resulting average pathogen dose 〈∆k〉. While we must have Mc > 〈k〉, Mc is usable as a 951

proxy for which diameters the multiplicity causes a substantial correction to the 952

dose-response. If we were to consider r = 2.45× 10−3 as was done in the example, Fig 2 953

shows that this would be important for d0 > 15 µm for a high viral concentration of 954

November 27, 2020 29/37

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 2, 2020. ; https://doi.org/10.1101/2020.11.30.20241083doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.30.20241083
http://creativecommons.org/licenses/by/4.0/


100 101 102 103 104

k

0

10

20

30

40

50

60

M
ea

n 
In

fe
ct

io
n 

R
is

k 
(%

)

r = 1
r = 10 1

r = 10 2

r = 10 3

10 2 10 1 100 101 102

 r

0

20

40

60

80

100

M
ea

n 
In

fe
ct

io
n 

R
is

k 
(%

)

k = 1
k = 101

k = 102

k = 103

k = 104

k = 105

Fig 6. Multiplicity’s Impact on Infection Risk. Plots of mean infection risk (RE) using the modified exponential
dose-response model when all infectious aerosols have the same number of pathogen copies in them k. (Left) The infection
risk as a function of k for fixed average dose 〈∆〉 = r−1 for different single pathogen infection probabilities r. (Right) The
infection risk as a function of the dose scaled by r (〈∆〉 r) for different k and the same fixed r = 10−2 (r−1 = 100).

ρp,j = 1011 cm−3 and d0 > 30 for the lower but still high viral concentration of 955

ρp,j = 1010 cm−3. If we were to consider r = 5.39× 10−2 as was also done in the 956

example, Fig 2 shows that this would be important for d0 > 5 µm for a high viral 957

concentration of ρp,j = 1011 cm−3 and d0 > 10 for the lower but still high viral 958

concentration of ρp,j = 1010 cm−3. 959

Going back to the risk overestimation from ignoring multiplicity in Fig 5, decreasing 960

r decreases the underestimation in τ50 because the ratio of the average multiplicity in 961

the larger diameter bins to r−1 is smaller. A mask that filters large aerosols better than 962

small aerosols reduces the effect of ignoring multiplicity because larger aerosols have 963

higher multiplicities. 964

Filtering by The People 965

We introduced the sink terms αC,f for filtering by the individuals in the environment as 966

they inhale aerosols with many being absorbed by their mask or respiratory tract rather 967

than being exhaled back out into the environment. To determine when this sink 968

matters, we need to consider the total volume of air that is filtered and ignore the 969

filtering efficiencies, and compare it to the ventilation. The volumetric rate of air 970

filtration by the individuals normalized by the volume of the environment is 971

qp(t) =
1

V

 NI∑
j=1

λI,j(t) +

NS∑
j=1

λS,j(t) +

NO∑
j=1

λO,j(t)

 =
σA
〈h〉
〈λA〉A , (76)

where σA is the horizontal area density of all individuals and 〈h〉 is the average height of 972

the environment. 973

The mean adult breathing rates from sedentary/passive to high intensity activity 974

ranges between 0.25 m3 hr−1 and 3.2 m3 hr−1 [27]. For sitting, it would be hard to get 975

σA to be more than 1 m−2 but it would be possible while standing (some public events) 976
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though the well-mixed assumption would be breaking down in either case. For a typical 977

room height of 〈h〉 = 4 m, this density limit would yield max(qp) ∈ [0.063, 0.8] hr−1. If 978

the the environment is poorly ventilated (total ventilation rate qv + qo + qr less than 979

1 hr−1), this high people density would mean the filtering effect of the people would not 980

be negligible compared to the ventilation. But with even moderate ventilation, the 981

contribution of αC,f would be negligible unless all the ventilation is circulating 982

ventilation (qo = qr = 0) with no filter or a very poor filter. For 1.5 and 2 m social 983

distancing, the maximum σA are 0.14 and 0.080 m−2 respectively. For a typical room 984

height of 〈h〉 = 4 m, this density limit would yield max(qp) ∈ [0.005, 0.11] hr−1 which 985

would be negligible in almost all circumstances. For taller rooms, the contribution 986

would be smaller if the total ventilation rate is held constant. 987

If the fraction of individuals who are infectious is held constant, then NI ∼ σA. 988

Since βk ∼ NI and αC,f ∼ NC but the non αC,f terms of α stay constant, the source 989

increases faster than the sinks meaning that nk increases and therefore R increases. So, 990

increasing σA with everything else held constant increases the risk for the susceptible 991

individuals. Thus, deliberately making αC,f non-negligible is not a viable strategy to 992

decrease risk. If the αC,f dominate over the ventilation, the situation is actually quite 993

hazardous from an infection transmission perspective. It is just that if one ignores the 994

terms, one would overestimate the risk in such a crowded and poorly ventilated space. 995

Effect of Masks 996

The filtering effects of masks show up in the source βI,k, the sinks αC,f , and the total 997

dose over time µj,k. Masks can substantially improve the total filtering efficiency of the 998

people in αC,f since aerosols have to pass through the mask twice, once on inhalation 999

and again on exhalation at a larger diameter (many masks are better at filtering larger 1000

diameters than small diameters). But unless the ventilation is poor and there are a lot 1001

of people, this increase in αC,f will have only a small effect on the total sink α. Instead, 1002

the main contribution is to reducing βI,k and µj,k which are both linearly proportional 1003

to the mask survival efficiency, which can be seen in the example situation. 1004

In the example during Stage 1, there is one infectious individual in the room who is 1005

not wearing a mask and the total pathogen concentration reaches about 40 m−3 after 1006

3 hr (Fig 3). During Stage 2, an addition infectious individual has entered the room. 1007

The second infectious individual’s ρp is 10 times greater than the first person’s and they 1008

are breathing at 4 times the rate; which would mean 40 times the pathogen exhalation 1009

rate by itself. Additionally, they are coughing rather than speaking, with the resulting 1010

larger exhaled aerosol concentration density ρj (top-right panel of Fig 3); which 1011

increases the number of exhaled pathogen copies further. But, they are wearing a mask 1012

which reduces the number of infectious aerosols that survive to reach the environment 1013

by a factor of 20–100 depending on the diameter. Due to this, the total pathogen 1014

concentration doesn’t increase by a factor of over 40 but instead approximately triples 1015

to reaches approximately 140 m−3. 1016

The reduction in the average dose µj,k and therefore infection risk R when 1017

susceptible individuals wear masks can also be seen in Fig 3. Even the simple1 mask 1018

gives some improvement, and the simple2 mask reduces the infection risk by over an 1019

order of magnitude. 1020

Let’s consider the case where all infectious individuals have the same mask survival 1021

efficiency and all susceptible individuals have the same mask survival efficiency. If the 1022

effects of masks on α is negligible (αC,f is generally small compared to the other sinks) 1023

and βr,k is negligible; the combined effect of both infectious and susceptible individuals 1024

wearing masks on the dose is quadratic in the survival efficiencies, which has shown up 1025

in other Wells-Riley formulations in the past [4, 8]. Due to superposition of sources, 1026

nk ∼ SI,m,out since βI,k ∼ SI,m,out. Then, µj,k ∼ SS,m,innk ∼ SS,m,inSI,m,out, which is 1027
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a quadratic term. Now αC,f ∼ SC,m,inSC,m,out makes the effect stronger (usually only 1028

slightly stronger) than quadratic since it only serves to increase α and therefore 1029

decrease nk further. If just the susceptible or just the infectious individuals wear masks, 1030

the reduction drops to being stronger than linear (direct contribution of the mask on 1031

reducing βI,k or reducing µj,k plus the effect on αC,f ). If only non-susceptible 1032

non-infectious individuals wear masks, there is still a reduction in the dose but it is small 1033

since αO,f is generally small compared to the other sinks, giving a sublinear reduction. 1034

