¹**Polygenic Risk Modelling for Prediction of Epithelial Ovarian Cancer Risk**

2 Eileen O. Dareng¹*, Jonathan P. Tyrer^{2*}, Daniel R. Barnes¹, Michelle R. Jones³, Xin Yang¹, $Katja K.H. Aben^{4, 5}, Muriel A. Adank⁶, Simona Agata⁷, Irene L. Andrulis^{8, 9}, Hoda Anton-¹⁰$ Gulver¹⁰, Natalia N. Antonenkova¹¹, Gerasimos Aravantinos¹², Banu K. Arun¹³, Annelie
5 Augustinsson¹⁴, Judith Balmaña^{15, 16}, Elisa V. Bandera¹⁷, Rosa B. Barkardottir^{18, 19}, Daniel Augustinsson¹⁴, Judith Balmaña^{15, 16}, Elisa V. Bandera¹⁷, Rosa B. Barkardottir^{18, 19}, Daniel 6 Barrowdale¹, Matthias W. Beckmann²⁰, Alicia Beeghly-Fadiel²¹, Javier Benitez^{22, 23}, Marina Bermisheva²⁴, Marcus Q. Bernardini²⁵, Line Bjorge^{26, 27}, Amanda Black²⁸, Natalia V.
Bogdanova^{11, 29, 30}, Bernardo Bonanni³¹, Ake Borg³², James D. Brenton³³, Agnieszka Bogdanova^{11, 29, 30}, Bernardo Bonanni³¹, Ake Borg³², James D. Brenton³³, Agnieszka
9 Budzilowska³⁴, Ralf Butzow³⁵, Saundra S. Buvs³⁶, Hui Cai²¹, Maria A. Caligo³⁷, Ian Campbell^{38,} Budzilowska³⁴, Ralf Butzow³⁵, Saundra S. Buys³⁶, Hui Cai²¹, Maria A. Caligo³⁷, Ian Campbell^{38,} 10
10 ³⁹, Rikki Cannioto⁴⁰, Hayley Cassingham⁴¹, Jenny Chang-Claude^{42, 43}, Stephen J. Chanock⁴⁴, ³⁹, Rikki Cannioto⁴⁰, Hayley Cassingham⁴¹, Jenny Chang-Claude^{42, 43}, Stephen J. Chanock⁴⁴,
11 Kexin Chen⁴⁵, Yoke-Eng Chiew^{46, 47}, Wendy K. Chung⁴⁸, Kathleen B.M. Claes⁴⁹, Sarah 11 Kexin Chen⁴⁵, Yoke-Eng Chiew^{46, 47}, Wendy K. Chung⁴⁸, Kathleen B.M. Claes⁴⁹, Sarah
12 Colanna³⁶, GEMO Study Collaborators⁵⁰⁻⁵², GC-HBOC study Collaborators⁵³, EMBRACE 12 Colanna³⁶, GEMO Study Collaborators⁵⁰⁻⁵², GC-HBOC study Collaborators⁵³, EMBRACE
13 Collaborators¹, Linda S. Cook^{54, 55}, Fergus J. Couch⁵⁶, Mary B. Dalv⁵⁷, Fanny Dao⁵⁸, Eleanor 13 Collaborators¹, Linda S. Cook^{54, 55}, Fergus J. Couch⁵⁶, Mary B. Daly⁵⁷, Fanny Dao⁵⁸, Eleanor 14 Davies⁵⁹, Miguel de la Hoya⁶⁰, Robin de Putter⁴⁹, Joe Dennis¹, Allison DePersia^{61, 62}, Peter Devilee^{63, 64}, Orland Diez^{65, 66}, Yuan Chun Ding⁶⁷, Jennifer A. Doherty⁶⁸, Susan M. Domchek⁶⁹,
16. Thilo Dörk³⁰, Andreas du Bois^{70, 71}, Matthias Dürst⁷², Diana M. Eccles⁷³, Heather A. Eliassen^{74,} 16 Thilo Dörk³⁰, Andreas du Bois^{70, 71}, Matthias Dürst⁷², Diana M. Eccles⁷³, Heather A. Eliassen^{74,} 17⁷⁵, Christoph Engel^{76, 77}, D. Gareth Evans^{78, 79}, Peter A. Fasching^{20, 80}, James M. Flanagan⁸¹, ⁷⁵, Christoph Engel^{76, 77}, D. Gareth Evans^{78, 79}, Peter A. Fasching^{20, 80}, James M. Flanagan⁸¹,
18 Lenka Foretova⁸², Renée T. Fortner⁴², Eitan Friedman^{83, 84}, Patricia A. Ganz⁸⁵, Judy Garber⁸⁶, 18 Lenka Foretova⁸², Renée T. Fortner⁴², Eitan Friedman^{83, 84}, Patricia A. Ganz⁸⁵, Judy Garber⁸⁶,
19 Francesca Gensini⁸⁷, Graham G. Giles⁸⁸⁻⁹⁰, Gord Glendon⁸, Andrew K. Godwin⁹¹, Marc T. 19 Francesca Gensini⁸⁷, Graham G. Giles⁸⁸⁻⁹⁰, Gord Glendon⁸, Andrew K. Godwin⁹¹, Marc T. Goodman⁹², Mark H. Greene⁹³, Jacek Gronwald⁹⁴, OPAL Study Group⁹⁵, AOCS Group^{38, 46},
21 Eric Hahnen^{53, 96}, Christopher A. Haiman⁹⁷, Niclas Håkansson⁹⁸, Ute Hamann⁹⁹, Thomas V.O. 21 Eric Hahnen^{53, 96}, Christopher A. Haiman⁹⁷, Niclas Håkansson⁹⁸, Ute Hamann⁹⁹, Thomas V.O.
22 Hansen¹⁰⁰, Holly R. Harris^{101, 102}, Mikael Hartman^{103, 104}, Florian Heitz^{70, 71, 105}, Michelle A.T. 22 Hansen¹⁰⁰, Holly R. Harris^{101, 102}, Mikael Hartman^{103, 104}, Florian Heitz^{70, 71, 105}, Michelle A.T.
23 Hildebrandt¹⁰⁶, Estrid Høgdall^{107, 108}, Claus K. Høgdall¹⁰⁹, John L. Hopper⁸⁹, Ruea-Yea 23 Hildebrandt¹⁰⁶, Estrid Høgdall^{107, 108}, Claus K. Høgdall¹⁰⁹, John L. Hopper⁸⁹, Ruea-Yea
24 Huang¹¹⁰, Chad Huff¹⁰⁶, Peter J. Hulick^{61, 62}, David G. Huntsman¹¹¹⁻¹¹⁴, Evgeny N. Imvanitov¹¹⁵, 24 Huang¹¹⁰, Chad Huff¹⁰⁶, Peter J. Hulick^{61, 62}, David G. Huntsman¹¹¹⁻¹¹⁴, Evgeny N. Imyanitov¹¹⁵,
25 KConFab Investigators³⁸, HEBON Investigators¹¹⁶, Claudine Isaacs¹¹⁷, Anna Jakubowska^{94, 118}, CONFab Investigators³⁸, HEBON Investigators¹¹⁶, Claudine Isaacs¹¹⁷, Anna Jakubowska^{94, 118},
26 Paul A. James^{39, 119}, Ramunas Janavicius^{120, 121}, Allan Jensen¹⁰⁷, Oskar Th. Johannsson¹²², Esther Paul A. James^{39, 119}, Ramunas Janavicius^{120, 121}, Allan Jensen¹⁰⁷, Oskar Th. Johannsson¹²², Esther
27 M. John^{123, 124}, Michael E. Jones¹²⁵, Daehee Kang¹²⁶⁻¹²⁸, Beth Y. Karlan¹²⁹, Anthony 27 M. John ^{123, 124}, Michael E. Jones¹²⁵, Daehee Kang¹²⁶⁻¹²⁸, Beth Y. Karlan¹²⁹, Anthony
28 Karnezis¹³⁰, Linda E. Kelemen¹³¹, Elza Khusnutdinova^{24, 132}, Lambertus A. Kiemenev⁴, Byoung-28 Karnezis¹³⁰, Linda E. Kelemen¹³¹, Elza Khusnutdinova^{24, 132}, Lambertus A. Kiemeney⁴, Byoung-
29 Gie Kim¹³³, Susanne K. Kiaer^{107, 109}, Ian Komenaka¹³⁴, Jolanta Kuprvianczyk³⁴, Allison W. Gie Kim¹³³, Susanne K. Kjaer^{107, 109}, Ian Komenaka¹³⁴, Jolanta Kupryjanczyk³⁴, Allison W.
30. Kurian^{123, 124}, Ava Kwong¹³⁵⁻¹³⁷, Diether Lambrechts^{138, 139}, Melissa. C. Larson¹⁴⁰, Conxi SO Kurian^{123, 124}, Ava Kwong¹³⁵⁻¹³⁷, Diether Lambrechts^{138, 139}, Melissa C. Larson¹⁴⁰, Conxi

31 Lazaro¹⁴¹, Nhu D. Le¹⁴², Goska Leslie¹, Jenny Lester¹²⁹, Fabienne Lesueur^{51, 52, 143}, Douglas A. 31 Lazaro¹⁴¹, Nhu D. Le¹⁴², Goska Leslie¹, Jenny Lester¹²⁹, Fabienne Lesueur^{51, 52, ¹⁴³, Douglas A.} 132 Levine^{58, 144}, Lian Li⁴⁵, Jingmei Li¹⁴⁵, Jennifer T. Loud⁹³, Karen H. Lu¹⁴⁶, Jan Lubiński⁹⁴, Eva

33 Machackova⁸², Phuong L. Mai¹⁴⁷, Siranoush Manoukian¹⁴⁸, Jeffrey R. Marks¹⁴⁹, Rayna Kim Machackova⁸², Phuong L. Mai¹⁴⁷, Siranoush Manoukian¹⁴⁸, Jeffrey R. Marks¹⁴⁹, Rayna Kim
34 Matsuno¹⁵⁰, Keitaro Matsuo^{151, 152}, Taymaa May²⁵, Lesley McGuffog¹, John R. McLaughlin¹⁵³, 34 Matsuno¹⁵⁰, Keitaro Matsuo^{151, 152}, Taymaa May²⁵, Lesley McGuffog¹, John R. McLaughlin¹⁵³,

 $\mathbf{1}$

155 Iain A. McNeish^{154, 155}, Noura Mebirouk^{51, 52, 143}, Usha Menon¹⁵⁶, Austin Miller¹⁵⁷, Roger L.

156 Milne⁸⁸⁻⁹⁰, Albina Minlikeeva¹⁵⁸, Francesmary Modugno^{159, 160}, Marco Montagna⁷, Kirsten B. 36 Milne⁸⁸⁻⁹⁰, Albina Minlikeeva¹⁵⁸, Francesmary Modugno^{159, 160}, Marco Montagna⁷, Kirsten B.
37 Movsich¹⁵⁸, Elizabeth Munro^{161, 162}, , Katherine L. Nathanson⁶⁹, Susan L. Neuhausen⁶⁷, Heli Moysich¹⁵⁸, Elizabeth Munro^{161, 162}, , Katherine L. Nathanson⁶⁹, Susan L. Neuhausen⁶⁷, Heli
38 Nevanlinna¹⁶³, Joanne Ngeow Yuen Yie^{164, 165}, Henriette Roed Nielsen¹⁶⁶, Finn C. Nielsen¹⁰⁰, Nevanlinna¹⁶³, Joanne Ngeow Yuen Yie^{164, 165}, Henriette Roed Nielsen¹⁶⁶, Finn C. Nielsen¹⁰⁰,
39 Liene Nikitina-Zake¹⁶⁷, Kunle Odunsi¹⁶⁸, Kenneth Offit^{169, 170}, Edith Olah¹⁷¹, Siel Olbrecht¹⁷², Liene Nikitina-Zake¹⁶⁷, Kunle Odunsi¹⁶⁸, Kenneth Offit^{169, 170}, Edith Olah¹⁷¹, Siel Olbrecht¹⁷²,
40 Olufunmilayo I. Olopade¹⁷³, Sara H. Olson¹⁷⁴, Håkan Olsson¹⁴, Ana Osorio^{23, 175}, Laura Papi⁸⁷, Olufunmilayo I. Olopade¹⁷³, Sara H. Olson¹⁷⁴, Håkan Olsson¹⁴, Ana Osorio^{23, 175}, Laura Papi⁸⁷, Ana Sue K. Park¹²⁶⁻¹²⁸, Michael T. Parsons¹⁷⁶, Harsha Pathak⁹¹, Inge Sokilde Pedersen¹⁷⁷⁻¹⁷⁹, Ana Sue K. Park¹²⁶⁻¹²⁸, Michael T. Parsons¹⁷⁶, Harsha Pathak⁹¹, Inge Sokilde Pedersen¹⁷⁷⁻¹⁷⁹, Ana
42 Peixoto¹⁸⁰, Tania Peiovic^{161, 162}, Pedro Perez-Segura⁶⁰, Jennifer B. Permuth¹⁸¹, Beth Peshkin¹¹⁷, Peixoto¹⁸⁰, Tanja Pejovic^{161, 162}, Pedro Perez-Segura⁶⁰, Jennifer B. Permuth¹⁸¹, Beth Peshkin¹¹⁷,
43 Paolo Peterlongo¹⁸², Anna Piskorz³³, Darya Prokofyeva¹⁸³, Paolo Radice¹⁸⁴, Johanna Rantala¹⁸⁵, Paolo Peterlongo¹⁸², Anna Piskorz³³, Darya Prokofyeva¹⁸³, Paolo Radice¹⁸⁴, Johanna Rantala¹⁸⁵,
44 Marjorie J. Riggan¹⁸⁶, Harvey A. Risch¹⁸⁷, Cristina Rodriguez-Antona^{22, 23}, Eric Ross¹⁸⁸, Mary Marjorie J. Riggan¹⁸⁶, Harvey A. Risch¹⁸⁷, Cristina Rodriguez-Antona^{22, 23}, Eric Ross¹⁸⁸, Mary
45 Anne Rossing^{101, 102}, Ingo Runnebaum⁷², Dale P. Sandler¹⁸⁹, Marta Santamariña^{175, 190, 191}, Penny Anne Rossing^{101, 102}, Ingo Runnebaum⁷², Dale P. Sandler¹⁸⁹, Marta Santamariña^{175, 190, 191}, Penny
46 Soucy¹⁹², Rita K. Schmutzler^{53, 96, 193}, V. Wendy Setiawan⁹⁷, Kang Shan¹⁹⁴, Weiva Sieh^{195, 196}, Soucy¹⁹², Rita K. Schmutzler^{53, 96, 193}, V. Wendy Setiawan⁹⁷, Kang Shan¹⁹⁴, Weiva Sieh^{195, 196},
47 Jacques Simard¹⁹⁷, Christian F. Singer¹⁹⁸, Anna P. Sokolenko¹¹⁵, Honglin Song¹⁹⁹, Melissa C. 17 Jacques Simard¹⁹⁷, Christian F. Singer¹⁹⁸, Anna P Sokolenko¹¹⁵, Honglin Song¹⁹⁹, Melissa C.

18 Southey^{88, 90, 200}, Helen Steed²⁰¹, Dominique Stoppa-Lyonnet^{50, 202, 203}, Rebecca Sutphen²⁰⁴, Southey^{88, 90, 200}, Helen Steed²⁰¹, Dominique Stoppa-Lyonnet^{50, 202, 203}, Rebecca Sutphen²⁰⁴,
49 Anthony J. Swerdlow^{125, 205}, Yen Yen Tan²⁰⁶, Manuel R. Teixeira^{180, 207}, Soo Hwang Teo^{208, 209}, Anthony J. Swerdlow^{125, 205}, Yen Yen Tan²⁰⁶, Manuel R. Teixeira^{180, 207}, Soo Hwang Teo^{208, 209},
50 Kathryn L. Terry^{74, 210}, Mary Beth Terry²¹¹, Mads Thomassen¹⁶⁶, Pamela J. Thompson⁹², Liv 50 Kathryn L. Terry^{74, 210}, Mary Beth Terry²¹¹, Mads Thomassen¹⁶⁶, Pamela J. Thompson⁹², Liv
51 Cecilie Vestrheim Thomsen^{26, 27}, Darcy L. Thull²¹², Marc Tischkowitz^{213, 214}, Linda Titus²¹⁵, 51 Cecilie Vestrheim Thomsen^{26, 27}, Darcy L. Thull²¹², Marc Tischkowitz^{213, 214}, Linda Titus²¹⁵,
52 Amanda E. Toland²¹⁶, Diana Torres^{99, 217}, Britton Trabert²⁸, Ruth Travis²¹⁸, Nadine Tung²¹⁹, 52 Amanda E. Toland²¹⁶, Diana Torres^{99, 217}, Britton Trabert²⁸, Ruth Travis²¹⁸, Nadine Tung²¹⁹, Shelley S. Tworoger^{181, 220}. Ellen Valen^{26, 27}, Anne M. van Altena⁴. Annemieke H. van der 53 Shelley S. Tworoger^{181, 220}, Ellen Valen^{26, 27}, Anne M. van Altena⁴, Annemieke H. van der Hout²²¹, Els Van Nieuwenhuysen¹⁷², Elizabeth J. van Rensburg²²², Ana Vega²²³⁻²²⁵, Digna Velez 54 Hout²²¹, Els Van Nieuwenhuysen¹⁷², Elizabeth J. van Rensburg²²², Ana Vega²²³⁻²²⁵, Digna Velez
55 Edwards²²⁶, Robert A. Vierkant¹⁴⁰, Frances Wang^{227, 228}, Barbara Wappenschmidt^{53, 96}, Edwards²²⁶, Robert A. Vierkant¹⁴⁰, Frances Wang^{227, 228}, Barbara Wappenschmidt^{53, 96},
56 Penelope M. Webb⁹⁵, Clarice R. Weinberg²²⁹, Jeffrey N. Weitzel²³⁰, Nicolas Wentzensen²⁸, 956 Penelope M. Webb⁹⁵, Clarice R. Weinberg²²⁹, Jeffrey N. Weitzel²³⁰, Nicolas Wentzensen²⁸, Emily White^{102, 231}, Alice S. Whittemore^{123, 232}, Stacey J. Winham¹⁴⁰, Alicja Wolk^{98, 233}, Yin-Ling 57 Emily White^{102, 231}, Alice S. Whittemore^{123, 232}, Stacey J. Winham¹⁴⁰, Alicja Wolk^{98, 233}, Yin-Ling
58 Woo²³⁴, Anna H. Wu⁹⁷, Li Yan²³⁵, Drakoulis Yannoukakos²³⁶, Katia M. Zavaglia³⁷, Wei 58 Woo²³⁴, Anna H. Wu⁹⁷, Li Yan²³⁵, Drakoulis Yannoukakos²³⁶, Katia M. Zavaglia³⁷, Wei
59 Zheng²¹, Argyrios Ziogas¹⁰, Kristin K. Zorn¹⁴⁷, Douglas Easton^{1,2}, Kate Lawrenson^{3, 237}, Anna 29 Zheng²¹, Argyrios Ziogas¹⁰, Kristin K. Zorn¹⁴⁷, Douglas Easton^{1,2}, Kate Lawrenson^{3, 237}, Anna
60 DeFazio^{46, 47}, Thomas A. Sellers²³⁸, Susan J. Ramus^{239, 240}, Celeste L. Pearce^{241, 242}, Alvaro N. 60 DeFazio^{46, 47}, Thomas A. Sellers ²³⁸, Susan J. Ramus^{239, 240}, Celeste L. Pearce^{241, 242}, Alvaro N.
61 Monteiro¹⁸¹, Julie Cunningham²⁴³, Ellen L. Goode²⁴³, Joellen M. Schildkraut²⁴⁴, Andrew 61 Monteiro¹⁸¹, Julie Cunningham²⁴³, Ellen L. Goode²⁴³, Joellen M. Schildkraut²⁴⁴, Andrew
62 Berchuck¹⁸⁶, Georgia Chenevix-Trench¹⁷⁶, Simon A. Gavther³, Antonis C. Antoniou¹, Paul D.P. 62 Berchuck¹⁸⁶, Georgia Chenevix-Trench¹⁷⁶, Simon A. Gayther³, Antonis C. Antoniou¹, Paul D.P. 63 Pharoah^{1, 2}

 2^2 University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Oncology,
 68 Cambridge UK 68 Cambridge, UK.

 1 University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Public
66 Health and Primary Care Cambridge UK 66 Health and Primary Care, Cambridge, UK.

- $\frac{3}{70}$ Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los
70 Angeles CA USA 70 Angeles, CA, USA.
- ⁴ Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The

⁷² Netherlands 72 Netherlands.
- ⁵ Netherlands Comprehensive Cancer Organisation, Utrecht, The Netherlands.
- ⁶ The Netherlands Cancer Institute Antoni van Leeuwenhoek hospital, Family Cancer Clinic,
75 Amsterdam The Netherlands 75 Amsterdam, The Netherlands.
- ⁷ Veneto Institute of Oncology IOV IRCCS, Immunology and Molecular Oncology Unit,
77 Padua Italy 77 Padua, Italy.
- ⁸ Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Fred A. Litwin Center for
79 Cancer Genetics Toronto ON Canada 79 Cancer Genetics, Toronto, ON, Canada.
- ⁹ University of Toronto, Department of Molecular Genetics, Toronto, ON, Canada.

81 ¹⁰ University of California Irvine, Department of Epidemiology, Genetic Epidemiology
82 Besearch Institute Irvine CA USA 82 Research Institute, Irvine, CA, USA.

- ¹¹ N.N. Alexandrov Research Institute of Oncology and Medical Radiology, Minsk, Belarus.
- 84 ¹² 'Agii Anargiri' Cancer Hospital, Athens, Greece.
- 13 University of Texas MD Anderson Cancer Center, Department of Breast Medical Oncology,
86 Houston TX USA 86 Houston, TX, USA.
- ¹⁴ Lund University, Department of Cancer Epidemiology, Clinical Sciences, Lund, Sweden.
- ¹⁵ Vall d'Hebron Institute of Oncology, Hereditary cancer Genetics Group, Barcelona, Spain.
- ¹⁶ University Hospital of Vall d'Hebron, Department of Medical Oncology, Barcelona, Spain.
- 17 Rutgers Cancer Institute of New Jersey, Cancer Prevention and Control Program, New Brunswick NI USA 91 Brunswick, NJ, USA.
- ¹⁸ Landspitali University Hospital, Department of Pathology, Reykjavik, Iceland.
- 93 ¹⁹ University of Iceland, BMC (Biomedical Centre), Faculty of Medicine, Reykjavik, Iceland.
- 20 ²⁰ University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg,
95 Department of Gynecology and Obstetrics, Comprehensive Cancer Center ER-EMN, Erlangen, 95 Department of Gynecology and Obstetrics, Comprehensive Cancer Center ER-EMN, Erlangen, Germany. Germany.
- 2^1 Vanderbilt University School of Medicine, Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Nashville, TN 98 Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Nashville, TN,
99 USA. USA.
- 100 22 Biomedical Network on Rare Diseases (CIBERER), Madrid, Spain.
- ²³ Spanish National Cancer Research Centre (CNIO), Human Cancer Genetics Programme,
102 Madrid Spain 102 Madrid, Spain.

- ²⁴ Ufa Federal Research Centre of the Russian Academy of Sciences, Institute of Biochemistry
104 and Genetics Ufa Russia 104 and Genetics, Ufa, Russia.
- ²⁵ Princess Margaret Hospital, Division of Gynecologic Oncology, University Health Network,
106 Toronto Ontario Canada 106 Toronto, Ontario, Canada.
- ²⁶ Haukeland University Hospital, Department of Obstetrics and Gynecology, Bergen, Norway.
- ²⁷ University of Bergen, Centre for Cancer Biomarkers CCBIO, Department of Clinical Science,
109 Bergen, Norway 109 Bergen, Norway.
- ²⁸ National Cancer Institute, Division of Cancer Epidemiology and Genetics, Bethesda, MD, 111 **IISA** 111 USA.
- ²⁹ Hannover Medical School, Department of Radiation Oncology, Hannover, Germany.
- ³⁰ Hannover Medical School, Gynaecology Research Unit, Hannover, Germany.
- ³¹ IEO, European Institute of Oncology IRCCS, Division of Cancer Prevention and Genetics,
115 Milan Italy 115 Milan, Italy.
- 116 32 Lund University and Skåne University Hospital, Department of Oncology, Lund, Sweden.
- ³³ Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
- ³⁴ Maria Sklodowska-Curie National Research Institute of Oncology, Department of Pathology
119 and Laboratory Diagnostics, Warsaw, Poland 119 and Laboratory Diagnostics, Warsaw, Poland.
- ³⁵ University of Helsinki, Department of Pathology, Helsinki University Hospital, Helsinki, 121 Finland 121 Finland.
- ³⁶ Huntsman Cancer Institute, Department of Medicine, Salt Lake City, UT, USA.
- 37 University Hospital, SOD Genetica Molecolare, Pisa, Italy.
- ³⁸ Peter MacCallum Cancer Center, Melbourne, Victoria, Australia.
- ³⁹ The University of Melbourne, Sir Peter MacCallum Department of Oncology, Melbourne,
126 Victoria Australia 126 Victoria, Australia.
- 127 ⁴⁰ Roswell Park Cancer Institute, Cancer Pathology & Prevention, Division of Cancer 128 Prevention and Population Sciences Buffalo NY USA 128 Prevention and Population Sciences, Buffalo, NY, USA.
- 41 Division of Human Genetics, The Ohio State University, Department of Internal Medicine, Columbus OH USA 130 Columbus, OH, USA.
- ⁴² German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Heidelberg, Germany 132 Germany.
- ⁴³ University Medical Center Hamburg-Eppendorf, Cancer Epidemiology Group, University
134 Cancer Center Hamburg (UCCH) Hamburg Germany 134 Cancer Center Hamburg (UCCH), Hamburg, Germany.
- ⁴⁴ National Cancer Institute, National Institutes of Health, Department of Health and Human
136 Services Division of Cancer Enidemiology and Genetics Bethesda MD USA 136 Services, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA.

- 137 ⁴⁵ Tianjin Medical University Cancer Institute and Hospital, Department of Epidemiology, 138 Tianjin China 138 Tianjin, China.
- ⁴⁶ The University of Sydney, Centre for Cancer Research, The Westmead Institute for Medical
140 Research, Sydney New South Wales, Australia 140 Research, Sydney, New South Wales, Australia.
- ⁴⁷ Westmead Hospital, Department of Gynaecological Oncology, Sydney, New South Wales,
142 Australia 142 Australia.
- ⁴⁸ Columbia University, Departments of Pediatrics and Medicine, New York, NY, USA.
- ⁴⁹ Ghent University, Centre for Medical Genetics, Gent, Belgium.
- ⁵⁰ INSERM U830, Department of Tumour Biology, Paris, France.
- 146 $⁵¹$ Institut Curie, Paris, France.</sup>
- 147 ⁵² Mines ParisTech, Fontainebleau, France.

⁵³ Faculty of Medicine and University Hospital Cologne, University of Cologne, Center for
149 Familial Breast and Ovarian Cancer Cologne, Germany 149 Familial Breast and Ovarian Cancer, Cologne, Germany.

- ⁵⁴ University of New Mexico, University of New Mexico Health Sciences Center, Albuquerque,
151 NM JISA 151 NM, USA.
- ⁵⁵ Alberta Health Services, Department of Cancer Epidemiology and Prevention Research,
153 Calgary AB Canada 153 Calgary, AB, Canada.
- ⁵⁶ Mayo Clinic, Department of Laboratory Medicine and Pathology, Rochester, MN, USA.
- ⁵⁷ Fox Chase Cancer Center, Department of Clinical Genetics, Philadelphia, PA, USA.
- ⁵⁸ Memorial Sloan Kettering Cancer Center, Gynecology Service, Department of Surgery, New
157 Nork NY USA 157 York, NY, USA.
- 158 ⁵⁹ Cambridge, Cambridge, UK.
- ⁶⁰ CIBERONC, Hospital Clinico San Carlos, IdISSC (Instituto de Investigación Sanitaria del
160 Hospital Clínico San Carlos), Molecular Opcology Laboratory, Madrid, Spain 160 Hospital Clínico San Carlos), Molecular Oncology Laboratory, Madrid, Spain.
- ⁶¹ NorthShore University Health System, Center for Medical Genetics, Evanston, IL, USA.
- 162 ⁶² The University of Chicago Pritzker School of Medicine, Chicago, IL, USA.
- ⁶³ Leiden University Medical Center, