
1

Polygenic Risk Modelling for Prediction of Epithelial Ovarian Cancer Risk  1 

Eileen O. Dareng1*, Jonathan P. Tyrer2*, Daniel R. Barnes1, Michelle R. Jones3, Xin Yang1, 2 

Katja K.H. Aben4, 5, Muriel  A. Adank6, Simona Agata7, Irene L. Andrulis8, 9, Hoda Anton-3 

Culver10, Natalia N. Antonenkova11, Gerasimos Aravantinos12, Banu K. Arun13, Annelie 4 

Augustinsson14, Judith Balmaña15, 16, Elisa V. Bandera17, Rosa B. Barkardottir18, 19, Daniel 5 

Barrowdale1, Matthias W. Beckmann20, Alicia Beeghly-Fadiel21, Javier Benitez22, 23, Marina 6 

Bermisheva24, Marcus Q. Bernardini25, Line Bjorge26, 27, Amanda Black28, Natalia V. 7 

Bogdanova11, 29, 30, Bernardo Bonanni31, Ake Borg32, James D. Brenton33, Agnieszka 8 

Budzilowska34, Ralf Butzow35, Saundra S. Buys36, Hui Cai21, Maria A. Caligo37, Ian Campbell38, 
9 

39, Rikki Cannioto40, Hayley Cassingham41, Jenny Chang-Claude42, 43, Stephen J. Chanock44, 10 

Kexin  Chen45, Yoke-Eng  Chiew46, 47, Wendy K. Chung48, Kathleen B.M. Claes49, Sarah 11 

Colanna36, GEMO Study  Collaborators50-52, GC-HBOC study  Collaborators53, EMBRACE 12 

Collaborators1, Linda S. Cook54, 55, Fergus J. Couch56, Mary B. Daly57, Fanny Dao58, Eleanor 13 

Davies59, Miguel de la Hoya60, Robin de Putter49, Joe Dennis1, Allison DePersia61, 62, Peter 14 

Devilee63, 64, Orland Diez65, 66, Yuan Chun Ding67, Jennifer A. Doherty68, Susan M. Domchek69, 15 

Thilo Dörk30, Andreas du Bois70, 71, Matthias Dürst72, Diana M. Eccles73, Heather A. Eliassen74, 
16 

75, Christoph Engel76, 77, D. Gareth Evans78, 79, Peter A. Fasching20, 80, James M. Flanagan81, 17 

Lenka Foretova82, Renée T. Fortner42, Eitan Friedman83, 84, Patricia A. Ganz85, Judy Garber86, 18 

Francesca Gensini87, Graham G. Giles88-90, Gord Glendon8, Andrew K. Godwin91, Marc T. 19 

Goodman92, Mark H. Greene93, Jacek Gronwald94, OPAL Study Group95, AOCS Group38, 46, 20 

Eric Hahnen53, 96, Christopher A. Haiman97, Niclas Håkansson98, Ute Hamann99, Thomas V.O. 21 

Hansen100, Holly  R. Harris101, 102, Mikael Hartman103, 104, Florian Heitz70, 71, 105, Michelle A.T. 22 

Hildebrandt106, Estrid  Høgdall107, 108, Claus  K. Høgdall109, John L. Hopper89, Ruea-Yea 23 

Huang110, Chad Huff106, Peter J. Hulick61, 62, David G. Huntsman111-114, Evgeny N. Imyanitov115, 24 

KConFab  Investigators38, HEBON Investigators116, Claudine Isaacs117, Anna Jakubowska94, 118, 25 

Paul A. James39, 119, Ramunas Janavicius120, 121, Allan Jensen107, Oskar Th. Johannsson122, Esther 26 

M. John 123, 124, Michael E. Jones125, Daehee Kang126-128, Beth  Y.  Karlan129, Anthony 27 

Karnezis130, Linda E. Kelemen131, Elza Khusnutdinova24, 132, Lambertus A. Kiemeney4, Byoung-28 

Gie Kim133, Susanne K. Kjaer107, 109, Ian Komenaka134, Jolanta Kupryjanczyk34, Allison W. 29 

Kurian123, 124, Ava Kwong135-137, Diether Lambrechts138, 139, Melissa  C.  Larson140, Conxi 30 

Lazaro141, Nhu  D. Le142, Goska Leslie1, Jenny Lester129, Fabienne Lesueur51, 52, 143, Douglas  A. 31 

Levine58, 144, Lian Li45, Jingmei Li145, Jennifer T. Loud93, Karen H. Lu146, Jan Lubiński94, Eva 32 

Machackova82, Phuong L. Mai147, Siranoush Manoukian148, Jeffrey  R. Marks149, Rayna Kim 33 

Matsuno150, Keitaro Matsuo151, 152, Taymaa May25, Lesley McGuffog1, John R.  McLaughlin153, 34 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 2, 2020. ; https://doi.org/10.1101/2020.11.30.20219220doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2020.11.30.20219220
http://creativecommons.org/licenses/by-nc-nd/4.0/


2

Iain A. McNeish154, 155, Noura Mebirouk51, 52, 143, Usha Menon156, Austin Miller157, Roger L. 35 

Milne88-90, Albina Minlikeeva158, Francesmary Modugno159, 160, Marco Montagna7, Kirsten B. 36 

Moysich158, Elizabeth Munro161, 162, , Katherine L. Nathanson69, Susan L. Neuhausen67, Heli 37 

Nevanlinna163, Joanne Ngeow Yuen Yie164, 165, Henriette Roed Nielsen166, Finn C. Nielsen100, 38 

Liene Nikitina-Zake167, Kunle Odunsi168, Kenneth Offit169, 170, Edith Olah171, Siel Olbrecht172, 39 

Olufunmilayo I. Olopade173, Sara H. Olson174, Håkan Olsson14, Ana Osorio23, 175, Laura Papi87, 40 

Sue K. Park126-128, Michael T. Parsons176, Harsha Pathak91, Inge Sokilde Pedersen177-179, Ana 41 

Peixoto180, Tanja Pejovic161, 162, Pedro Perez-Segura60, Jennifer  B. Permuth181, Beth Peshkin117, 42 

Paolo Peterlongo182, Anna Piskorz33, Darya Prokofyeva183, Paolo Radice184, Johanna Rantala185, 43 

Marjorie J. Riggan186, Harvey A. Risch187, Cristina Rodriguez-Antona22, 23, Eric Ross188, Mary 44 

Anne Rossing101, 102, Ingo Runnebaum72, Dale P. Sandler189, Marta Santamariña175, 190, 191,  Penny 45 

Soucy192, Rita K. Schmutzler53, 96, 193, V. Wendy Setiawan97, Kang Shan194, Weiva  Sieh195, 196, 46 

Jacques Simard197, Christian F. Singer198, Anna P Sokolenko115, Honglin Song199, Melissa C. 47 

Southey88, 90, 200, Helen Steed201, Dominique Stoppa-Lyonnet50, 202, 203, Rebecca Sutphen204, 48 

Anthony J. Swerdlow125, 205, Yen Yen Tan206, Manuel R. Teixeira180, 207, Soo Hwang Teo208, 209, 49 

Kathryn L.  Terry74, 210, Mary Beth Terry211, Mads Thomassen166, Pamela J. Thompson92, Liv 50 

Cecilie Vestrheim  Thomsen26, 27, Darcy L. Thull212, Marc Tischkowitz213, 214, Linda Titus215, 51 

Amanda E. Toland216, Diana Torres99, 217, Britton Trabert28, Ruth Travis218, Nadine Tung219, 52 

Shelley  S. Tworoger181, 220, Ellen Valen26, 27, Anne M. van Altena4, Annemieke H. van der 53 

Hout221, Els Van Nieuwenhuysen172, Elizabeth J. van Rensburg222, Ana Vega223-225, Digna Velez 54 

Edwards226, Robert  A.  Vierkant140, Frances Wang227, 228, Barbara Wappenschmidt53, 96, 55 

Penelope M. Webb95, Clarice R. Weinberg229, Jeffrey N. Weitzel230, Nicolas  Wentzensen28, 56 

Emily White102, 231, Alice S. Whittemore123, 232, Stacey J. Winham140, Alicja Wolk98, 233, Yin-Ling 57 

Woo234, Anna H. Wu97, Li Yan235, Drakoulis Yannoukakos236, Katia M. Zavaglia37, Wei 58 

Zheng21, Argyrios Ziogas10, Kristin K. Zorn147, Douglas Easton1,2, Kate Lawrenson3, 237, Anna  59 

DeFazio46, 47, Thomas  A. Sellers 238, Susan J. Ramus239, 240, Celeste  L. Pearce241, 242, Alvaro N. 60 

Monteiro181, Julie Cunningham243, Ellen L. Goode243, Joellen  M. Schildkraut244, Andrew 61 

Berchuck186, Georgia Chenevix-Trench176, Simon A. Gayther3, Antonis C. Antoniou1, Paul D.P. 62 

Pharoah1, 2 63 

 64 

1 University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Public 65 

Health and Primary Care, Cambridge, UK. 66 

2 University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Oncology, 67 

Cambridge, UK. 68 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 2, 2020. ; https://doi.org/10.1101/2020.11.30.20219220doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.30.20219220
http://creativecommons.org/licenses/by-nc-nd/4.0/


3

3 Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los 69 

Angeles, CA, USA. 70 

4 Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The 71 

Netherlands. 72 

5 Netherlands Comprehensive Cancer Organisation, Utrecht, The Netherlands. 73 

6 The Netherlands Cancer Institute - Antoni van Leeuwenhoek hospital, Family Cancer Clinic, 74 

Amsterdam, The Netherlands. 75 

7 Veneto Institute of Oncology IOV - IRCCS, Immunology and Molecular Oncology Unit, 76 

Padua, Italy.     77 

8 Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Fred A. Litwin Center for 78 

Cancer Genetics, Toronto, ON, Canada. 79 

9 University of Toronto, Department of Molecular Genetics, Toronto, ON, Canada. 80 

10 University of California Irvine, Department of Epidemiology, Genetic Epidemiology 81 

Research Institute, Irvine, CA, USA. 82 

11 N.N. Alexandrov Research Institute of Oncology and Medical Radiology, Minsk, Belarus. 83 

12 'Agii Anargiri' Cancer Hospital, Athens, Greece. 84 

13 University of Texas MD Anderson Cancer Center, Department of Breast Medical Oncology, 85 

Houston, TX, USA. 86 

14 Lund University, Department of Cancer Epidemiology, Clinical Sciences, Lund, Sweden. 87 

15 Vall d'Hebron Institute of Oncology, Hereditary cancer Genetics Group, Barcelona, Spain. 88 

16 University Hospital of Vall d'Hebron, Department of Medical Oncology, Barcelona, Spain. 89 

17 Rutgers Cancer Institute of New Jersey, Cancer Prevention and Control Program, New 90 

Brunswick, NJ, USA. 91 

18 Landspitali University Hospital, Department of Pathology, Reykjavik, Iceland. 92 

19 University of Iceland, BMC (Biomedical Centre), Faculty of Medicine, Reykjavik, Iceland. 93 

20 University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, 94 

Department of Gynecology and Obstetrics, Comprehensive Cancer Center ER-EMN, Erlangen, 95 

Germany. 96 

21 Vanderbilt University School of Medicine, Division of Epidemiology, Department of 97 

Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Nashville, TN, 98 

USA. 99 

22 Biomedical Network on Rare Diseases (CIBERER), Madrid, Spain. 100 

23 Spanish National Cancer Research Centre (CNIO), Human Cancer Genetics Programme, 101 

Madrid, Spain. 102 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 2, 2020. ; https://doi.org/10.1101/2020.11.30.20219220doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.30.20219220
http://creativecommons.org/licenses/by-nc-nd/4.0/


4

24 Ufa Federal Research Centre of the Russian Academy of Sciences, Institute of Biochemistry 103 

and Genetics, Ufa, Russia. 104 

25 Princess Margaret Hospital, Division of Gynecologic Oncology, University Health Network, 105 

Toronto, Ontario, Canada. 106 

26 Haukeland University Hospital, Department of Obstetrics and Gynecology, Bergen, Norway. 107 

27 University of Bergen, Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, 108 

Bergen, Norway. 109 

28 National Cancer Institute, Division of Cancer Epidemiology and Genetics, Bethesda, MD, 110 

USA. 111 

29 Hannover Medical School, Department of Radiation Oncology, Hannover, Germany. 112 

30 Hannover Medical School, Gynaecology Research Unit, Hannover, Germany. 113 

31 IEO, European Institute of Oncology IRCCS, Division of Cancer Prevention and Genetics, 114 

Milan, Italy. 115 

32 Lund University and Skåne University Hospital, Department of Oncology, Lund, Sweden. 116 

33 Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK. 117 

34 Maria Sklodowska-Curie National Research Institute of Oncology, Department of Pathology 118 

and Laboratory Diagnostics, Warsaw, Poland. 119 

35 University of Helsinki, Department of Pathology, Helsinki University Hospital, Helsinki, 120 

Finland. 121 

36 Huntsman Cancer Institute, Department of Medicine, Salt Lake City, UT, USA. 122 

37 University Hospital, SOD Genetica Molecolare, Pisa, Italy. 123 

38 Peter MacCallum Cancer Center, Melbourne, Victoria, Australia. 124 

39 The University of Melbourne, Sir Peter MacCallum Department of Oncology, Melbourne, 125 

Victoria, Australia. 126 

40 Roswell Park Cancer Institute, Cancer Pathology & Prevention, Division of Cancer 127 

Prevention and Population Sciences, Buffalo, NY, USA. 128 

41 Division of Human Genetics, The Ohio State University, Department of Internal Medicine, 129 

Columbus, OH, USA. 130 

42 German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Heidelberg, 131 

Germany. 132 

43 University Medical Center Hamburg-Eppendorf, Cancer Epidemiology Group, University 133 

Cancer Center Hamburg (UCCH), Hamburg, Germany. 134 

44 National Cancer Institute, National Institutes of Health, Department of Health and Human 135 

Services, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA. 136 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 2, 2020. ; https://doi.org/10.1101/2020.11.30.20219220doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.30.20219220
http://creativecommons.org/licenses/by-nc-nd/4.0/


5

45 Tianjin Medical University Cancer Institute and Hospital, Department of Epidemiology, 137 

Tianjin, China. 138 

46 The University of Sydney, Centre for Cancer Research, The Westmead Institute for Medical 139 

Research, Sydney, New South Wales, Australia. 140 

47 Westmead Hospital, Department of Gynaecological Oncology, Sydney, New South Wales, 141 

Australia. 142 

48 Columbia University, Departments of Pediatrics and Medicine, New York, NY, USA. 143 

49 Ghent University, Centre for Medical Genetics, Gent, Belgium. 144 

50 INSERM U830, Department of Tumour Biology, Paris, France. 145 

51 Institut Curie, Paris, France. 146 

52 Mines ParisTech, Fontainebleau, France. 147 

53 Faculty of Medicine and University Hospital Cologne, University of Cologne, Center for 148 

Familial Breast and Ovarian Cancer, Cologne, Germany. 149 

54 University of New Mexico, University of New Mexico Health Sciences Center, Albuquerque, 150 

NM, USA. 151 

55 Alberta Health Services, Department of Cancer Epidemiology and Prevention Research, 152 

Calgary, AB, Canada. 153 

56 Mayo Clinic, Department of Laboratory Medicine and Pathology, Rochester, MN, USA. 154 

57 Fox Chase Cancer Center, Department of Clinical Genetics, Philadelphia, PA, USA. 155 

58 Memorial Sloan Kettering Cancer Center, Gynecology Service, Department of Surgery, New 156 

York, NY, USA. 157 

59 Cambridge, Cambridge, UK. 158 

60 CIBERONC, Hospital Clinico San Carlos, IdISSC (Instituto de Investigación Sanitaria del 159 

Hospital Clínico San Carlos), Molecular Oncology Laboratory, Madrid, Spain. 160 

61 NorthShore University Health System, Center for Medical Genetics, Evanston, IL, USA. 161 

62 The University of Chicago Pritzker School of Medicine, Chicago, IL, USA. 162 

63 Leiden University Medical Center, Department of Pathology, Leiden, The Netherlands. 163 

64 Leiden University Medical Center, Department of Human Genetics, Leiden, The Netherlands. 164 

65 Vall dHebron Institute of Oncology (VHIO), Oncogenetics Group, Barcelona, Spain. 165 

66 University Hospital Vall dHebron, Clinical and Molecular Genetics Area, Barcelona, Spain. 166 

67 Beckman Research Institute of City of Hope, Department of Population Sciences, Duarte, CA, 167 

USA. 168 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 2, 2020. ; https://doi.org/10.1101/2020.11.30.20219220doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.30.20219220
http://creativecommons.org/licenses/by-nc-nd/4.0/


6

68 University of Utah, Huntsman Cancer Institute, Department of Population Health Sciences, 169 

Salt Lake City, UT, USA. 170 

69 University of Pennsylvania, Basser Center for BRCA, Abramson Cancer Center, 171 

Philadelphia, PA, USA. 172 

70 Ev. Kliniken Essen-Mitte (KEM), Department of Gynecology and Gynecologic Oncology, 173 

Essen, Germany. 174 

71 Dr. Horst Schmidt Kliniken Wiesbaden, Department of Gynecology and Gynecologic 175 

Oncology, Wiesbaden, Germany. 176 

72 Jena University Hospital - Friedrich Schiller University, Department of Gynaecology, Jena, 177 

Germany. 178 

73 University of Southampton, Faculty of Medicine, Southampton, UK. 179 

74 Harvard T.H. Chan School of Public Health, Department of Epidemiology, Boston, MA, 180 

USA. 181 

75 Brigham and Women's Hospital and Harvard Medical School, Channing Division of Network 182 

Medicine, Boston, MA, USA. 183 

76 University of Leipzig, Institute for Medical Informatics, Statistics and Epidemiology, Leipzig, 184 

Germany. 185 

77 University of Leipzig, LIFE - Leipzig Research Centre for Civilization Diseases, Leipzig, 186 

Germany. 187 

78 University of Manchester, Manchester Academic Health Science Centre, Division of 188 

Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine 189 

and Health, Manchester, UK. 190 

79 St Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester Academic 191 

Health Science Centre, North West Genomics Laboratory Hub, Manchester Centre for Genomic 192 

Medicine, Manchester, UK. 193 

80 University of California at Los Angeles, David Geffen School of Medicine, Department of 194 

Medicine Division of Hematology and Oncology, Los Angeles, CA, USA. 195 

81 Imperial College London, Division of Cancer and Ovarian Cancer Action Research Centre, 196 

Department of Surgery and Cancer, London, UK. 197 

82 Masaryk Memorial Cancer Institute, Department of Cancer Epidemiology and Genetics, 198 

Brno, Czech Republic. 199 

83 Chaim Sheba Medical Center, The Susanne Levy Gertner Oncogenetics Unit, Ramat Gan, 200 

Israel. 201 

84 Tel Aviv University, Sackler Faculty of Medicine, Ramat Aviv, Israel. 202 

85 Jonsson Comprehensive Cancer Centre, UCLA, Schools of Medicine and Public Health, 203 

Division of Cancer Prevention & Control Research, Los Angeles, CA, USA. 204 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 2, 2020. ; https://doi.org/10.1101/2020.11.30.20219220doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.30.20219220
http://creativecommons.org/licenses/by-nc-nd/4.0/


7

86 Dana-Farber Cancer Institute, Cancer Risk and Prevention Clinic, Boston, MA, USA. 205 

87 University of Florence, Department of Experimental and Clinical Biomedical Sciences 'Mario 206 

Serio', Medical Genetics Unit, Florence, Italy. 207 

88 Cancer Council Victoria, Cancer Epidemiology Division, Melbourne, Victoria, Australia. 208 

89 The University of Melbourne, Centre for Epidemiology and Biostatistics, Melbourne School 209 

of Population and Global Health, Melbourne, Victoria, Australia. 210 

90 Monash University, Precision Medicine, School of Clinical Sciences at Monash Health, 211 

Clayton, Victoria, Australia. 212 

91 University of Kansas Medical Center, Department of Pathology and Laboratory Medicine, 213 

Kansas City, KS, USA. 214 

92 Cedars-Sinai Medical Center, Samuel Oschin Comprehensive Cancer Institute, Cancer 215 

Prevention and Genetics Program, Los Angeles, CA, USA. 216 

93 National Cancer Institute, Clinical Genetics Branch, Division of Cancer Epidemiology and 217 

Genetics, Bethesda, MD, USA. 218 

94 Pomeranian Medical University, Department of Genetics and Pathology, Szczecin, Poland. 219 

95 QIMR Berghofer Medical Research Institute, Population Health Department, Brisbane, 220 

Queensland, Australia. 221 

96 Faculty of Medicine and University Hospital Cologne, University of Cologne, Center for 222 

Integrated Oncology (CIO), Cologne, Germany. 223 

97 University of Southern California, Department of Preventive Medicine, Keck School of 224 

Medicine, Los Angeles, CA, USA. 225 

98 Karolinska Institutet, Institute of Environmental Medicine, Stockholm, Sweden. 226 

99 German Cancer Research Center (DKFZ), Molecular Genetics of Breast Cancer, Heidelberg, 227 

Germany. 228 

100 Rigshospitalet, Copenhagen University Hospital, Department of Clinical Genetics, 229 

Copenhagen, Denmark. 230 

101 Fred Hutchinson Cancer Research Center, Program in Epidemiology, Division of Public 231 

Health Sciences, Seattle, WA, USA. 232 

102 University of Washington, Department of Epidemiology, Seattle, WA, USA. 233 

103 National University of Singapore and National University Health System, Saw Swee Hock 234 

School of Public Health, Singapore, Singapore. 235 

104 National University Health System, Department of Surgery, Singapore, Singapore. 236 

105 Humboldt-UniversitŠt zu Berlin, and Berlin Institute of Health, Department for Gynecology 237 

with the Center for Oncologic Surgery CharitŽ Campus Virchow-Klinikum, CharitŽ Ð 238 

UniversitŠtsmedizin Berlin, corporate member of Freie UniversitŠt Berlin, Berlin, Germany. 239 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 2, 2020. ; https://doi.org/10.1101/2020.11.30.20219220doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.30.20219220
http://creativecommons.org/licenses/by-nc-nd/4.0/


8

106 University of Texas MD Anderson Cancer Center, Department of Epidemiology, Houston, 240 

TX, USA. 241 

107 Danish Cancer Society Research Center, Department of Virus, Lifestyle and Genes, 242 

Copenhagen, Denmark. 243 

108 University of Copenhagen, Molecular Unit, Department of Pathology, Herlev Hospital, 244 

Copenhagen, Denmark. 245 

109 University of Copenhagen, Department of Gynaecology, Rigshospitalet, Copenhagen, 246 

Denmark. 247 

110 Roswell Park Cancer Institute, Center For Immunotherapy, Buffalo, NY, USA. 248 

111 BC Cancer, Vancouver General Hospital, and University of British Columbia, British 249 

Columbia's Ovarian Cancer Research (OVCARE) Program, Vancouver, BC, Canada. 250 

112 University of British Columbia, Department of Pathology and Laboratory Medicine, 251 

Vancouver, BC, Canada. 252 

113 University of British Columbia, Department of Obstetrics and Gynecology, Vancouver, BC, 253 

Canada. 254 

114 BC Cancer Research Centre, Department of Molecular Oncology, Vancouver, BC, Canada. 255 

115 N.N. Petrov Institute of Oncology, St. Petersburg, Russia. 256 

116 Coordinating center: The Netherlands Cancer Institute, The Hereditary Breast and Ovarian 257 

Cancer Research Group Netherlands (HEBON), Amsterdam, The Netherlands. 258 

117 Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA. 259 

118 Pomeranian Medical University, Independent Laboratory of Molecular Biology and Genetic 260 

Diagnostics, Szczecin, Poland. 261 

119 Peter MacCallum Cancer Center, Parkville Familial Cancer Centre, Melbourne, Victoria, 262 

Australia. 263 

120 Vilnius University Hospital Santariskiu Clinics, Hematology, oncology and transfusion 264 

medicine center, Dept. of Molecular and Regenerative Medicine, Vilnius, Lithuania. 265 

121 State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania. 266 

122 Landspitali University Hospital, Department of Oncology, Reykjavik, Iceland. 267 

123 Stanford University School of Medicine, Department of Epidemiology & Population Health, 268 

Stanford, CA, USA. 269 

124 Stanford Cancer Institute, Stanford University School of Medicine, Department of Medicine, 270 

Division of Oncology, Stanford, CA, USA. 271 

125 The Institute of Cancer Research, Division of Genetics and Epidemiology, London, UK. 272 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 2, 2020. ; https://doi.org/10.1101/2020.11.30.20219220doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.30.20219220
http://creativecommons.org/licenses/by-nc-nd/4.0/


9

126 Seoul National University College of Medicine, Department of Preventive Medicine, Seoul, 273 

Korea. 274 

127 Seoul National University Graduate School, Department of Biomedical Sciences, Seoul, 275 

Korea. 276 

128 Seoul National University, Cancer Research Institute, Seoul, Korea. 277 

129 University of California at Los Angeles, David Geffen School of Medicine, Department of 278 

Obstetrics and Gynecology, Los Angeles, CA, USA. 279 

130 UC Davis Medical Center, Department of Pathology and Laboratory Medicine, Sacramento, 280 

CA, USA. 281 

131 Medical University of South Carolina, Hollings Cancer Center, Charleston, SC, USA. 282 

132 Saint Petersburg State University, Saint Petersburg, Russia. 283 

133 Sungkyunkwan University School of Medicine, Department of Obstetrics and Gynecology, 284 

Samsung Medical Center, Seoul, Korea. 285 

134 City of Hope Clinical Cancer Genetics Community Research Network, Duarte, CA, USA. 286 

135 Cancer Genetics Centre, Hong Kong Hereditary Breast Cancer Family Registry, Happy 287 

Valley, Hong Kong. 288 

136 The University of Hong Kong, Department of Surgery, Pok Fu Lam, Hong Kong. 289 

137 Hong Kong Sanatorium and Hospital, Department of Surgery, Happy Valley, Hong Kong. 290 

138 VIB Center for Cancer Biology, Leuven, Belgium. 291 

139 University of Leuven, Laboratory for Translational Genetics, Department of Human 292 

Genetics, Leuven, Belgium. 293 

140 Mayo Clinic, Department of Health Sciences Research, Division of Biomedical Statistics and 294 

Informatics, Rochester, MN, USA. 295 

141 ONCOBELL-IDIBELL-IGTP, Catalan Institute of Oncology, CIBERONC, Hereditary 296 

Cancer Program, Barcelona, Spain. 297 

142 BC Cancer, Cancer Control Research, Vancouver, BC, Canada. 298 

143 Inserm U900, Genetic Epidemiology of Cancer team, Paris, France. 299 

144 NYU Langone Medical Center, Gynecologic Oncology, Laura and Isaac Pearlmutter Cancer 300 

Center, New York, NY, USA. 301 

145 Genome Institute of Singapore, Human Genetics Division, Singapore, Singapore. 302 

146 University of Texas MD Anderson Cancer Center, Department of Gynecologic Oncology 303 

and Clinical Cancer Genetics Program, Houston, TX, USA. 304 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 2, 2020. ; https://doi.org/10.1101/2020.11.30.20219220doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.30.20219220
http://creativecommons.org/licenses/by-nc-nd/4.0/


10

147 Magee-Womens Hospital, University of Pittsburgh School of Medicine, Pittsburgh, PA, 305 

USA. 306 

148 Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Unit of Medical Genetics, 307 

Department of Medical Oncology and Hematology, Milan, Italy. 308 

149 Duke University Hospital, Department of Surgery, Durham, NC, USA. 309 

150 University of Hawaii Cancer Center, Cancer Epidemiology Program, Honolulu, HI, USA. 310 

151 Aichi Cancer Center Research Institute, Division of Cancer Epidemiology and Prevention, 311 

Nagoya, Japan. 312 

152 Nagoya University Graduate School of Medicine, Division of Cancer Epidemiology, 313 

Nagoya, Japan. 314 

153 Samuel Lunenfeld Research Institute, Public Health Ontario, Toronto, ON, Canada. 315 

154 Imperial College London, Division of Cancer and Ovarian Cancer Action Research Centre, 316 

Department Surgery & Cancer, London, UK. 317 

155 University of Glasgow, Institute of Cancer Sciences, Glasgow, UK. 318 

156 University College London, MRC Clinical Trials Unit at UCL, Institute of Clinical Trials & 319 

Methodology, London, UK. 320 

157 Roswell Park Cancer Institute, NRG Oncology, Statistics and Data Management Center, 321 

Buffalo, NY, USA. 322 

158 Roswell Park Cancer Institute, Division of Cancer Prevention and Control, Buffalo, NY, 323 

USA. 324 

159 Magee-Womens Research Institute and Hillman Cancer Center, Womens Cancer Research 325 

Center, Pittsburgh, PA, USA. 326 

160 University of Pittsburgh School of Medicine, Division of Gynecologic Oncology, 327 

Department of Obstetrics, Gynecology and Reproductive Sciences, Pittsburgh, PA, USA. 328 

161 Oregon Health & Science University, Department of Obstetrics and Gynecology, Portland, 329 

OR, USA. 330 

162 Oregon Health & Science University, Knight Cancer Institute, Portland, OR, USA. 331 

163 University of Helsinki, Department of Obstetrics and Gynecology, Helsinki University 332 

Hospital, Helsinki, Finland. 333 

164 National Cancer Centre, Cancer Genetics Service, Singapore, Singapore. 334 

165 Nanyang Technological University, Lee Kong Chian School of Medicine, Singapore, 335 

Singapore. 336 

166 Odense University Hospital, Department of Clinical Genetics, Odence C, Denmark. 337 

167 Latvian  Biomedical Research and Study Centre, Riga, Latvia. 338 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 2, 2020. ; https://doi.org/10.1101/2020.11.30.20219220doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.30.20219220
http://creativecommons.org/licenses/by-nc-nd/4.0/


11

168 Roswell Park Cancer Institute, Department of Gynecologic Oncology, Buffalo, NY, USA. 339 

169 Memorial Sloan Kettering Cancer Center, Clinical Genetics Research Lab, Department of 340 

Cancer Biology and Genetics, New York, NY, USA. 341 

170 Memorial Sloan Kettering Cancer Center, Clinical Genetics Service, Department of 342 

Medicine, New York, NY, USA. 343 

171 National Institute of Oncology, Department of Molecular Genetics, Budapest, Hungary. 344 

172 University Hospitals Leuven, Division of Gynecologic Oncology, Department of Obstetrics 345 

and Gynaecology and Leuven Cancer Institute, Leuven, Belgium. 346 

173 The University of Chicago, Center for Clinical Cancer Genetics, Chicago, IL, USA. 347 

174 Memorial Sloan-Kettering Cancer Center, Department of Epidemiology and Biostatistics, 348 

New York, NY, USA. 349 

175 Centro de Investigación en Red de Enfermedades Raras (CIBERER), Madrid, Spain. 350 

176 QIMR Berghofer Medical Research Institute, Department of Genetics and Computational 351 

Biology, Brisbane, Queensland, Australia. 352 

177 Aalborg University Hospital, Molecular Diagnostics, Aalborg, Denmark. 353 

178 Aalborg University Hospital, Clinical Cancer Research Center, Aalborg, Denmark. 354 

179 Aalborg University, Department of Clinical Medicine, Aalborg, Denmark. 355 

180 Portuguese Oncology Institute, Department of Genetics, Porto, Portugal. 356 

181 Moffitt Cancer Center, Department of Cancer Epidemiology, Tampa, FL, USA. 357 

182 IFOM - the FIRC Institute of Molecular Oncology, Genome Diagnostics Program, Milan, 358 

Italy. 359 

183 Bashkir State University, Department of Genetics and Fundamental Medicine, Ufa, Russia. 360 

184 Fondazione IRCCS Istituto Nazionale dei Tumori (INT), Unit of Molecular Bases of Genetic 361 

Risk and Genetic Testing, Department of Research, Milan, Italy. 362 

185 Karolinska Institutet, Clinical Genetics, Stockholm, Sweden. 363 

186 Duke University Hospital, Department of Gynecologic Oncology, Durham, NC, USA. 364 

187 Yale School of Public Health, Chronic Disease Epidemiology, New Haven, CT, USA. 365 

188 Fox Chase Cancer Center, Population Studies Facility, Philadelphia, PA, USA. 366 

189 National Institute of Environmental Health Sciences, NIH, Epidemiology Branch, Research 367 

Triangle Park, NC, USA. 368 

190 Fundación Pública Galega Medicina Xenómica, Santiago De Compostela, Spain. 369 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 2, 2020. ; https://doi.org/10.1101/2020.11.30.20219220doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.30.20219220
http://creativecommons.org/licenses/by-nc-nd/4.0/


12

191 Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago De Compostela, 370 

Spain. 371 

192 Centre Hospitalier Universitaire de Québec – Université Laval Research Center, Genomics 372 

Center, Québec City, QC, Canada. 373 

193 Faculty of Medicine and University Hospital Cologne, University of Cologne, Center for 374 

Molecular Medicine Cologne (CMMC), Cologne, Germany. 375 

194 Hebei Medical University, Fourth Hospital, Department of Obstetrics and Gynaecology, 376 

Shijiazhuang, China. 377 

195 Icahn School of Medicine at Mount Sinai, Department of Population Health Science and 378 

Policy, New York, NY, USA. 379 

196 Icahn School of Medicine at Mount Sinai, Department of Genetics and Genomic Sciences, 380 

New York, NY, USA. 381 

197 Centre Hospitalier Universitaire de Québec-Université Laval Research Center, Genomic 382 

Center, Québec City, QC, Canada. 383 

198 Medical University of Vienna, Dept of OB/GYN and Comprehensive Cancer Center, Vienna, 384 

Austria. 385 

199 University of Cambridge, Department of Public Health and Primary Care, Cambridge, UK. 386 

200 The University of Melbourne, Department of Clinical Pathology, Melbourne, Victoria, 387 

Australia. 388 

201 Royal Alexandra Hospital, Department of Obstetrics and Gynecology, Division of 389 

Gynecologic Oncology, Edmonton, Alberta, Canada. 390 

202 Institut Curie, Service de Génétique, Paris, France. 391 

203 Université Paris Descartes, Paris, France. 392 

204 University of South Florida, Epidemiology Center, College of Medicine, Tampa, FL, USA. 393 

205 The Institute of Cancer Research, Division of Breast Cancer Research, London, UK. 394 

206 Medical University of Vienna, Dept of OB/GYN and Comprehensive Cancer Center, Vienna, 395 

Austria. 396 

207 University of Porto, Biomedical Sciences Institute (ICBAS), Porto, Portugal. 397 

208 Cancer Research Malaysia, Breast Cancer Research Programme, Subang Jaya, Selangor, 398 

Malaysia. 399 

209 University of Malaya, Department of Surgery, Faculty of Medicine, Kuala Lumpur, 400 

Malaysia. 401 

210 Brigham and Women's Hospital and Harvard Medical School, Obstetrics and Gynecology 402 

Epidemiology Center, Boston, MA, USA. 403 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 2, 2020. ; https://doi.org/10.1101/2020.11.30.20219220doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.30.20219220
http://creativecommons.org/licenses/by-nc-nd/4.0/


13

211 Columbia University, Department of Epidemiology, Mailman School of Public Health, New 404 

York, NY, USA. 405 

212 Magee-Womens Hospital, University of Pittsburgh School of Medicine, Department of 406 

Medicine, Pittsburgh, PA, USA. 407 

213 McGill University, Program in Cancer Genetics, Departments of Human Genetics and 408 

Oncology, Montréal, QC, Canada. 409 

214 University of Cambridge, Department of Medical Genetics, Cambridge, UK. 410 

215 Dartmouth College, Geisel School of Medicine, Hanover, NH, USA. 411 

216 The Ohio State University, Department of Cancer Biology and Genetics, Columbus, OH, 412 

USA. 413 

217 Pontificia Universidad Javeriana, Institute of Human Genetics, Bogota, Colombia. 414 

218 University of Oxford, Cancer Epidemiology Unit, Oxford, UK. 415 

219 Beth Israel Deaconess Medical Center, Department of Medical Oncology, Boston, MA, 416 

USA. 417 

220 Harvard T.H. Chan School of Public Health, Department of Epidemiology, Boston, MA, 418 

USA. 419 

221 University Medical Center Groningen, University Groningen, Department of Genetics, 420 

Groningen, The Netherlands. 421 

222 University of Pretoria, Department of Genetics, Arcadia, South Africa. 422 

223 Centro de Investigación en Red de Enfermedades Raras (CIBERER), Madrid, Spain. 423 

224 Fundación Pública Galega de Medicina Xenómica, Santiago de Compostela, Spain. 424 

225 Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complejo 425 

Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain. 426 

226 Vanderbilt University Medical Center, Division of Quantitative Sciences, Department of 427 

Obstetrics and Gynecology, Department of Biomedical Sciences, Women's Health Research, 428 

Nashville, TN, USA. 429 

227 Duke Cancer Institute, Cancer Control and Population Sciences, Durham, NC, USA. 430 

228 Duke University Hospital, Department of Community and Family Medicine, Durham, NC, 431 

USA. 432 

229 National Institute of Environmental Health Sciences, NIH, Biostatistics and Computational 433 

Biology Branch, Research Triangle Park, NC, USA. 434 

230 City of Hope, Clinical Cancer Genomics, Duarte, CA, USA. 435 

231 Fred Hutchinson Cancer Research Center, Seattle, WA, USA. 436 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 2, 2020. ; https://doi.org/10.1101/2020.11.30.20219220doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.30.20219220
http://creativecommons.org/licenses/by-nc-nd/4.0/


14

232 Stanford University School of Medicine, Department of Biomedical Data Science, Stanford, 437 

CA, USA. 438 

233 Uppsala University, Department of Surgical Sciences, Uppsala, Sweden. 439 

234 University of Malaya, Department of Obstetrics and Gynaecology, University of Malaya 440 

Medical Centre, Kuala Lumpur, Malaysia. 441 

235 Hebei Medical University, Fourth Hospital, Department of Molecular Biology, Shijiazhuang, 442 

China. 443 

236 National Centre for Scientific Research 'Demokritos', Molecular Diagnostics Laboratory, 444 

INRASTES, Athens, Greece. 445 

237 Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-446 

Sinai Medical Centre, Department of Obstetrics and Gynecology, Los Angeles, CA, USA. 447 

238 1032 Royal Pass Road, Tampa, FL, USA. 448 

239 University of NSW Sydney, School of Women's and Children's Health, Faculty of Medicine, 449 

Sydney, New South Wales, Australia. 450 

240 University of NSW Sydney, Adult Cancer Program, Lowy Cancer Research Centre, Sydney, 451 

New South Wales, Australia. 452 

241 University of Michigan School of Public Health, Department of Epidemiology, Ann Arbor, 453 

MI, USA. 454 

242 University of Southern California Norris Comprehensive Cancer Center, Department of 455 

Preventive Medicine, Keck School of Medicine, Los Angeles, CA, USA. 456 

243 Mayo Clinic, Department of Health Science Research, Division of Epidemiology, Rochester, 457 

MN, USA. 458 

244 Emory University, Department of Epidemiology, Rollins School of Public Health, Atlanta, 459 

GA, USA. 460 

 461 

*These authors had equal contributions. 462 

Corresponding Author: pp10001@medschl.cam.ac.uk 463 

 464 

Running Title: Polygenic Risk Modelling for Prediction of Epithelial Ovarian 465 

Cancer Risk  466 

  467 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 2, 2020. ; https://doi.org/10.1101/2020.11.30.20219220doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.30.20219220
http://creativecommons.org/licenses/by-nc-nd/4.0/


15

Abstract 468 

Polygenic risk scores (PRS) for epithelial ovarian cancer (EOC) have the potential to 469 

improve risk stratification. Joint estimation of Single Nucleotide Polymorphism (SNP) 470 

effects in models could improve predictive performance over standard approaches of 471 

PRS construction. Here, we implemented computationally-efficient, penalized, logistic 472 

regression models (lasso, elastic net, stepwise) to individual level genotype data and a 473 

Bayesian framework with continuous shrinkage, “select and shrink for summary 474 

statistics” (S4), to summary level data for epithelial non-mucinous ovarian cancer risk 475 

prediction. We developed the models in a dataset consisting of 23,564 non-mucinous 476 

EOC cases and 40,138 controls participating in the Ovarian Cancer Association 477 

Consortium (OCAC) and validated the best models in three populations of different 478 

ancestries: prospective data from 198,101 women of European ancestry; 7,669 women 479 

of East Asian ancestry; 1,072 women of African ancestry, and in 18,915 BRCA1 and 480 

12,337 BRCA2 pathogenic variant carriers of European ancestry. In the external 481 

validation data, the model with the strongest association for non-mucinous EOC risk 482 

derived from the OCAC model development data was the S4 model (27,240 SNPs) with 483 

odds ratios (OR) of 1.38(95%CI:1.28–1.48,AUC:0.588) per unit standard deviation, in 484 

women of European ancestry; 1.14(95%CI:1.08–1.19,AUC:0.538) in women of East 485 

Asian ancestry; 1.38(95%CI:1.21-1.58,AUC:0.593) in women of African ancestry; 486 

hazard ratios of 1.37(95%CI:1.30–1.44,AUC:0.592) in BRCA1 pathogenic variant 487 

carriers and 1.51(95%CI:1.36-1.67,AUC:0.624) in BRCA2 pathogenic variant carriers. 488 

Incorporation of the S4 PRS in risk prediction models for ovarian cancer may have 489 

clinical utility in ovarian cancer prevention programs. 490 

  491 
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INTRODUCTION 492 

Rare mutations in known high and moderate penetrance susceptibility genes (BRCA1, 493 

BRCA2, BRIP1, PALB2, RAD51C, RAD51D and the mis-match repair genes) account 494 

for about 40 percent of the inherited component of EOC disease risk (1,2). Genome 495 

wide association studies (GWAS), reviewed in Kar et. al. and Jones et. al. (1,3), have 496 

identified 39 common (minor allele frequency [MAF] > 0.05) susceptibility variants 497 

which together explain about 6% of the heritability of EOC. Polygenic risk scores 498 

(PRS) provide an opportunity for refined risk stratification in the general population as 499 

well as in carriers of rare moderate or high risk alleles (4,5).  500 

A PRS is calculated as the weighted sum of the number of risk alleles carried for a 501 

specified set of genetic variants. The best approach to identify the set of variants and 502 

their weights in order to optimize the predictive power of a PRS is unknown. A 503 

common approach involves selecting a set of variants that reach a threshold for 504 

association based on the p-value for each variant with or without clumping and pruning 505 

to remove highly correlated variants (6,7). More complex prediction models, based on 506 

machine learning approaches that do not assume variant independence have also been 507 

used to construct PRS for complex traits in humans (8,9). To date, these methods have 508 

produced only modest gains in predictive power for highly polygenic phenotypes (8,10). 509 

Penalized regression approaches such as the lasso, elastic net and the adaptive lasso 510 

have also been used for the joint estimation of variant effects using individual level data 511 

for large data sets (11). While they have the potential advantage of improving 512 

performance,  the major drawback of these methods is the high computational burden 513 

required to fit the models (11,12).  514 
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In this study, we present a novel implementation of computationally-efficient PRS 515 

models using two approaches: 1) penalized regression models including the lasso, 516 

elastic net and minimax concave penalty, for use when individual genotype data are 517 

available; and 2) a Bayesian regression model with continuous shrinkage priors on 518 

variant effect sizes, for use in broader settings where summary statistics are available, 519 

hereafter referred to as the “select and shrink with summary statistics” (S4) method. We 520 

compare these models with two commonly used methods, stepwise regression with p-521 

value thresholding and LDPred.   522 

MATERIALS (SUBJECTS) AND METHODS 523 

EOC Histotypes 524 

EOC is a highly heterogeneous phenotype with five major histotypes for invasive 525 

disease – high-grade serous, low-grade serous, endometrioid, clear cell and mucinous 526 

histotype.  The mucinous histotype is the least common and its origin is the most 527 

controversial with up to 60% of diagnosed cases of mucinous ovarian cancer often 528 

being misdiagnosed metastasis from non-ovarian sites (13).  Recent molecular analyses 529 

have concluded that most primary invasive mucinous cases are not extra-ovarian 530 

metastases (14). However, accurate diagnosis relies on expert histopathology and 531 

immuno-histochemical profiling (15), which remains a challenge in clinical practice and 532 

can be an issue in different cohorts from different time periods. Therefore, in this study, 533 

we performed PRS modelling and association testing for all cases of invasive EOC, 534 

excluding mucinous cases, hereafter referred to as non-mucinous EOC. 535 
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Model Development Study Population 536 

We used genotype data from 23,564 invasive non-mucinous EOC cases and 40,138 537 

controls with >80% European ancestry from 63 case-control studies included in the 538 

Ovarian Cancer Association Consortium (OCAC) for model development. The study 539 

protocol was approved by the institutional review boards of the Brigham and Women’s 540 

Hospital and Harvard T.H. Chan School of Public Health, and those of participating 541 

registries as required. The distribution of cases by histotype was high-grade serous 542 

(13,609), low-grade serous (2,749), endometrioid (2,877), clear cell (1,427), and others 543 

(2,902). All mucinous EOC histotypes (2,587) were excluded. Sample collection, 544 

genotyping and quality control have been previously described (16). Genotype data 545 

were imputed to the Haplotype Reference Consortium reference panel on the Michigan 546 

Imputation server, using 470,825 SNPs that passed quality control.  Of the 32 million 547 

SNPs imputed, 10 million  had imputation r2 > 0.3 and were included in this analysis.   548 

Model Validation Study Population 549 

UK Biobank Population 550 

We validated the best-fitting PRS models developed in the OCAC data in 657 prevalent 551 

and incident cases of invasive EOC (346 serous, 98 endometrioid, 51 clear cell and 162 552 

other) and 198,101 female controls of European ancestry from the UK Biobank. As with 553 

the model development data, all mucinous histotypes (166) were excluded. Samples 554 

were genotyped using either the Affymetrix UK BiLEVE Axiom Array or Affymetrix 555 

UK Biobank Axiom Array (which share 95% marker content), and then imputed to a 556 

combination of the Haplotype Reference Consortium, the 1000Genomes phase 3 and 557 

the UK10K reference panels (17). We restricted analysis to genetically confirmed 558 
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females of European/white British ancestry. We excluded individuals if they were 559 

outliers for heterozygosity, had low genotyping call rate <95%, had sex chromosome 560 

aneuploidy, or if they were duplicates (cryptic or intended) (16). All SNPs selected in 561 

the model development phase were available in the UK Biobank. 562 

Non-European Ancestry Population 563 

We investigated transferability of the best-fitting PRS models to populations of non-564 

European ancestry using genotype data from females of East Asian and African 565 

ancestries that had been genotyped as part of the OCAC OncoArray Project (18,19). 566 

Women of East Asian ancestry - 2,841 non-mucinous invasive EOC (1,960 high-grade 567 

serous, 136 low-grade serous, 400 endometrioid, 271 clear cell, 74 other histotypes)  568 

and 4,828 controls - were identified using a criterion of >80% Asian ancestry. This 569 

group included samples collected from population-based studies in China, Japan, Korea, 570 

Malaysia as well as samples from studies conducted in the US, Europe and Australia.  571 

Details of these data have been previously described (18).  Similarly, women of  African 572 

ancestry - 368 cases of  non-mucinous invasive EOC (261 high-grade serous, 35 low-573 

grade serous, 47 endometrioid, 7 clear cell, 53 other histoptypes) and 704 controls, 574 

mainly from studies conducted in the US, were identified using a criterion of  >80% 575 

African ancestry.as  described previously (19).    576 

BRCA1/BRCA2 Pathogenic Variant Carrier Population 577 

We also assessed the performance of the best-fitting PRS models in women of European 578 

ancestry (>80% European ancestry) with the pathogenic BRCA1 and BRCA2 variants 579 

from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). We used 580 

genotype data from 18,915 BRCA1 (2,053 invasive EOC cases – 712 serous, 115 581 
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endometrioid, 9 clear cell, 1217 unknown/other) and 12,337 BRCA2 (717 invasive EOC 582 

cases – 26 serous, 4 endometrioid, 1 clear cell, 686 unknown/other) pathogenic variant 583 

carriers from 63 studies contributing to CIMBA for independent model validation. 584 

Details of the study population and sample collection have been described previously 585 

(16). Genotyping, data quality control measures, intercontinental ancestry assessment 586 

and imputation to the HRC reference panel are as described for the OCAC study 587 

population. 588 

PRS from Meta-analysis of Summary Statistics 589 

We leveraged the increase in sample size resulting from a meta-analysis of EOC risk 590 

associations, using both the CIMBA and OCAC data described above, to explore 591 

performance of PRS approaches based on summary statistics. 592 

Statistical Analysis 593 

Polygenic Risk Models 594 

For all PRS models, we created scores as linear functions of the allele dosage in the 595 

general form  ���� � ∑ �����
�

�  where genotypes are denoted as � (taking on the minor 596 

allele dosages of 0, 1 and 2), with ��� representing the �th individual for the �th SNP 597 

(out of � SNPs) on an additive log scale and �� represents the weight - the log of the 598 

odds ratio - of the �th SNP.  We used different approaches to select and derive the 599 

optimal weights, ��, in models as described below. 600 
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Penalized logistic regression models: the lasso, elastic net and minimax concave 601 

penalty 602 

A penalized logistic regression model for a set of SNPs aims to identify a set of 603 

regression coefficients that minimize the regularized loss function given by 604 

	
���; �, �� � �� � �������� �1 � ��     ��|�| � � � ��� |���| � �⁄⁄ � ��|�|  ��0 ��|���| � � " 

where � is the effect estimate of a SNP, � is the tuning parameter and � is the threshold 605 

(penalty) for different regularization paths. � and � are parameters that need to be 606 

chosen during model development to optimize performance. The lasso, elastic net, 607 

minimax concave penalty (MCP), and p-value thresholds are instances of the function 608 

with different � values.  We minimized the winner’s curse effect on inflated effect 609 

estimates for rare SNPs by penalizing rarer SNPs more heavily than common SNPs. 610 

Details are provided in the Supplementary Methods. 611 

We used a two-stage approach to reduce computational burden without a corresponding 612 

loss in predictive power. The first stage was a SNP selection stage using a sliding 613 

windows approach, with 5.5Mb data blocks and a 500kb overlap between blocks. SNP 614 

selection was performed for each block and selected SNPs were collated. Single SNP 615 

association analyses were then run, and all SNPs with a χ2 test statistic of less than 2.25 616 

were excluded. Penalized regression models were applied to the remaining SNPs 617 

using � values of 3.0 and � values of 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0. SNPs selected in any 618 

of these models were included in subsequent analyses. 619 
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In the second stage, we fit penalized regression models to the training dataset with � 620 

values ranging from 3.0 to 5.5 in increments of 0.1 iterated over � values from -3.0 to 1 621 

in increments of 0.1. The lasso model (� 	 0) for each value of �  was fitted first, to 622 

obtain a unique maximum. From the fitted maximum the �  value was changed, and the 623 

model refitted.   624 

We applied this two-stage approach with five-fold cross-validation (Figure 1). The 625 

variants and their weights from the two-stage penalized logistic regression modelling in 626 

the training data were used to calculate the area under the receiver operating 627 

characteristic curve (AUC) in the test data.  We repeated this process for each cross-628 

validation iteration to obtain a mean AUC for each combination of λ and κ. 629 

Finally, we selected the tuning and threshold parameters from the lasso, elastic net and 630 

minimax concave penalty models with the maximum mean cross-validated AUC and 631 

fitted penalized logistic regression models with these parameters to the entire OCAC 632 

dataset to obtain SNP weights for PRS scores.   633 

Stepwise logistic regression with variable P-value threshold 634 

This model is a general PLR model with �=1. As with the other PLR models, we 635 

investigated various values for � values (corresponding to a variable P-value threshold 636 

for including a SNP in the model). However, we observed that the implementation of 637 

this model on individual level data was more difficult than for other � values because 638 

the model would sometimes converge to a local optimum rather than the global 639 

optimum. Therefore, we applied an approximate conditional and joint association 640 

analysis using summary level statistics correcting for estimated LD between SNPs, 641 
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using a reference panel of 5,000 individual level genotype OCAC data as described in 642 

Yang et.al (20). Details are provided in the Supplementary Methods. 643 

LDPred 644 

LDPred is a Bayesian approach that adjusts GWAS summary statistics for the effects of 645 

LD by shrinking the posterior mean effect size of each genetic marker based on a point-646 

normal prior on the effect sizes and LD information from an external reference panel.  647 

We derived seven candidate polygenic risk scores assuming the fractions of associated 648 

variants were 0.001, 0.003, 0.01, 0.03, 0.1, 0.3 and 1.0 respectively (21) using an LD 649 

reference panel of 503 samples of European ancestries from the 1000 Genomes phase 3 650 

release and effect estimates from the genome wide association analysis on the OCAC 651 

model development data.  652 

Select and shrink using summary statistics (S4) 653 

The S4 algorithm is similar to the PRS-CS algorithm (22) which is a Bayesian approach 654 

that uses summary statistics and between-SNP correlation data from a reference panel to 655 

generate the PRS scores by placing a continuous shrinkage prior on effect sizes.  We 656 

adapted this method with penalization of rarer SNPs by correcting for the standard 657 

deviation resulting in the selection of fewer SNPs.  To implement this algorithm, we 658 

varied three parameters, a, b, φ, which together control the degree of shrinkage of effect 659 

estimates.  Φ, the overall shrinkage parameter, is influenced by values of a which 660 

control shrinkage of effect estimates around 0 and b which control shrinkage of larger 661 

effect estimates.  Smaller values of a result in more severe shrinkage of effect estimates 662 

than larger values.  Conversely, smaller values of b produce less severe shrinkage than 663 

larger values.   664 
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We generated summary statistics for each cross-validation training set and selected the 665 

parameters that gave the best results on average from the cross-validation and applied 666 

these to the set of summary statistics for the complete OCAC data set to obtain the final 667 

set of weights.   668 

PRS based on meta-analysis of OCAC-CIMBA summary statistics 669 

We conducted a meta-analysis of the EOC associations in BRCA1 variant carriers, 670 

BRCA2 variant carriers and the participants participating in OCAC using previously 671 

described methodological approaches (16). Additional details are provided in the 672 

Supplementary Methods. We constructed two PRS models using results from the 673 

OCAC-CIMBA meta-analysis: the Select and Shrink (OCAC-CIMBA) PRS and the 674 

Stepwise (OCAC-CIMBA) PRS. To construct the Select and Shrink (OCAC-CIMBA) 675 

PRS, we applied the a, b and φ parameters from the Select and Shrink model described 676 

above to the summary statistics from the meta-analysis to obtain a different set of SNPs 677 

and weights. We generated the Stepwise (OCAC-CIMBA) PRS by using histotype-678 

specific results from the meta-analysis. We selected all SNPs that were genome-wide 679 

significant at nominal thresholds (p <5x10-8), along with any independent signals in the 680 

same region with p<10-5 from the histotype specific analyses for low-grade serous, 681 

high-grade serous, endometrioid, clear cell ovarian cancer and non-mucinous invasive 682 

EOC.  683 

Polygenic risk score performance. 684 

The best lasso, elastic net, stepwise and S4 models from the model development stage 685 

were validated using two independent data sources: the UK Biobank data and 686 

BRCA1/BRCA2 pathogenic variant carriers from the CIMBA. In the UK Biobank data, 687 
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we evaluated discriminatory performance of the models using the AUC and examined 688 

the association between standardized PRS  and risk of non-mucinous EOC using 689 

logistic regression analysis. For the CIMBA data, we assessed associations for each 690 

version of the PRS and invasive non-mucinous EOC risk using weighted Cox regression 691 

methods previously described (5). PRSs in the CIMBA data were scaled to the same 692 

PRS standard deviations as the OCAC data, meaning that per standard deviation hazard 693 

ratios estimated on CIMBA data are comparable to PRS associations in the OCAC and 694 

UK Biobank data. The regression models were adjusted for birth cohort (<1920, 1920-695 

1929, 1930-1939, 1940-1949, ≥1950) and the first four ancestry informative principal 696 

components (calculated separately by iCOGS/OncoArray genotyping array) and 697 

stratified by Ashkenazi Jewish ancestry and country. Absolute risks by PRS percentiles 698 

adjusting for competing risks of mortality from other causes were calculated as 699 

described in the Supplementary Material.  700 

Transferability of PRS scores to non-European Ancestry 701 

We implemented two straightforward approaches to disentangle the role of ancestry on 702 

polygenic risk scoring. We selected homogenous ancestral samples by using a high cut-703 

off criterion of 80% ancestry and we standardized the polygenic risk scores by mean-704 

centering within each population. These approaches led to a more uniform distribution 705 

of polygenic risk scores within each ancestral population. Further adjustments using 706 

principal components of ancestry did not attenuate risk estimates. 707 

Data Availability 708 

OncoArray germline genotype data for the OCAC studies have been deposited at the 709 

European Genome-phenome Archive (EGA; https://ega-archive.org/), which is hosted 710 
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by the EBI and the CRG, under accession EGAS00001002305. Summary results are 711 

available from the Ovarian Cancer Association Consortium 712 

(http://ocac.ccge.medschl.cam.ac.uk/). A subset of the OncoArray germline genotype 713 

data for the CIMBA studies will be made publically available through the database of 714 

Genotypes and Phenotypes (dbGaP) under accession phs001321.v1.p1. The complete 715 

data set will not be made publically available because of restraints imposed by the ethics 716 

committees of individual studies; requests for further data can be made to the Data 717 

Access Coordination Committee (http://cimba.ccge.medschl.cam.ac.uk/) 718 

Ethics Statement 719 

All study participants provided written informed consent and participated in research or 720 

clinical studies at the host institute under ethically approved protocols. The studies and 721 

their approving institutes are listed in the Supplementary Material (Ethics Statement) 722 

Results 723 

Model development 724 

For models based on individual level genotype data, the elastic net model had the best 725 

predictive accuracy (model parameters: λ=3.3, κ=-2.2, AUC=0.586) Predictive accuracy 726 

for the lasso model (λ=3.3, AUC= 0.583) was slightly lower (Table 1). The optimal 727 

value of λ obtained from regularization paths for the MCP model was 3.3. Further 728 

reductions in the degree of penalization for the MCP models did not improve prediction 729 

accuracy. Therefore, the best MCP model was equivalent to the lasso model. For 730 

models based on summary statistics, the best-fitting S4 model had the best performance 731 

(a=2.75, b=2, φ=3e-6, AUC=0.593), whereas the best LDPred model had the poorest 732 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 2, 2020. ; https://doi.org/10.1101/2020.11.30.20219220doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.30.20219220
http://creativecommons.org/licenses/by-nc-nd/4.0/


27

performance of the methods tested (�=0.001, AUC=0.552).  The mean odds ratios per 733 

standard deviation are shown in Table 1 along with the number of SNPs included in the 734 

final model when the models were built with the relevant parameters using the complete 735 

dataset. All SNPs selected and the associated weights for each model are provided in 736 

Supplementary Tables 1 – 6. Given the poorer performance of the LDpred model and 737 

the very large number of SNPs included in the final model it was not considered for 738 

further validation in other datasets. 739 

Table 1: Performance of different PRS models in five-fold cross validation of OCAC data 740 

Model Number of 
SNPs* 

Tuning parameter for 
best performance 

AUC OR per 1 
SD of PRS 

95% CI 

a) Models based on individual level genotype data 

Lasso 1,403 λ=3.3 0.583 1.35 1.30 – 1.39 

Elastic net 10,797 λ=3.3, κ=-2.2 0.586 1.36 1.31 – 1.40 

MCP 1,403 λ=3.3 0.583 1.35 1.30 – 1.39 

b) Models based on summary statistics 

LDPred 5,291,719 �=0.001 0.552 1.21 1.13 – 1.29 

Stepwise 22 λ=5.4 0.572 1.30 1.26 – 1.34 

Select and Shrink (OCAC) 27,240 a=2.75, b=2, φ=3e-6 0.593 1.39 1.34 – 1.44 

Abbreviations: AUC-Area Under the Receiver Operating Characteristic (ROC) Curve AUC); OR-Odds Ratio; SD-Standard deviation; PRS-
Polygenic Risk Score; CI-Confidence Interval. NA-Not Applicable. 
* Number of SNPs in PRS model run on full OCAC data set after selection of model parameters 

Model validation in women of European ancestry: general population (UK Biobank) 741 

and BRCA1/BRCA2 pathogenic variant carriers (CIMBA) 742 

The best AUC estimates derived from cross-validation are likely to be upwardly biased 743 

due to overfitting.  Therefore, we used the UK Biobank data as an external validation 744 

dataset.  Overall the PLR models performed slightly better in the UK Biobank data than 745 

the model development data (Table 2). Of the models developed using the OCAC 746 

model development data, the association between PRS and non-mucinous EOC was 747 

strongest with the Select and Shrink derived PRS (OR per unit SD=1.38, 95%CI:1.28–748 

1.48) and slightly lower for the lasso PRS (OR per unit SD=1.37, 95%CI:1.27–1.48), 749 
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the elastic net PRS (OR per unit SD=1.36, 95%CI:1.26–1.47)  and the stepwise PRS 750 

model (OR per unit SD=1.35, 95%CI:1.26–1.46).  In BRCA1 and BRCA2 variant 751 

carriers, prediction accuracy was generally higher among BRCA2 carriers than BRCA1 752 

carriers. Consistent with results from the general population in the UK Biobank, the 753 

Select and Shrink PRS model also had the strongest association and predictive accuracy 754 

for invasive EOC risk in both BRCA1 (HR per unit SD=1.37, 95%CI:1.30–1.44, 755 

AUC=0.592) carriers and BRCA2 carriers (HR per unit SD=1.51, 95%CI:1.36–1.67, 756 

AUC=0.624).  The PRS models developed using the OCAC-CIMBA meta-analysis 757 

results had better discriminative ability in the UK Biobank than the PRS models 758 

developed using only OCAC data. Compared with the Select and Shrink model using 759 

only OCAC data, the Select and Shrink PRS model derived from the meta-analysis had 760 

fewer SNPs (n=18,007), a stronger association with invasive EOC risk (OR per unit 761 

SD=1.42, 95%CI:1.32–1.54) and better predictive accuracy (AUC=0.596). Similarly, 762 

the Stepwise model from the OCAC-CIMBA meta-analysis performed better than the 763 

Stepwise model from only OCAC data (OR per unit SD=1.39, 95%CI:1.29–1.50, 764 

AUC=0.595), but included more SNPs (n=36) 765 

Table 2:  External validation of PRS models in European populations using data from UK 766 

Biobank and CIMBA 767 

Model (data set) 
SNPs UK Biobank  CIMBA BRCA1 carriers†  CIMBA BRCA2 carriers† 

  AUC OR 95% CI  AUC HR 95% CI  AUC HR 95% CI 

a) PRS models based on OCAC data 

Lasso (OCAC) 1,403  0.587 1.37 1.27 – 1.48  0.573 1.29 1.23 – 1.36  0.627 1.49 1.34 – 1.65 

Elastic net 
(OCAC) 

10,797  0.588 1.36 1.26 – 1.47  0.583 1.34 1.27 – 1.41  0.617 1.50 1.35 – 1.66 

Stepwise (OCAC) 22  0.588 1.35 1.26 – 1.46  0.563 1.22 1.17 – 1.28  0.605 1.40 1.26 – 1.55 

Select and shrink 
(OCAC) 

27,240  0.588 1.38 1.28 - 1.48  0.592 1.37 1.30 – 1.44  0.624 1.51 1.36 – 1.67 

b) PRS models based on meta-analysis of OCAC and CIMBA data 

 Stepwise 
(OCAC-

36  0.595 1.39 1.29 - 1.50         
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 768 

Compared with women in the middle quintile, women in the top 95th percentile of the 769 

lasso derived PRS model had 2.23-fold increased odds of non-mucinous EOC (Table 770 

3).  The observed distribution of the OR estimates was consistent with ORs obtained 771 

from theoretical predicted values under the assumption that all SNPs interact 772 

multiplicatively, especially for the lasso model (Figure 3), with all 95% confidence 773 

intervals intersecting with the theoretical estimates for women of European ancestry. 774 

CIMBA)* 

Select and shrink 
(OCAC-CIMBA) 

18,007  0.596 1.42 1.32 – 1.54         

Abbreviations: AUC-Area Under the Receiver Operating Characteristic Curve; OR-Odds Ratio; HR-Hazards ratio 
*results in CIMBA are overfitted as the CIMBA data was used for model development 
† HR are adjusted for birth cohort and the first four ancestry informative principal components. AUC  were estimated from models fitting only the PRS as the 
independent variable. 
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Table 3: Association between polygenic risk scores and non-mucinous EOC by PRS percentiles and ancestry 

 UK Biobank East Asian African 

Percentile Controls 

(n) 

Cases (n) OR (95% CI) Controls (n) Cases (n) OR (95% CI) Controls 

(n) 

Cases 

(n) 

OR (95% CI) 

a. Lasso  

0-5 9880 12 0.42 (0.22 – 0.72) 278 106 0.65 (0.51 – 0.83) 35 19 0.89 (0.47 – 1.65) 

5-10 9870 24 0.83 (0.52 – 1.27) 271 112 0.71 (0.55 – 0.90) 41 13 0.52 (0.25 – 1.01) 

10-20 19733 53 0.92 (0.66 – 1.27) 487 280 0.98 (0.82 – 1.18) 81 26 0.53 (0.31 – 0.88) 

20-40 39468 104 0.90 (0.69 – 1.18) 993 541 0.93 (0.80 – 1.08) 154 60 0.64 (0.42 – 0.99) 

40-60 39457 115 1.00 967 566 1.00 133 81 1.00 

60-80 39425 147 1.28 (1.00 – 1.64) 941 593 1.08 (0.93 – 1.25) 136 78 0.94 (0.64 - 1.39) 

80-90 19699 87 1.52 (1.14 – 2.00) 466 301 1.10 (0.92 – 1.32) 63 44 1.15 (0.71 – 1.84) 

90-95 9842 51 1.78 (1.27 – 2.46) 214 169 1.35 (1.07 – 1.69) 34 20 0.97 (0.51 – 1.78) 

95-100 9830 64 2.23 (1.64 – 3.02) 211 173 1.40 (1.12 – 1.76) 27 27 1.64 (0.90 – 3.00) 

b. Elastic Net 

0-5 9876 17 0.67 (0.39 – 1.09) 277 107 0.72 (0.56 – 0.92) 35 19 0.90 (0.47 – 1.64) 

5-10 9876 17 0.67 (0.39 – 1.09) 271 112 0.78 (0.61 – 0.99) 41 13 0.52 (0.25 – 1.01) 

10-20 19740 45 0.89 (0.62 – 1.26) 497 270 1.02 (0.85 – 1.22) 81 26 0.53 (0.31 – 0.88) 

20-40 39453 120 1.19 (0.91 – 1.55) 967 567 1.10 (0.95 – 1.28) 154 60 0.64 (0.42 – 0.96) 

40-60 39471 101 1.00 1000 533 1.00 133 81 1.00 

60-80 39413 159 1.58 (1.23 – 2.03) 926 608 1.23 (1.06 – 1.43) 136 78 0.94 (0.64 – 1.39) 

80-90 19695 91 1.80 (1.36 – 2.40) 457 310 1.27 (1.06 – 1.52) 63 44 1.15 (0.71 – 1.84) 

90-95 9841 52 2.07 (1.47 – 2.87) 226 157 1.30 (1.04 – 1.64) 34 20 0.97 (0.51 – 1.78) 

95-100 9839 55 2.18 (1.56 – 3.02) 207 177 1.60 (1.28 – 2.01) 27 27 1.64 (0.90 – 3.00) 

c. Stepwise 

0-5 9880 13 0.39 (0.21 – 0.67) 254 130 0.90 (0.71 – 1.14) 40 14 0.75 (0.37 – 1.44) 
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 UK Biobank East Asian African 

Percentile Controls 

(n) 

Cases (n) OR (95% CI) Controls (n) Cases (n) OR (95% CI) Controls 

(n) 

Cases 

(n) 

OR (95% CI) 

5-10 9874 19 0.57 (0.34 – 0.91) 268 115 0.76 (0.59 – 0.96) 43 11 0.55 (0.26 – 1.10) 

10-20 19742 44 0.67 (0.47 – 0.93) 494 273 0.98 (0.81 – 1.17) 80 27 0.72 (0.42 – 1.21) 

20-40 39470 102 0.77 (0.60 – 1.00) 970 564 1.03 (0.89 – 1.19) 142 72 1.09 (0.73 – 1.63) 

40-60 39440 132 1.00 979 564 1.00 146 68 1.00 

60-80 39414 158 1.20 (0.95 – 1.51) 951 583 1.08 (0.94 – 1.25) 130 84 1.39 (0.93 – 2.07) 

80-90 19697 88 1.33 (1.02 – 1.75) 456 311 1.21 (1.01 – 1.44) 61 46 1.62 (1.00 – 2.61) 

90-95 9853 41 1.24 (0.86 – 1.75) 236 147 1.10 (0.87 – 1.38) 35 19 1.17 (0.61 – 2.17) 

95-100 9834 60 1.82 (1.33 – 2.46) 220 164 1.32 (1.04 – 1.65) 27 27 2.15 (1.17 – 3.95) 

d. Select and Shrink  

0-5 9957 16 0.54 (0.31 – 0.89) 279 105 0.63 (0.49 – 0.81) 38 16 0.71 (0.36 – 1.33) 

5-10 9888 15 0.51 (0.29 – 0.85) 254 129 0.85 (0.67- 1.08) 41 13 0.53 (0.26 – 1.03) 

10-20 19812 51 0.87 (0.62 – 1.20) 489 278 0.96 (0.80-1.14) 81 26 0.54 (0.32 – 0.90) 

20-40 39435 113 0.97 (0.75 – 1.25) 1013 521 0.86 (0.75 – 1.00) 156 58 0.62 (0.41 – 0.94) 

40-60 39512 117 1.00 961 572 1.00 134 80 1.00 

60-80 39316 158 1.36 (1.07 – 1.73) 950 584 1.03 (0.89 – 1.20) 137 77 0.94 (0.63 – 1.40) 

80-90 19718 77 1.32 (0.98 – 1.76) 434 333 1.29 (1.08 – 1.54) 61 46 1.26 (0.79 – 2.02) 

90-95 9791 45 1.55 (1.09 – 2.17) 233 150 1.08 (0.86 – 1.36) 30 24 1.34 (0.73 – 2.45) 

95-100 9775 65 2.25 (1.65 – 3.03) 215 169 1.32 (1.05 – 1.66) 26 28 1.80 (0.99 – 3.31) 

OR: Odds Ratio; CI: Confidence Interval. 
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Absolute Risk of Developing Ovarian Cancer by PRS percentiles 389 

We estimated cumulative risk of EOC experienced between birth and the age of 80 within 390 

PRS percentiles for women in the general population (Figure 2), by applying the odds ratio 391 

from the PRS models to age-specific population incidence and mortality data for England in 392 

2016. For BRCA1 and BRCA2 pathogenic variant carriers, we applied the estimated hazard 393 

ratios from PRS models to age-specific incidence rates obtained from Kuchenbaecker et al. 394 

(23).  395 

For women in the general population, the estimated cumulative risks of EOC by age 80 for 396 

women at the 99th centile of the PRS distribution were 2.24%, 2.18%, 2.54% and 2.81% for 397 

the lasso, elastic net, stepwise and S4 models, respectively. In comparison, the absolute risks 398 

of EOC by age 80 for women at the 1st centile were 0.76%, 0.78%, 0.64% and 0.56% for the 399 

lasso, elastic net, stepwise and S4 models, respectively.  400 

The absolute risks of developing EOC in BRCA1 and BRCA2 pathogenic variant carriers 401 

were considerably higher than for women in the general population (Figures S1:Cumulative 402 

risk of ovarian cancer risk in BRCA1 carriers by polygenic risk score percentiles and S2: 403 

Cummulative risk of ovarian cancer risk in BRCA2 carriers by polygenic risk score 404 

percentiles). The estimated absolute risk of developing ovarian cancer by age 80 for BRCA1 405 

carriers at the 99th PRS centiles were 63.2%, 66.3%, 59.0% and 68.4% for the lasso, elastic 406 

net, stepwise and S4 models, respectively. The corresponding absolute risks for women at the 407 

1st PRS centile were 27.7%, 25.6%, 30.8% and 24.2%. Absolute risks of developing EOC 408 

were lower for BRCA2 carriers than BRCA1 carriers, with absolute risks for women in the 409 

99th centile being 36.3%, 36.3%, 33.0% and 36.9%; and absolute risks for women in the 1st 410 

centile being 7.10%, 7.12%, 8.24% and 6.92% for the lasso, elastic net, stepwise and S4 411 
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models, respectively. Absolute risks for BRCA1 and BRCA2 carriers at the 10th and 90th 412 

percentile are provided in Supplementary Table 7. 413 

 414 

PRS distribution and ancestry 415 

To investigate the transferability of the PLR derived PRS to other populations, we applied the 416 

scores to women of African (N=1,072) and Asian (N=7,669) ancestry genotyped as part of 417 

the OncoArray project. In general, the distributions of the raw polygenic scores were 418 

dependent on both the statistical methods used in SNP selection and ancestral group. PRS 419 

models that included more variants had less dispersion, such that the elastic net models had 420 

the least between individual variation in all ancestral groups (standard deviation=0.15, 0.19 421 

and 0.22 for individuals of Asian, African and European ancestries respectively), while the 422 

distributions from the stepwise models were the most dispersed (standard deviation = 0.23, 423 

0.27 and 0.30 for individuals of Asian, African and European ancestries respectively). As 424 

expected, given the variation in variant frequencies by population, the distribution of 425 

polygenic scores was significantly different across the three ancestral groups, with the least 426 

dispersion among women of Asian ancestry and the most variation in women of European 427 

ancestry. The difference in polygenic risk score distribution was minimized after correction 428 

for ancestry by standardizing the PRS to have unit standard deviation using the control 429 

subjects for each ancestral group. For comparison, we investigated the use of the first 20 430 

principal components to correct for ancestry and we obtained similar results. 431 

High PRSs were significantly associated with risk of non-mucinous EOC in both Asian and 432 

African ancestries (Table 4), although the effects were weaker than in women of European 433 

ancestry. For example, with the lasso model, the odds ratio (95% CI) per unit standard 434 

deviation increment in polygenic score was estimated to be 1.16 (1.11–1.22)  in women of 435 
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East Asian ancestry and 1.28 (1.13–1.45) in women of African ancestry compared to 1.37 436 

(1.27–1.48) in women of European ancestry (p for heterogeneity < 0.0001). Variability in 437 

effect sizes among ancestral groups was highest for the stepwise model (I2 = 92%) versus 438 

84% and 83% for elastic net and lasso derived polygenic scores respectively. The best 439 

discriminative model among women of East Asian and African ancestry were the Elastic net 440 

PRS (AUC=0.543) and the Select and Shrink PRS model derived from OCAC-CIMBA meta-441 

analysis (AUC=0.596) respectively. Women of African ancestry in the top 5% of the PRS 442 

had about two-fold increased risk compared to women in the middle quintile (lasso 443 

OR:1.64,95%CI: 0.90–3.00; elastic net OR:1.64,95%CI:0.90–3.00; stepwise OR:2.15, 444 

95%CI:1.17–3.95; S4 OR:1.80, 95%CI:0.99–3.31). Effect estimates were smaller in women 445 

of East Asian ancestry with women in the top 5% of the PRS, having about a 1.5 fold 446 

increased risk compared to women in the middle quintile ( lasso OR:1.40, 95%CI:1.12–1.76; 447 

elastic net OR:1.60, 95% CI:1.28–2.01; stepwise OR:1.32, 95%CI:1.04–1.65; S4 OR:1.32, 448 

95%CI:1.05–1.66).  449 

Table 4:  External validation of PRS models in East Asian and African Populations 450 

Model 
East Asian ancestries African ancestries 

AUC OR 95% CI AUC OR 95% CI 

Lasso 0.541 1.16 (1.11 – 1.22) 0.576 1.28 (1.13 – 1.45) 

Elastic net 0.543 1.17 (1.12 – 1.23) 0.574 1.29 (1.14 – 1.47) 

Stepwise (OCAC) 0.528 1.11 (1.06 – 1.16) 0.581 1.34 (1.18 – 1.52) 

Select and shrink (OCAC) 0.538 1.14 (1.08 - 1.19) 0.593 1.38 (1.21 – 1.58) 

Stepwise  

(OCAC-CIMBA) 

0.542 1.17 (1.11 – 1.23) 0.594 1.37 (1.20 – 1.56) 

Select and shrink  

(OCAC-CIMBA) 

0.537 1.14 (1.08 – 1.19) 0.596 1.41 (1.23 – 1.61) 

 451 
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Discussion 452 

Genetic risk profiling with polygenic risk scores has led to actionable outcomes for cancers 453 

such as breast and prostate (24,25). Previous PRS scores for invasive EOC risk in the general 454 

population and BRCA1/BRCA2 pathogenic variant carriers have been based on genetic 455 

variants for which an association with EOC risk had been established at nominal genome-456 

wide significance (4,5,26–28). Here, we explored the predictive performance of 457 

computationally-efficient, penalized, regression methods in modelling joint SNP effects for 458 

EOC risk prediction in diverse populations and compared them with common approaches. By 459 

leveraging the correlation between SNPs which do not reach nominal genome-wide 460 

thresholds and including them in PRS models, the polygenic risk scores derived from 461 

penalized regression models in this analysis provide stronger evidence of association with 462 

risk of non-mucinous EOC than previously published PRSs in both the general population 463 

and in BRCA1/BRCA2 pathogenic variant carriers.  464 

Recently, Barnes et. al derived a PRS score using 22 SNPs that were significantly associated 465 

with high-grade serous EOC risk in GWAS (PRSHGS) to predict EOC risk in BRCA1/BRCA2 466 

pathogenic variant carriers (5). To make effect estimates obtained in this analysis comparable 467 

to the effect estimates obtained from the PRSHGS, we standardized all PRSs using the 468 

standard deviation from unaffected BRCA1/BRCA2 carriers; all PRS models in this analysis 469 

except the Stepwise (OCAC only) had higher effect estimates (5). However, the 470 

corresponding AUCs were higher for the PRSHGS model (0.604 for BRCA1 carriers and 0.667 471 

for BRCA2 carriers), most likely as a result of inclusion of other predictors (birth cohort and 472 

principal components) in the model. The AUC estimates for women in the general 473 

population, as estimated from the UK Biobank, are slightly higher than estimates from 474 
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previously published PRS models for overall EOC risk by Wei et al (AUC=0.57) and Yang et 475 

al (AUC=0.58) (26,28) 476 

In theory, polygenic risk profiling has the potential for clinical utility, being the earliest 477 

measurable contributor to risk which may lead to actionable outcomes. The level of risk 478 

among women considered to have a high polygenic risk score, for example women in the 95th 479 

percentile, for all of the models we considered approaches the same level of risk conferred by 480 

pathogenic variants in moderate penetrance genes such as FANCM (RR=2.1, 95%CI=1.1–481 

3.9) and PALB2 (RR=2.91 95%CI=1.40–6.04) (29,30). The inclusion of other risk factors 482 

such as family history of ovarian cancer, presence of rare pathogenic variants, age at 483 

menarche, oral contraceptive use, hormone replacement therapy, parity, and endometriosis in 484 

combination with the PRS models could potentially improve risk stratification as has been 485 

implemented in the CanRisk tool (www.canrisk.org), which currently uses a PRS model 486 

based on 36 SNPs with the potential to use other PRS models (31,32). 487 

An important consideration in the clinical utility of polygenic risk scores is the degree to 488 

which results are applicable to diverse populations. We found that the discriminative ability 489 

varied substantially by ancestral group. As expected, given that the model development 490 

dataset consisted entirely of women of European ancestry, the models had greater 491 

discriminative power in women of European ancestry, relative to women of African and East 492 

Asian ancestry. We observed greater attenuation of discriminative ability in East Asian 493 

populations than African populations. This finding is in contrast to what one would expect 494 

given human demographic history, and results from genome wide association studies for 495 

EOC (18,19,33,34).  One possible explanation for this disparity is the small sample size and 496 

imprecise effect estimates for women of African ancestry in this study, due to the larger 497 

differences in allele frequency between this population and that of the cohort used to develop 498 
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the model. Although the model development data for this analysis was predominantly women 499 

of European ancestry, the models developed using our approach performed substantially 500 

better in women of African ancestry than a PRS model developed by combining 24 published 501 

GWAS SNPS associated with non-mucinous EOC, for which the odds of EOC risk was 1.20 502 

fold per standard deviation of PRS (19). 503 

Further refinements to our models, by exploring other penalty functions, may improve the 504 

predictive value of the PRS. However, this approach may be complicated by difficulties that 505 

arise due to the correlation structure between SNPs.  Another option to optimizing the models 506 

could be varying the penalization function based on prior knowledge. In genomic regions that 507 

are known to have variants associated with EOC, one is more likely to find other risk-508 

associated variants. Therefore, varying the penalty function in these regions such that more 509 

SNPs are selected into the model may improve the PRS. Finally, as more functional data 510 

become available, modifying penalty functions to incorporate functional data may further 511 

improve the PRS. Current approaches for incorporating functional annotation have resulted in 512 

only modest gains in prediction accuracy for complex traits such as breast cancer, celiac 513 

disease, type 2 diabetes and rheumatoid arthritis, much of which is attributed to the SNPs 514 

selected in the models and not the functional annotation (35). 515 

The UK Biobank, our model validation dataset for women in the general population, had a 516 

small number of  invasive EOC cases with a disproportionately high number of mucinous 517 

cases (166 of the 823 invasive EOC cases or ~20%). Furthermore, cases of the serous 518 

histotype could not be classified as either high-grade or low-grade. Therefore, we could not 519 

investigate EOC histotype-specific polygenic scores. As the serous histotype is the most 520 

common, it is possible that a high-grade serous EOC specific polygenic score may have 521 

better predictive value than a non-mucinous polygenic score. 522 
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Conclusion 523 

In conclusion, our results indicate that using the lasso model for individual level genotype 524 

data and the S4 model for summary level data in polygenic risk score construction provide an 525 

improvement in risk prediction for non-mucinous EOC over more common approaches. Our 526 

approach overcomes the computational limitations in the use of penalized methods for large 527 

scale genetic data, particularly in the presence of highly-correlated SNPs and the use of cross-528 

validation for parameter estimation is preferred. In practical terms, the polygenic risk score 529 

provides sufficient discrimination, particularly for women of European ancestry, to be 530 

considered for inclusion in risk prediction and prevention approaches for EOC in the future.  531 

Further studies are required to optimize these polygenic risk scores in ancestrally diverse 532 

populations and to validate their performance with the inclusion of other genetic and lifestyle 533 

risk factors. 534 
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Figure captions 

Figure 1: PRS model development using penalized regression and LDPred Bayesian approach 

 

Figure 2: Cumulative risk of ovarian cancer between birth and age 80 by PRS percentiles and 

PRS models. Shown are the cumulative risk of ovarian cancer risk in UK women by polygenic risk 

score percentiles. The lasso (A) and elastic net (B) penalized regression models were applied to 

individual level genotype data, while the stepwise (C) and S4 (D) models were applied to summary 

level statistics.  

 

Figure 3: Association between the PLR PRS models and non-mucinous ovarian cancer by PRS 

percentiles. Shown are estimated odds ratios (OR) and confidence intervals for women of European 

ancestry by percentiles of polygenic risk scores derived from lasso (A), elastic net (B), stepwise (C) 

and S4 (D) models relative to the middle quintile.  
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Figure 1:  PRS model development using penalized regression and LDPred Bayesian 

approach. 
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Figure 2: Cumulative risk of ovarian cancer between birth and age 80 by PRS percentiles and PRS models 
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Figure 3: Association between the PLR PRS models and non-mucinous ovarian 

cancer by PRS percentiles  
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