Model Limitations 1035

The biggest limitation to the model presented here, like all Wells-Riley formulations, is 1036

the well-mixed environment assumption. In almost all indoor environments, the 1037

assumption breaks down to varying degrees — the infectious aerosol concentration 1038

densities at the locations of susceptible individuals and all sinks (except possibly 1039

inactivation) depend on their locations in the room relative to the sources and the air 1040

flow. Social distancing helps with this assumption (reduces direct inhalation of 1041

undiluted exhaled puffs of aerosols from infectious individuals), but the assumption is 1042

still often dubious. Full fluid dynamics simulations with infectious aerosols simulated as 1043

passive scalars or as discrete aerosols such as those done by Löhner et al. [24] are the 1044

common way to address this limitation, which are considerably more difficult. Further 1045

investigation is needed to find simple approximate ways to generalize the Wells-Riley 1046

formulation presented in this manuscript for non-well-mixed environments that are 1047

easier than full fluid dynamics with suspended aerosols simulations. 1048

Another limitation of the model presented here is that it assumes that all infectious 1049

aerosols have the same ζ and solute composition, and therefore the same w(d0, t). This 1050

is more easily circumvented in one case. If the solute concentration and composition is 1051

constant over time for each individual source (reasonable assumption over small time 1052

spans), the model can be solved for each source individually and then the resulting nk 1053

and µk,j summed over the individual solutions. If ζ changes is not constant over time 1054

for the sources but the solute composition is constant, then one could generalize the 1055

model to additionally track ζ (or equivalently dD) and initial diameter at production d0 1056

separately. 1057

Another problem is the choice of diameter limits d0 ∈ [dm,k, dM ] for each multiplicity. 1058

We have neglected the fact that the solute concentration is much greater for d0 near the 1059

lower limit dm,k as pathogen copies are taking up a very large fraction of the volume and 1060

that surface effects may cause additional deviations in the number of pathogen copies in 1061

the aerosol from a Poisson distribution. Further work is needed to lift this limitation; 1062

though for small pathogens, the total fluid volume and therefore pathogen content in 1063

the smallest aerosols where this matters is much less than that of the larger aerosols 1064

(see top-right panel of Fig 3) meaning that the effect could be small for small pathogens. 1065

The upper limit dM is the cutoff where aerosols are so large that they are more 1066

ballistic and either settle to the ground before evaporating to equilibrium or still settle 1067

too quickly to be mixed even after evaporating to their equilibrium diameter. Based on 1068

Xie et al. [21] and Chong et al. [23], we suggested a value dM = 50 µm. To look at it, 1069

we took the example case and re-calculated it for 23 equal log-width bins between 1070

100 nm and 100 µm and considered the concentration densities and mean infection risks 1071

if the top 0, 2, and 4 bins were discarded, thereby setting decreasing dM to 100 µm, 1072

54.8 µm, and 30.1 µm. The time step for the numerical solution had to be reduced to 1073

5× 10−6 hr due to the increase in Mc at the larger dM . This is shown in Fig 7. 1074

Increasing dM increases the total pathogen concentration being tracked since a lot of 1075

volume is contained in the large diameter aerosols, but the total number concentration 1076

does not increase much since these big aerosols are few in number. For the larger 1077

r = 5.39× 10−2, the effect on RE is very small as dM is increased by a factor of 1078
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Fig 7. Effect of Upper Diameter Limit dM. The example situation was calculated for different values of the upper
diameter limit dM (technically, calculated at the largest and then truncated down as needed). (Left) The total pathogen and
infectious aerosol concentration densities over time for each dM . Note that the differences in the total infectious aerosol
concentration density are so small that the lines are right on top of each other. The mean infection risk for each combination
of masks on a susceptible individual (none, simple1, simple2) for (Middle) r = 2.45× 10−3 and (Right) r = 5.39× 10−2.

approximately three. But for the smaller r = 2.45× 10−3, there is a larger fractional 1079

difference in the mean infection risk but the additive difference is no more than 5% for 1080

the worst case (no mask). The masks as we have defined them in the example, are 1081

better at filtering large particles than small, so they attenuate the effect of increasing 1082

dM on RE . More investigation is required on this upper diameter limit. Generalizing 1083

the model to track d and d0 and treating evaporation/growth explicitly over time would 1084

help alleviate this problem as the high settling rates and the slower evaporation of the 1085

largest aerosols could be treated explicitly. 1086

Conclusions 1087

The number of pathogen copies in infectious aerosols must be taken into account if the 1088

number of pathogen copies in poly-multiplicity aerosols is not negligible compared to 1089

the number of pathogen copies in mono-multiplicity aerosols. We have generalized the 1090

Wells-Riley formulation and two common dose-response models (exponential and 1091

beta-Poisson) for poly-multiplicity aerosols and shown how to generalize other 1092

dose-response models. The generalized Wells-Riley formulation tracks infectious aerosols 1093

for each multiplicity individually rather than quanta as is traditional, which then can be 1094

put into the generalized dose-response model of choice. The generalized Wells-Riley 1095

formulation results in a linear inhomogeneous coupled system of ODEs, one for each 1096

multiplicity, at each initial aerosol diameter at production d0 (or bin of d0). The general 1097
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solution is presented; along with simplified versions for time independent sources, sinks, 1098

and humidity and splitting the diameter range into bins. The model is accompanied by 1099

an example case for for a poorly ventilated room with SARS-CoV-2, which is presented 1100

and solved. The example illustrates how the cutoff multiplicity Mc is determined, the 1101

effects of bin size on the solution, and the effects of mask usage on the infection risk. 1102

Additional takeaways are 1103

• Ignoring multiplicity causes the infection risk to be over-estimated, which is 1104

particularly signficant for high respiratory tract fluid pathogen concentrations and 1105

high single-pathogen infection probabilities (see Fig 5). 1106

• The people in the environment filter the air by breathing, which increases the loss 1107

rate for infectious aerosols and is included in the model. 1108

• Facemasks on everyone cause a stronger than quadratic reduction in the inhaled 1109

dose by susceptible individuals 1110

In summary, we have developed a tractable generalization of the Wells-Riley model 1111

for the infection risk from any airborne disease in well mixed indoor environments 1112

applicable to both mono- and poly-multiplicity aerosols. 1113

Supporting information 1114

S1 Appendix. Model Solution Derivation. Derivation of the general solution to 1115

Eq (47) as well as the constant in time coefficient special solution (both the explicit and 1116

recursive forms). 1117

S2 Appendix. Checking Analytical Solution Against Numerical Solution. 1118

Checking the recursive analytical solution against solving the system of equations in 1119

Eq (47) numerically. 1120

S3 Appendix. Binning Diameter. Shows how the model can be split into discrete 1121

diameter bins and each treated separately. 1122

S4 Appendix. Mc Heuristic for Infectious People Derivation. Derivation of 1123

the the individual infectious individual production heuristic for Mc in Eq (73). 1124

S5 Appendix. Numerical Considerations. Considerations for numerically 1125

evaluating the analytical model solution and solving the equations numerically; 1126

including how the number of terms scales with Mc and the magnitude and precision 1127

requirements to avoid numerical overflow and losing accuracy. 1128

S6 Fig. Filtering Efficiencies of simple1 and simple2 Masks from Example. 1129

The filtering efficiencies of the simple1 and simple2 masks from the example, whose 1130

funcional forms are given by Eq (75), as a function of the diameter. 1131

S7 Fig. Pathogen Concentration by k and Diameter for The Example 1132

Situation. The pathogen concentration in the room as a function of d0 and k, denoted 1133

by color, at four different times (listed in the title of each panel) in the example 1134

situation. They are (Top-Left) right after the beginning of Stage 1, (Top-Right) at the 1135

end of Stage 1, (Bottom-Left) right after the beginning of Stage 2, and (Bottom-Right) 1136

at the end of Stage 2. All four panels share the same colorbar, which is in the 1137

bottom-right panel. 1138
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S8 Fig. Comparing Different Numbers of Bins in The Model Solution’s 1139

for The Example Situation. Version of Fig 3, but comparing the model solution for 1140

the example situation for 5, 20, and 80 bins. (Top-Left) The total pathogen and 1141

infectious aerosol concentrations over time for each number of diameter bins used to 1142

solve the model. (Top-Right) The infectious aerosol concentration densities as a 1143

function of d0 at t = 6 hr for each number of bins. (Bottom-Left, Bottom-Right) The 1144

mean infection risk RE for the susceptible individuals based on the mask they are 1145

wearing (none, simple1, or simple2) for each number of bins using the same 1146

(Bottom-Left) r = 2.45× 10−3 and (Bottom-Right) r = 5.39× 10−2. 1147
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24. Löhner R, Antil H, Idelsohn S, Oñate E. Detailed simulation of viral propagation
in the built environment. Computational Mechanics. 2020; p. 1–15.
doi:10.1007/s00466-020-01881-7.

25. Saw EW, Salazar JPLC, Collins LR, Shaw RA. Spatial clustering of polydisperse
inertial particles in turbulence: I. Comparing simulation with theory. New
Journal of Physics. 2012;14(10):105030. doi:10.1088/1367-2630/14/10/105030.

26. Saw EW, Shaw RA, Salazar JPLC, Collins LR. Spatial clustering of polydisperse
inertial particles in turbulence: II. Comparing simulation with experiment. New
Journal of Physics. 2012;14(10):105031. doi:10.1088/1367-2630/14/10/105031.

27. U S EPA. Exposure Factors Handbook. 2011th ed. U.S. Environmental
Protection Agency; 2011. Available from:
https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=236252.

28. Jacot D, Greub G, Jaton K, Opota O. Viral load of SARS-CoV-2 across patients
and compared to other respiratory viruses. Microbes and Infection.
2020;doi:10.1016/j.micinf.2020.08.004.

29. To KKW, Tsang OTY, Leung WS, Tam AR, Wu TC, Lung DC, et al. Temporal
profiles of viral load in posterior oropharyngeal saliva samples and serum
antibody responses during infection by SARS-CoV-2: an observational cohort
study. The Lancet Infectious Diseases. 2020;20(5):565 – 574.
doi:10.1016/S1473-3099(20)30196-1.

30. Binazzi B, Lanini B, Bianchi R, Romagnoli I, Nerini M, Gigliotti F, et al.
Breathing pattern and kinematics in normal subjects during speech, singing and
loud whispering. Acta Physiologica. 2006;186(3):233–246.
doi:10.1111/j.1748-1716.2006.01529.x.

31. Hegland KW, Troche MS, Davenport PW. Cough expired volume and airflow
rates during sequential induced cough. Frontiers in Physiology. 2013;4:167.
doi:10.3389/fphys.2013.00167.

32. van Doremalen N, Bushmaker T, Morris DH, Holbrook MG, Gamble A,
Williamson BN, et al. Aerosol and Surface Stability of SARS-CoV-2 as Compared
with SARS-CoV-1. New England Journal of Medicine. 2020;382(16):1564–1567.
doi:10.1056/NEJMc2004973.

33. Johnson GR, Morawska L, Ristovski ZD, Hargreaves M, Mengersen K, Chao
CYH, et al. Modality of human expired aerosol size distributions. Journal of
Aerosol Science. 2011;42(12):839–851. doi:10.1016/j.jaerosci.2011.07.009.

November 27, 2020 37/37

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 2, 2020. ; https://doi.org/10.1101/2020.11.30.20241083doi: medRxiv preprint 

https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=236252
https://doi.org/10.1101/2020.11.30.20241083
http://creativecommons.org/licenses/by/4.0/


Risk assessment for airborne disease transmission by
poly-pathogen aerosols

Freja Nordsiek1, Eberhard Bodenschatz1,2,3*, Gholamhossein Bagheri1,

1 Max Planck Institute for Dynamics and Self-Organization (MPIDS), Göttingen,
Niedersachsen, Germany
2 Institute for Dynamics of Complex Systems, University of Göttingen, Göttingen,
Niedersachsen, Germany
3 Laboratory of Atomic and Solid State Physics and Sibley School of Mechanical and
Aerospace Engineering, Cornell University, Ithaca, New York, USA

* lfpn-office@ds.mpg.de

S5 Appendix. Numerical Considerations 1

If α, βk, γ, and w are all constant with respect to time; the model has both an explicit 2

and recursive solution for the concentration density and dose. Otherwise, it may not be 3

possible to get a closed form analytical solution from the general solution and one would 4

need to solve the model numerically. Of course, even with an analytical solution, one 5

can solve it numerically. There are a number of numerical pitfalls with both the 6

analytical and numerical solutions, which arise as Mc becomes large. 7

For a numerical solution, the time step of integration must be small compared to the 8

smallest time scale in the model. The smallest time scale could be the time scale on 9

which α, βk, γ, and/or w change over time; but for large enough Mc it will always be 10

time scale of the total sink for k =Mc aerosols. The total sink for nk is 11

−α(d0, t)− kγ(t), which scales linearly in Mc for nMc when Mc is large enough. The 12

time step δt must be δt < (α−Mcγ)
−1. Thus the total number of timesteps Nt ∼Mc 13

for large Mc. Since the total number of terms scales linearly in Mc as long as ∂nk/∂t is 14

not calculated in vector-matrix form or A is stored in a sparse format, the total 15

computational effort scales as O
(
M2
c

)
. 16

For the analytical solution for coefficients constant in time; there are different 17

difficulties for the explicit solution and the recursive solution. The number of terms 18

scales as O
(
M3
c

)
in the explicit solution and O

(
M2
c

)
in the recursive solution, since 19

there are Mc equations and they have double and single sums respectively with each 20

sum scaling as Mc. 21

The analytical solutions have additional difficulties — avoiding numerical overflow 22

and maintaining accuracy. The problem is the binomial coefficients
(
i
k

)
and

(
i−k
p

)
where 23

i→Mc and p ∈ [0, i− k]. They can be calculated naively by computing each factorial 24

and then doing the multiplication and division (k! will be the largest); or carefully with 25

cancellation handled explicitly which overflows later. And then even if all the binomial 26

coefficients don’t overflow, their products and sums can still overflow (the explicit 27

version is worse than the recursive version in this regard due to the products of binomial 28

coefficients). 29

To see this, we will find the upper bound for Vk (~y, x) in the recursive solution. 30

Consider its formula 31
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Vk (~y, x) =

Mc∑
i=k

(
i

k

)
yi(1− x)i−k . (1)

In the model, all the elements of ~y, which is always either ~β or ~n0, are non-negative. 32

Since x ∈ [0, 1], 1− x ∈ [0, 1] and is therefore also non-negative. This means that all 33

elements in the sum in Vk are non-negative, meaning Vk ≥ 0 and thus we only need to 34

find the upper bound to determine the risk of overflow (the lower bound, zero, is not a 35

worry). Now, yi ≤ max (~y) for all i where max (~y) shall denote the maximum element of 36

~y. Since x ∈ [0, 1], 0 ≤ (1− x)i−k ≤ 1. Then we just need to get an upper bound for the 37

binomial coefficients. The binomial coefficient
(
j
m

)
= k!/m!(j −m)! is at its greatest 38

value for fixed j when m = bj/2c or m = dj/2e where b·c and d·e denote the floor and 39

ceil operators respectively. This value is 40(
j

bj/2c

)
=

(
j

dj/2e

)
=

j!

bj/2c!dj/2e!
. (2)

This will be maximized when i = j =Mc. Then, the upper bound for Vk is 41

Vk (~y, x) ≤
Mc∑
i=k

Mc!

bMc/2c!dMc/2e!
max (~y) =

(Mc + 1− k)Mc! max (~y)

bMc/2c!dMc/2e!
. (3)

For any Mc, the largest upper bound for any of the Vk will be for when k = 1, so the 42

upper bound we need to worry about is 43

Vk (~y, x) ≤
McMc! max (~y)

bMc/2c!dMc/2e!
. (4)

Now, the factorial function has the bounds [1] 44

√
2πmm+ 1

2 e−m exp

[
1

12m+ 1

]
< m! <

√
2πmm+ 1

2 e−m exp

[
1

12m

]
. (5)

We will still have an upper bound for Vk if we use the factorial lower bounds in place 45

of the factorials in the denominator of Eq (4) and the factorial upper bound for the 46

factorial in the numerator. This leads to 47

Vk (~y, x) <
max (~y)M

Mc+
3
2

c exp
[

1
12Mc

+
⌊
Mc

2

⌋
+
⌈
Mc

2

⌉]
√
2π
⌊
Mc

2

⌋bMc
2 c+ 1

2
⌈
Mc

2

⌉dMc
2 e+ 1

2 exp
[
Mc +

1
12bMc

2 c+1
+ 1

12dMc
2 e+1

] . (6)

If we take the log2, we get the value of the base-2 exponent. Taking the log2 of both 48

sides, 49

log2 Vk (~y, x) < log2 [max (~y)] +

(
Mc +

3

2

)
log2 (Mc)

−
(⌊

Mc

2

⌋
+

1

2

)
log2

⌊
Mc

2

⌋
−
(⌈

Mc

2

⌉
+

1

2

)
log2

⌈
Mc

2

⌉
+ (log2 e)

(
1

12Mc
− 1

12bMc

2 c+ 1
− 1

12dMc

2 e+ 1

)

− 1

2
− 1

2
log2 π , (7)
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where we have used the fact that bMc/2c+ dMc/2e =Mc. To represent all the Vk for a 50

particular Mc without overflowing, a floating point format’s maximum supported base-2 51

exponent, emax (using the same notation as the IEEE 754 standard [2]), must be at 52

least this value (emax ≥ log2(Vk)). But, even if the value log2(Vk) might not overflow 53

with this minimum value, calculating the binomial coefficient when max (~y) < 1 could 54

overflow before the multiplication drops the magnitude. So for the minimum emax, we 55

must replace the max (~y) with max [1,max (~y)] and we get 56

emax (~y) ≥

⌈
log2 [max [1,max (~y)]] +

(
Mc +

3

2

)
log2 (Mc)

−
(⌊

Mc

2

⌋
+

1

2

)
log2

⌊
Mc

2

⌋
−
(⌈

Mc

2

⌉
+

1

2

)
log2

⌈
Mc

2

⌉
+ (log2 e)

(
1

12Mc
− 1

12bMc

2 c+ 1
− 1

12dMc

2 e+ 1

)

− 1

2
− 1

2
log2 π

⌉
. (8)

To see how much of an overestimate this is for emax, let’s compare it to 57

log2 max (Vk) for a few simple cases. First, lets compare it to Vk

(
~1, 0
)
since ~y = ~1 has 58

all elements equal to the maximum element, x = 0 maximizes (1− x)i−k, and makes all 59

terms in the sum integers. In Fig 1 (left panel), log2 max (Vk) is compared to emax 60

from Eq (8) and the emax values for the four smallest IEEE-754-219 binary floating 61

point formats [2]. We calculated max (Vk) using variable sized integers before being 62

converting to multi-precision floating point numbers for taking the log2 with the largest 63

supported exponent with the GNU Multiple Precision Floating-point Reliable Library 64

(MPFR, see https://www.mpfr.org) and the GNU Multiple Precision Arithmetic 65

Library (GMP, see https://gmplib.org) in Python using the gmpy2 package 66

(https://pypi.org/project/gmpy2). The minimum emax from Eq (8) is only barely 67

larger in a logarithmic sense than log2 max (Vk) except for small Mc, so it isn’t an 68

excessive overestimate of the required emax. 69

Second, we will compare it to typical ~y used in the model. We will base ~y on ~βI,k for 70

single infectious person but remove all of the environment parameters and person 71

specific parameters except for the expected average multiplicity 〈k〉j =
π
6 d

3
0ρp,j . We 72

shall use the vector 73

ψk =
V

ρjλI,jSI,m,out,j
βI,k = PP

(
〈k〉j , k

)
. (9)

For a range of 〈k〉j , Mc was determined with the single infectious person production 74

heuristic Mc,I,j for thresholds T of 10−1 and 10−9. Then the Vk

(
~ψ, 0
)
were calculated 75

in binary floating point with a 256 bit mantissa, emax = 32768, and minimum exponent 76

emin = −32767 with gmpy2, MPFR, and GMP as before. The binomial coefficients 77

calculated exactly before conversion to floating point. To improve the accuracy, the sum 78

in Eq (1) was done as a sorting sum where all the terms were sorted in a list, the two 79

smallest terms removed, those terms added together and inserted back into list; and this 80

process repeated till only a single term (the total sum) remained. The right panel of 81

Fig 1 compares log2 max (Vk) against the emax calculated from Eq (8) and the 82

maximum exponents of some of the smallest IEEE 754 binary floating point formats. 83

We can see that Eq (8) overestimates the required emax by quite a bit in a logarithmic 84
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Fig 1. Comparison of Maximum Vk Values to Required emax Overestimate And Floating Point Format
Limits. log2 max (Vk) is compared to the overestimate of the required emax(~y) from Eq (8) as well as the maximum
exponents supported by the four smallest IEEE-754-2019 binary floating point formats [2]. Note that the x87 FPU 80-bit
floating point format has the same maximum as binary128 [3]. (Left) For ~y = ~1 and x = 0 as a function of Mc. (Right) For

~y = ~ψ from Eq (9) and x = 0 as a function of the average multiplicity 〈k〉j =
π
6 d

3
0ρp,j .

sense for 〈k〉j < 10, but not by much in a logarithmic sense for larger 〈k〉j . So or small 85

〈k〉j , it suggests an overkill emax but binary16 (half precision) and binary32 (single 86

precision) are typically the smallest floating point formats with hardware support on 87

most computers and the bulk of the computational effort is spent on diameter bins with 88

the largest Mc, so there isn’t much reason to use a smaller format for small 〈k〉j . 89

binary64 (double precision) is sufficient for ~ψ this case up to 〈k〉j = 1000. The exact 90

values of other terms in ~βI would determine if binary64 would be safe for that 91

expected multiplicity with ~βI . The extra emax requirement would additively increase 92

by log2
[
max

(
1, 1

V ρjλI,jSI,m,out,j
)]
. binary128 and x87 FPU 80-bit floating point 93

numbers which have the same emax [3] would have some headroom for the magnitude 94

of the other coefficients in ~βI even for 〈k〉j = 104. 95

To investigate the required floating point precision to calculate nk, we will look at 96

the required precision in bits required to calculate all Uk (d0, ~y, x) for a given Mc to 97

within a specified relative tolerance δ of the exact values. We chose 98
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α = 1 ,

γ = 3 ,

~y = ~1 ,

x ∈
{
0,

5

13
, 1

}
,

which makes Uk (d0, ~y, x) a rational number for any Mc. For several Mc, the 99

Uk (d0, ~y, x) were calculated exactly using variable sized rational arithmetic. Then, the 100

smallest floating point precision was found for which the maximum relative error in the 101

Uk (d0, ~y, x) calculated in floating point in that precision (note, the binomial coefficents 102

were calculated first as variable sized integers and then converted to floating point) is 103

less than δ using the explicit and recursive formulas for Uk (d0, ~y, x). The calculations 104

were done using gmpy2, MPFR, and GMP as before. The required precisions for δ of 105

10%, 10 PPM (Parts per Million), and 1 PPB are shown in Fig 2 and compared to the 106

precisions of various standard floating point formats. 107

Using the explicit formula, even quadruple precision (binary128) is insufficient by 108

Mc = 80 for this ~y even for a tolerance of 10%. But using the recursive formula, double 109

precision (binary64) is good enough for a tolerance of 1 PPB even for the largest 110

Mc = 5000 that was checked. From this and the recursive solution’s number of terms 111

scaling as O
(
M2
c

)
instead of O

(
M3
c

)
, the recursive solution is much more amenable to 112

calculations than the explicit solution. 113

Considering both Fig 1 and 2, double precision (binary64) seems to be suitable, 114

depending on the largest values in the ~y, for moderate Mc of a few hundred. To go to 115

Mc of a few thousand, quadruple precision (binary128) or x87 FPU 80-bit floating 116

point numbers are required. Above this, either multi-precision floating point with higher 117

exponents must be used or the model must be solved numerically. 118

The number of terms to compute scales quadratically in Mc for numerical solution 119

and recursive analytical solution, and cubically for the explicit analytical solution; and 120

the analytical solutions have the additional problems of avoiding numerical overflow as 121

well as the computational effort to calculate some terms increasing with Mc. For any 122

particular fixed size number format, there is an Mc above which the analytical result 123

will overflow and one must solve the model numerically instead. 124
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S4 Appendix. Mc Heuristic for Infectious People 1

Derivation 2

The Mc heuristic for production by all infectious people is 3

HI,k(t) ≡ k
∫ d+

d−

dφAS(φ, t)

NI∑
j=1

λi,j(t)nI,j,k(φ, t) [1− EI,m,out,j(φ)] . (1)

For this heuristic, we can simplify JI,Mc
(t) since nI,j,k(d0, t) is the product of a 4

scalar and a Poisson probability until dm,k > d0 after which it is zero. Now 5

nI,j,k(d0, t) = 0 for k > Km(d0). The sums and the integrals all commute, so we can 6

change their order. We then get inner sums of the following form in both the numerator 7

and the denominator 8

Z (µ,m,Km) =

Km∑
k=m

kPP (µ, k)

=

Km∑
k=m

ke−µ
µk

k!

= µ

Km∑
k=m

e−µ
µk−1

(k − 1)!

=

{
0 if m > Km

µ [CP (µ,Km − 1)− CP (µ,m− 2)] otherwise

= µ [CP (µ,Km − 1)− CP (µ,min(m− 2,Km − 1))] , (2)

where m is the starting index and CP (µ, k) is the CDF (Cumulative Distribution 9

Function) of the Poisson distribution with mean µ for count k, with CP (µ, k) = 0 for 10

k < 0. Note that 11

Z (µ, 1,Km) = µCP (µ,Km − 1) . (3)
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Then 12

JI,Mc(t) =

{∫ d+

d−

dφAS(φ, t)

•
NI∑
j=1

λI,j(t) [1− EI,m,out,j(φ)] ρj(φ, t)Z
(
〈k〉(φ, t)j ,Mc + 1,Km

)}
/{∫ d+

d−

dφAS(φ, t)

NI∑
j=1

λI,j(t) [1− EI,m,out,j(φ)] ρj(φ, t)Z
(
〈k〉(φ, t)j , 1,Km

)}
. (4)

Our heuristic is strictly for all of the Jh,Mc
. But, we could widen the set of heuristics 13

by doing one for each infectious person. If we also replace the integral by an evaluation 14

at d+, the largest d0 in the interval, and ignore the filtering efficiency of the infectious 15

person’s mask on the way out; then there exists some j ∈ I for which Mc,I,j ≥Mc,I , 16

meaning that the maximum Mc,I,j is an overestimate for Mc,I . If we use this heuristic, 17

we could end up having to use a larger Mc than we really need; but this method has the 18

advantage of easy calculation. This new heuristic for the j’th infected person is 19

JI,Mc,I,j ,j(t) =
Z
(
〈k〉(d+, t)j ,Mc,I,j + 1,Km(d+)

)
Z
(
〈k〉(d+, t)j , 1,Km(d+)

)
= 1−

CP

(
〈k〉(d+, t)j ,min(Mc,I,j ,Km(d+))− 1

)
CP

(
〈k〉(d+, t)j ,Km(d+)− 1

) , (5)

where Km(d0) is evaluated for d0 = d+. 20

With the threshold T ∈ (0, 1], we get 21

CP

(
〈k〉(d0, t)j ,min(Mc,I,j ,Km(d+))− 1

)
≥ (1− T )CP

(
〈k〉(d0, t)j ,Km(d+)− 1

)
, (6)

and then must find the smallest Mc,I,j ≤ Km(d+) for which this is true. This value 22

exists because Mc,I,j = Km(d+) trivially makes the statement true. Then, 23

Mc,I,j(d+, T ) = 1 + C−1
P

(
〈k〉(d+, t)j , (1− T )CP

(
〈k〉(d+, t)j ,Km(d+)− 1

))
, (7)

where C−1
P (µ, c) is the inverse CDF to find the smallest k for which CP (µ, k) ≥ c. 24
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S3 Appendix. Binning Diameter 1

Since each d0 can be treated in isolation of all other d0 in the model’s system of 2

equations, we can safely split the d0 ∈ [dm,1, dM ] range into finite sized diameter bins 3

and solve each separately and independently of the other bins. We can then apply the 4

general solution to each bin using coefficients averaged over the diameter range in the 5

bin with suitable weights. 6

Let the i’th strictly increasing bin boundary be db,i for i ∈ [0, Nb] where Nb is the 7

number of bins, db,0 = dm,1, and db,Nb
= dM . The i’th bin will refer to the bin 8

d0 ∈ [db,i−1, db,i) for i ∈ [1, Nb]. In the limit that the width of the widest bin goes to 9

zero, we get the exact answer. For finite width bins, the more that α(d0, t) and βk(d0, t) 10

vary with respect to d0 in the bin, the less accurate the result from applying binning 11

will be. In practice, this means that we could choose to do a single bin to make it easier 12

to compute the answer but suffer accuracy problems or we could choose a smaller bin 13

width that is small compared to the scale that α(d0, t) and βk(d0, t) change over and get 14

good accuracy at the expense of effort. An added benefit of binning is that we can 15

choose different Mc for each bin. In many cases, Mc will be one except for the largest 16

diameter bins. 17

For any choice of bins, we must determine suitable average values of n0,k(d0), 18

nr,k(d0, t), α(d0, t), and βk(d0, t). One possible scheme would be 19
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n0,k|i = 〈n0,k(d0)〉i , (1)

nr,k|i (t) = 〈nr,k(d0, t)〉i , (2)

βr,k|i (t) = qr(t) 〈nr,k(d0, t)〉i , (3)

βI,k|i (t) =
NI

V

〈
λI(t) 〈nI,k(d0, t) [1− EI,m,out(d0)]〉i

〉
I

, (4)

βk|i (t) = βr,k|i (t) + βI,k|i (t) , (5)

αv|i (t) = qv(t) 〈Ev (w(d0, t)d0)〉i , (6)

αg|i (t) = 〈αg (w(d0, t)d0)〉i ≈
g (ρw − ρa)w(d0, t)2

(
d3b,i − d3b,i−1

)
54hρaνa (db,i − db,i−1)

, (7)

αd|i (t) = 〈αd (w(d0, t)d0)〉i , (8)

αC,f |i (t) =
NC

V

〈
λC(t)

〈
1− [1− EC,m,in,j (w(d0, t)d0)]

• [1− EC,r,j(d0)] [1− EC,m,out,j(d0)]

〉
i

〉
C

, (9)

α|i (t) = αo(t) + αr(t) + αv|i (t) + αg|i (t) + αd|i (t)
+ αI,f |i (t) + αS,f |i (t) + αN,f |i (t) , (10)

where αo(t) and αr(t) do not require taking bin averages at all since they don’t depend 20

on d0, we have assumed that w is approximately constant with respect to diameter 21

across the bin in evaluating αg|i (t) which is essentially ignoring the effect of surface 22

tension (the quality of the approximation gets better as d0 increases), the notation 23

F |i (t) denotes the bin average value of F (d0, t) to use for the i’th bin, and the bin 24

average of some quantity 〈F (d0, t)〉i is taken by doing 25

〈F (d0, t)〉i ≡
1

db,i − db,i−1

∫ db,i

db,i−1

F (φ, t)dφ . (11)

If a bin is small enough compared to the variation in F (d0, t) with respect to d0, one 26

could just approximate the average as the value of F for an arbitrary d0 ∈ [db,i−1, db,i]. 27

To get the actual number of aerosols Na,i in each bin, we need to multiply by the 28

bin width, which is 29

Na,i(t) = (db,i − db,i−1) nk|i (t) . (12)

We also need to get the average aerosol dose in each bin by suitably averaging 30

µj,k(t) over the bin. One possible scheme is 31

µj,k|i (t) =
∫ t

t0

dv 〈ES,r,j(d0) [1− ES,m,in,j (w(d0, v)d0)]〉i λS,j(v)Na,i(v) , (13)

where Na,i(t) has taken the place of nk|i (t) 32

Regardless of the scheme, the average dose for each multiplicity is calculated by 33

summing over the bins as 34

µj,k(t) =

Nb∑
i=1

µj,k|i (t) . (14)
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S2 Appendix. Checking Analytical Solution Against 1

Numerical Solution 2

The recursive analytical solution for ~n will be compared against a numerical solution. 3

Lets consider, for some fixed d0, the following case. 4

Mc = 10

α =
3

2
[T]−1

β = 50 + 20k [L]−4 [T]−1

γ =
1

10
[T]−1

n0,k =

∣∣∣∣Mc

2
− |4− k|

∣∣∣∣4 [L]−4

where [T] is the unit of time and [L] is the unit of length. This example starts with 5

both some n0,k < n∞,k and some n0,k > n∞,k and a source whose strength increases 6

with k. The system was solved from t = t0 = 0 [T] to t = 100 [T] in steps of 10−2 [T] 7

for the analytical solution and 10−3 [T] for the numerical solution. The system of ODEs 8

was solved numerically using the standard Runge-Kutta 4 in IEEE 754 binary64 9

floating point (commonly known as float64 or double precision). The small time step 10

was chosen in order to check that the differences between the two solutions are small. 11

The analytical solution to the concentration densities nk(d0, t) over time is shown in the 12

left panel in Fig 1, along with the normalized residual between the analytical and 13

numerical solutions (absolute value of the difference divided by the analytical solution) 14

in the right panel. The concentration densities decay or grow from ~n0 towards ~n∞ as we 15

expect. The differences between the analytical and numerical calculations are small 16

(less than 10−12); sometimes reaching the smallest relative differences that can be 17

represented in IEEE 754 binary64 numbers with their 53 bit mantissas [1], which are 18

2.2× 10−16 (numerical bigger than analytical by a fraction of 2−52) and 1.1× 10−16 19

(numerical smaller than analytical by a fraction 2−53). 20
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Fig 1. Numerical Validation of Analytical Solution. Comparison of the analytical and numerical solutions of ~n for
one particular case and d0. (Left) Analytical solution (recursive form) to the infectious aerosol concentration density nk(t)
over time, and (Right) the normalized residual between the analytical and numerical solutions
(|nk,analytical − nk,numerical| /nk,analytical over all time steps except t0 where some n0,k are zero. Each k is drawn as a
separate line, labeled by the value of k. Both panels share the same legend, which is in the Left panel. The numerical solution
was done by Runge-Kutta 4 with a time step of 10−3 [T] using IEEE 754 binary64 arithmetic.
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S1 Appendix. Model Solution Derivation 1

General Solution 2

The model is a finite coupled system of linear inhomogeneous ODEs for any fixed d0. In 3

matrix-vector form, it is 4

d~n

dt
= A(d0, t)~n(d0, t) + ~β(d0, t) , (1)

where ~n(d0, t) and ~β(t) are the nk(d0t) and βk(d0, t) for k > 0 in vector form and 5

A ≡



−α(d0, t)− γ(t) 2γ(t)
−α(d0, t)− 2γ(t) 3γ(t)

. . .
. . .

. . . Mcγ(t)
−α(d0, t)−Mcγ(t)

 . (2)

is an upper bidiagonal Mc ×Mc square matrix. 6

It is well-known that the complementary solution (the one for when ~β = ~0) is 7

~nC(d0, t) = X(d0, d0, t)X
−1(d0, t0)~n0 where X(d0, t) = exp

[∫ t
A(d0, x)dx

]
if A(d0, t) 8

commutes with itself at all combinations of time at fixed d0 9

(A(d0, x)A(d0, y) = A(d0, y)A(d0, x) ∀ x, y ∈ R) [1]. As we will later show from its 10

diagonalization, A commutes with itself for any two combinations of time with fixed d0. 11

Let its diagonalization be A = BΛB−1, which is gotten via eigenvalue decomposition. 12

We will use the notation cm,k to denote the m’th row and k’th column of a matrix C. 13

It can be shown that the eigen values of a bidiagonal matrix are its diagonal 14

elements. The eigenvalue matrix Λ is a diagonal matrix where the k’th diagonal 15

element is the k’th eigen value. Putting them in the same order as the diagonal 16

elements of A, they are 17

`k(d0, t) = −α(d0, t)− kγ(t) . (3)
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Except in the degenerate but trivial case γ(t) = 0, there are Mc distinct eigenvalues 18

(not degenerate), and in the degenerate case A = −αI and is trivially diagonalized 19

(Λ = A and B = B−1 = I). So A has Mc linearly independent eigen vectors and is 20

therefore diagonalizable. To complete the diagonalization, we need to find the eigen 21

vector ~bk(d0, t) for each eigen value by solving 22

A~bk = `k~bk . (4)

We can begin construction of the eigenvector by setting all elements m > k to zero 23

and element m = k to one. For elements m ≥ k, the eigen value-vector relationship 24

above trivially holds. For element m < k, this becomes the following recursive 25

relationship for the m’th row in terms of row m+ 1 26

`mbm,k + (m+ 1)γbm+1,k = `kbm,k

bm,k = −
(
m+ 1

k −m

)
bm+1,k , (5)

which starts with bk,k = 1. From this, element m < k is 27

bm,k = (−1)k−m (m+ 1)(m+ 2) · · · k
(k −m)(k −m− 1) · · · 1

= (−1)k−m
(
k

m

)
, (6)

where
(
k
m

)
= k!/(m!(k −m)!) is the notation for the binomial coefficient k choose m. 28

Conveniently, this means that all the elements of the eigen vectors are integers and 29

there is no dependence on t nor d0. The full eigen vector matrix is 30

bm,k =


(−1)k−m

(
k
m

)
if m < k ,

1 if m = k ,

0 if m > k ,

(7)

where the first case is technically also true along the diagonal (m = k) since it is equal 31

to one but it is more clear to write the diagonal elements explicitly as one. The inverse 32

of B is equal to the matrix B but with all elements replaced by their absolute values. 33

The elements of B−1 are thus 34

(
b−1
)
m,k

=


(
k
m

)
if m < k ,

1 if m = k ,

0 if m > k .

(8)

This was originally guessed after looking at the numerically computed inverse, but 35

we will prove it here. Consider the m’th row and the k’th column of BB−1 which is just 36(
BB−1

)
m,k

=
∑Mc

p=1 bm,p
(
b−1
)
p,k

. The elements of the sum are zero unless m ≤ p ≤ k, 37

which means that
(
BB−1

)
m,k

= 0 for m > k. For m ≤ k, the zero elements at the 38

beginning and end of the sum drop and we get a sum between m and k that is 39
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(
BB−1

)
m,k

=
k∑

p=m

(−1)p−m
(
p

m

)(
k

p

)

=
s∑
q=0

(−1)p
(
q +m

m

)(
k

q +m

)

=
s∑
q=0

(−1)q k!

m!q!(k − q −m)!

=
k!

m!s!

s∑
q=0

(−1)q
(
s

q

)

=

{
1 if m = k ,

0 if m < k ,
(9)

where we have defined q ≡ p−m and s ≡ k −m, the last sum is trivially equal to 1 if 40

m = k since then s = 0 and only the first term is present, and the sum is zero for s > 0 41

(k > m) as proven by Aupetit (Eq 7 in Appendix) [2]. All non-diagonal elements are 42

zero and all diagonal elements are one, meaning that we have the identity matrix I. 43

Thus Eq 8 is indeed the matrix inverse of Eq 7. 44

Thus we have diagonalized A. We can see that while the eigen values depend on t 45

and d0 if α or γ do; B (and therefore B−1) do not and are therefore constant. Note 46

that A(d0, t), B, B−1, and Λ(d0, t) are all upper-triangular matrices. Now we can show 47

that A commutes with itself for any two times but fixed d0. For two arbitrary times 48

x, y ∈ R, the product is 49

A(x)A(y) = BΛ(x)B−1BΛ(y)B−1

= BΛ(y)Λ(x)B−1

= BΛ(y)B−1BΛ(x)B−1

= A(y)A(x) ,

since all diagonal matrices, such as Λ(t), commute with each other. Thus A commutes 50

with itself for any two times (but fixed d0). Since A commutes with itself for any two 51

times,
∫ t

A(d0, x)dx also commutes itself for any two times (integral can be turned into 52

an infinite Riemann sum over A which shows that it commutes with itself). Then the 53

multiplied matrix exponentials exp
[∫ t

A(d0, x)dx
]
exp

[
−
∫ t

A(d0, x)dx
]
become the 54

matrix exponential of their sums. Choosing the constant of integration such 55

that~nC(d0, 0) = ~n0(d0), we get for the complete complementary solution 56

~nC(d0, t) = exp

[∫ t

t0

A(d0, x)dx

]
~n0 . (10)

Then the general solution to Eq (1) is 57

~n(d0, t) = exp

[∫ t

t0

A(d0, x)dx

]
~n0(d0) +

∫ t

t0

exp

[∫ t

s

A(d0, x)dx

]
~β(d0, s)ds , (11)

which we got by guessing based on the equivalent solution for a single equation rather 58

than a system and then checking it (checking it is straightforward). 59
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Now we need the matrix exponential exp
[∫ t
s

Adx
]
for some scalar s. All t and d0 60

dependence in the diagonalization of A is confined to the eigen value matrix Λ(d0, t), 61

which greatly simplifies finding this matrix exponential. First, we can rewrite the 62

eigenvalue matrix as 63

Λ(d0, t) = −α(d0, t)I− γ(t)G , (12)

where G is the diagonal matrix 64

G =

1 . . .

Mc

 . (13)

Since A is diagonalized, all diagonal matrices commute with each other with respect 65

to multiplication, B is not a function of time, and the matrix exponential of the sum of 66

two matrices is the product of their exponentials if they commute; the matrix 67

exponential of
∫ t
s
A(d0, s)dx is 68

exp

[∫ t

s

A(d0, x)dx

]
= B exp

[∫ t

s

Λ(d0, x)dx

]
B−1

= B exp

[
−I

∫ t

s

α(x)dx−G

∫ t

s

γ(x)dx

]
B−1

= I exp

[
−
∫ t

s

α(d0, x)dx

]
B exp

[
−G

∫ t

s

γ(x)dx

]
B−1

= u(d0, t, s)H(t, s) , (14)

where 69

u(d0, t, s) = exp

[
−
∫ t

s

α(d0, x)dx

]
, (15)

H(t, s) = B exp

[
−G

∫ t

s

γ(x)dx

]
B−1 . (16)

We can put this into the general solution for the system of ODEs from Eq (11) to get 70

~n(d0, t) = u(d0, t, t0)H(t, t0)~n0(d0) +

∫ t

t0

u(d0, t, s)H(t, s)~β(d0, s)ds . (17)

Now we must determine H. Since G is a diagonal matrix 71

exp

[
−G

∫ t

s

γ(x)dx

]
=

e
−

∫ t
s
γ(x)dx

. . .

e−Mc

∫ t
s
γ(x)dx

 . (18)

When this multiplies with B, it essentially scales the columns by the diagonal 72

elements. The resulting matrix is an upper triangular matrix. For the m’th row and 73

k’th column, hm,k(t, s) = 0 if m > k; and for m ≤ k it is 74
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hm,k(t, s) =
k∑

i=m

bm,i(bi,k)
−1 exp

[
−i
∫ t

s

γ(x)dx

]

=
k∑

i=m

(−1)i−mk!
m!(i−m)!(k − i)!

exp

[
−i
∫ t

s

γ(x)dx

]

=
k−m∑
p=0

(−1)pk!
m!p!(k −m− p)!

exp

[
−(p+m)

∫ t

s

γ(x)dx

]

=
k!

m!(k −m)!

k−m∑
p=0

(−1)p
(
k −m
p

)
exp

[
−(p+m)

∫ t

s

γ(x)dx

]

=

(
k

m

) k−m∑
p=0

(−1)p
(
k −m
p

)
exp

[
−(p+m)

∫ t

s

γ(x)dx

]
, (19)

=

(
k

m

)
exp

[
−m

∫ t

s

γ(x)dx

] k−m∑
p=0

(
k −m
p

)[
− exp

[
−
∫ t

s

γ(x)dx

]]p

=

(
k

m

)
exp

[
−m

∫ t

s

γ(x)dx

] [
1− exp

[
−
∫ t

s

γ(x)dx

]]k−m
, (20)

where the last step uses the definition of binomial coefficients. One could use either 75

Eq (19) or (20) to calculate the elements or do further derivations. 76

Dropping out of vector form, we can now write Eq (17) for each multiplicity as 77

nk(d0, t) = u(d0, t, t0) exp

[
−k
∫ t

t0

γ(x)dx

]
•
Mc∑
p=k

(
p

k

)
n0,p(d0)

[
1− exp

[
−
∫ t

t0

γ(x)dx

]]p−k

+

Mc∑
p=k

(
p

k

)∫ t

t0

u(d0, t, s)βp(d0, s)

• exp
[
−k
∫ t

s

γ(x)dx

] [
1− exp

[
−
∫ t

s

γ(x)dx

]]p−k
ds , (21)

or with u(d0, t, t0) substituted out as 78

nk(d0, t) = exp

[
−
∫ t

t0

α(d0, x)dx

]
exp

[
−k
∫ t

t0

γ(x)dx

]
•
Mc∑
p=k

(
p

k

)
n0,p(d0)

[
1− exp

[
−
∫ t

t0

γ(x)dx

]]p−k

+

Mc∑
p=k

(
p

k

)∫ t

t0

βp(d0, s)

• exp
[
−
∫ t

s

α(d0, x)dx

]
exp

[
−k
∫ t

s

γ(x)dx

] [
1− exp

[
−
∫ t

s

γ(x)dx

]]p−k
ds . (22)
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Solution for Coefficients Constant in Time 79

Eq (22) can be simplified if α, ~β, and/or γ are constant with respect to time (or 80

approximately so). If α(d0) is constant with respect to time, then 81

u(d0, t, s) = e−(t−s)α(d0) . (23)

If γ is constant (it has no d0 dependence, so being constant with respect to time 82

makes it a constant outright), then Eq (19) and (20) for expressing the upper triangle of 83

H become 84

hm,k(t, s) =

(
k

m

) k−m∑
p=0

(−1)p
(
k −m
p

)
e−(p+m)(t−s)γ , (24)

hm,k(t, s) =

(
k

m

)
e−m(t−s)γ

[
1− e−(t−s)γ

]k−m
. (25)

If α, ~β, and γ are all constant with respect to time; then for multiplicity k, 85

[∫ t

t0

u(d0, t, s) H(t, s)~β(d0, s)ds
]
k

=

Mc∑
i=k

(
i

k

)
βi(d0)

∫ t

t0

e−(α(d0)+kγ)(t−s)
[
1− e−(t−s)γ

]i−k
ds

=

Mc∑
i=k

(
i

k

)
βi(d0)

i−k∑
p=0

(
i− k
p

)∫ t

t0

e−(α(d0)+kγ)(t−s)
[
−e−(t−s)γ

]p
ds

=

Mc∑
i=k

(
i

k

)
βi(d0)

i−k∑
p=0

(
i− k
p

)
(−1)p

∫ t

t0

e−[α(d0)+(k+p)γ](t−s)ds

=

Mc∑
i=k

(
i

k

)
βi(d0)

i−k∑
p=0

(
i− k
p

)
(−1)p

α(d0) + (k + p)γ

•
[
1− e−[α(d0)+(k+p)γ](t−t0)

]
. (26)

Then if α, ~β, and γ are all constant; the general solution from Eq (21) becomes 86

nk(d0, t) = e−(α(d0)+kγ)(t−t0)
Mc∑
i=k

(
i

k

)
n0,i(d0)

[
1− e−(t−t0)γ

]i−k
+

Mc∑
i=k

(
i

k

)
βi(d0)

i−k∑
p=0

(
i− k
p

)
(−1)p

α(d0) + (k + p)γ

[
1− e−[α(d0)+(k+p)γ](t−t0)

]
. (27)

The concentration density as t→∞ is 87

n∞,k(d0) =

Mc∑
i=k

(
i

k

)
βi(d0)

i−k∑
p=0

(
i− k
p

)
(−1)p

α(d0) + (k + p)γ
. (28)

This term is present in Eq (27), so we can re-express it as 88
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nk(d0, t) = n∞,k(d0) + e−(α(d0)+kγ)(t−t0)
Mc∑
i=k

(
i

k

){

n0,i(d0)
[
1− e−(t−t0)γ

]i−k
− βi(d0)

i−k∑
p=0

(
i− k
p

)
(−1)pe−p(t−t0)γ

α(d0) + (k + p)γ

}
, (29)

Calculation of the average aerosol dose requires the time integral of nk. Completing 89

the integral on all but the last term (will do an alternative evaluation of it later), it is 90

∫ t

t0

nk(d0, v)dv = (t− t0)n∞,k(d0)

+

Mc∑
i=k

(
i

k

)
n0,i(d0)

i−k∑
p=0

(
i− k
p

)
(−1)p

α(d0) + (k + p)γ

[
1− e−[α(d0)+(k+p)γ](t−t0)

]

−
∫ t

t0

dv e−(α(d0)+kγ)(v−t0)
Mc∑
i=k

(
i

k

)
βi(d0)

i−k∑
p=0

(
i− k
p

)
(−1)pe−p(v−t0)γ

α(d0) + (k + p)γ
. (30)

And if we completely evaluate the last integral, 91

∫ t

t0

nk(d0, v)dv = (t− t0)n∞,k(d0)

+

Mc∑
i=k

(
i

k

) i−k∑
p=0

(
i− k
p

)
(−1)p

α(d0) + (k + p)γ

{
n0,i(d0)

[
1− e−[α(d0)+(k+p)γ](t−t0)

]
+ βi(d0)

(
e−[α(d0)+(k+p)γ](t−t0) − 1

α(d0) + (k + p)γ

)}
. (31)

Recursive Solution for Coefficients Constant in Time 92

For n∞,k 93

We can rewrite n∞,k(d0) as a recursive expression, which greatly reduces the effort in 94

calculating ~n∞(d0). At steady state where ~nk = ~n∞ (such as when t→∞), dnk/dt→ 0 95

and Eq 1 becomes 96

n∞,k(d0) =
1

α(d0) + kγ
[βk(d0) + (k + 1)γ n∞,k+1(d0)] , (32)

which can be calculated recursively starting from k =Mc and then descending to k = 1. 97

At k =Mc, the value is 98

n∞,Mc
(d0) =

βMc(d0)

α(d0) +Mcγ
, (33)

since n∞,k+1 = 0 for k ≥Mc. 99
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For nk 100

We have so far been unable to make a recursive form for ~n in Eq (29) where the total 101

number of terms scales as O (Mc), but there is a recursive form that reduces the 102

number of terms that must be evaluated to scale as O
(
M2
c

)
instead of O

(
M3
c

)
. We can 103

re-express the innermost sum in Eq 29 in terms of a Gauss hypergeometric function. 104

The Gauss hypergeometric function [3] is 105

2F1(a, b; c; z) =
∞∑
p=0

(a)p(b)p z
p

(c)p p!
, (34)

and the Pochhammer symbol [3] for integer p is 106

(x)p =

{
x(x+ 1) . . . (x+ p− 1) if p > 0 ,

1 if p = 0 .
(35)

Note that 2F1(a, b; c; z) = 2F1(b, a; c; z). For the special case that a = −m is a 107

negative integer, like in our case, it is [3] 108

2F1(−m, b; c; z) =
m∑
p=0

(
m

p

)
(−1)p(b)pzp

(c)p
. (36)

This lets us re-express Eq 29 as 109

nk(d0, t) = n∞,k(d0) + zs
[
Uk(d0, ~β(d0), z) + Vk(~n0(d0), z)

]
, (37)

where 110

Vk(~y, x) =

Mc∑
i=k

(
i

k

)
yi(1− x)i−k , (38)

and 111

Uk(d0, ~y, x) = −
Mc∑
i=k

(
i

k

)
yi

i−k∑
p=0

(
i− k
p

)
(−1)pxp

α(d0) + (k + p)γ

= − 1

γs

Mc∑
i=k

(
i

k

)
yi 2F1(−(i− k), s; s+ 1;x) , (39)

and we have defined 112

s(d0) =
α(d0)

γ
+ k , (40)

z(t) = e−(t−t0)γ . (41)

The last definitions mean that e−(α+kγ)(t−t0) = zs. Note that since t ≥ t0, z ∈ (0, 1] 113

which means we are in the domain of the Gauss hypergeometric functions of the form in 114

Eq (36) 115

We need to separate the sum in Uk(d0, ~y, x) into the i = k case and the rest, which is 116

a sum over the same range as for nk+1 but with different terms inside. Additionally, 117(
i
k

)
= k+1

i−k
(
i

k+1

)
and 2F1(0, s; s+ 1;x) = 1 Then, 118
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Uk(d0, ~y, x) = −
1

γs

[
yk + (k + 1)

Mc∑
i=k+1

(
i

k + 1

)
yi
i− k 2F1(−(i− k), s; s+ 1;x)

]
. (42)

To build a recursive relationship from k to k + 1, we need to relate 119

2F1(−(i− k), s; s+ 1;x) to 2F1(−(i− k) + 1, s+ 1; s+ 2;x) since k → k + 1 changes 120

s→ s+ 1 and −(i− k)→ −(i− k) + 1. To do this, we will use the contiguous 121

relations/functions which can used to relate any three Gauss hypergeometric functions 122

of the form 2F1(a+m1, b+m2; c+m3; z) for different combinations of integers m1, 123

m2, and m3 [3]. We use two from Rakha, Rathie & Chopra (their Eq 1.17 and 1.20) [3] 124

to relate these two hypergeometric functions to each other and ones which can be 125

evaluated exactly. Combining the two contiguous relations, 126

2F1(−(i− k), s; s+ 1;x) = 2F1(−(i− k)− 1, s+ 1; s+ 1;x)

+
x

s+ 1

[
(i− k)2F1(−(i− k) + 1, s+ 1; s+ 2;x)

+ (s+ 1)2F1(−(i− k), s+ 2; s+ 2;x)

]
(43)

Now, we have two Gauss hypergeometric functions, with m ≥ 0, of the form 127

2F1(−m, c; c; z) =
m∑
p=0

(
m

p

)
(−1)p(c)pzp

(c)p

=
m∑
p=0

(
m

p

)
(−z)p

= (1− z)m (44)

Putting this in, we get 128

2F1(−(i− k), s; s+ 1;x) =

(1− x)i−k + (i− k)x
s+ 1

2F1(−(i− k) + 1, s+ 1; s+ 2;x) . (45)

Inserting this into Eq (42) and stepping the binomial coefficient in the sum with the 129

first term back down to
(
i
k

)
, 130

Uk(d0, ~y, x) = −
1

γs

[
yk +

Mc∑
i=k+1

(
i

k

)
yi(1− x)i−k

+
(k + 1)x

s+ 1

Mc∑
i=k+1

(
i

k + 1

)
yi 2F1(−(i− k) + 1, s+ 1; s+ 2;x)

]
. (46)

We can re-arrange this to be a recursive relationship and combine the first two terms 131

in the brackets into a single sum (the first term is the i = k case of the first sum). 132
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Noting that 2F1(0, s; s+ 1;x) = 1 for evaluating UMc
with Eq (39), the recursive 133

relationship is 134

Uk(d0, ~y, x) =

{
−yMc

γs if k =Mc ,
(k+1)x

s Uk+1(d0, ~y, x)− 1
γsVk(~y, x) otherwise .

(47)

The number of terms in evaluating all the Uk(d0, ~y, x) at a specific d0 and t scales as 135

O
(
M2
c

)
with this recursive definition, rather than O

(
M3
c

)
if we use the original 136

definition in Eq (39) since the Gauss hypergeometric function itself makes for an inner 137

sum from Eq 36. And therefore we have also made the number of terms required to 138

evaluate ~n at a specific d0 and t scale as O
(
M2
c

)
, since now there are only single sums 139

in each nk. Additionally, no binomial coefficients are multiplied together anymore which 140

makes it easier to avoid numerical overflow, and the (−1)p term is gone which causes 141

accuracy problems when doing the inner sum at any given fixed precision. 142

Looking back at the recursive form of n∞,k(d0) in Eq (32) and (33), we can see that 143

n∞,k(d0) = −Uk(d0, ~β(d0), 1) . (48)

For Time Integral of nk 144

Now, we can build a recursive relationship for
∫ t
t0
nkdt from Eq (30). The double sums 145

can all be re-expressed in terms of Uk, getting 146

∫ t

t0

nk(d0, v)dv = (t− t0)n∞,k(d0)− Uk(d0, ~n0(d0), 1)

+ zsUk(d0, ~n0(d0), z) +

∫ t

t0

dv z(v)sUk(d0, ~β(d0), z(v)) . (49)

Changing integration variables in the last integral from t to z(v), we get 147

∫ t

t0

nk(d0, v)dv = (t− t0)n∞,k(d0)− Uk(d0, ~n0(d0), 1)

+ zsUk(d0, ~n0(d0), z)−
1

γ
Wk

(
d0, ~β, z

)
, (50)

where 148

Wk (d0, ~y, x) =

∫ x

1

dv vs−1Uk(d0, ~y, v) , (51)

with a re-use/reassignment of the integration variable. 149

Then, writing Uk(d0, ~y, x) out, using Eq (45) to step the Gauss hypergeometric 150

function to k + 1, and identifying Wk+1 (d0, ~y, x) and Uk (d0, ~y, x); 151
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Wk (d0, ~y, x) = − 1

γs

∫ x

1

dv vs−1
Mc∑
i=k

(
i

k

)
yi 2F1(−(i− k), s; s+ 1; v)

= − 1

γs

Mc∑
i=k

(
i

k

)
yi

[∫ x

1

vs−1(1− v)i−kdv

+

∫ x

1

(i− k)vs

s+ 1
2F1(−(i− k) + 1, s+ 1; s+ 2; v)dv

]

= − 1

γs

Mc∑
i=k

(
i

k

)
yi

i−k∑
p=0

(
i− k
p

)∫ x

1

(−1)pvp+s−1dv

−k + 1

s

[
1

(s+ 1)γ

Mc∑
i=k+1

(
i

k + 1

)
yi

•
∫ x

1

vs2F1(−(i− k) + 1, s+ 1; s+ 2; v)dv

]

=
k + 1

s
Wk+1 (d0, ~y, x)−

xs

γs

Mc∑
i=k

(
i

k

)
yi

i−k∑
p=0

(
i− k
p

)
(−1)pxp

s+ p

+
1

γs

Mc∑
i=k

(
i

k

)
yi

i−k∑
p=0

(
i− k
p

)
(−1)p

s+ p

=
1

s
[(k + 1)Wk+1 (d0, ~y, x) + xsUk (d0, ~y, x)− Uk (d0, ~y, 1)] . (52)

This is recursive since it depends on itself from k + 1 and Uk (d0, ~y, x) and 152

Uk (d0, ~y, 1) which are recursive. All that remains is to evaluate it for k =Mc, and then 153

Eq (50) is complete. This is 154

WMc
(d0, ~y, x) = − 1

γs

∫ x

1

dv vs−1
Mc∑
i=Mc

(
i

Mc

)
yi 2F1(−(i−Mc), s; s+ 1; v)

= −yMc

γs

∫ x

1

vs−1 2F1(0, s; s+ 1; v)dv

= −yMc

γs

∫ x

1

vs−1 dv

=
yMc

γs2
(1− xs) (53)
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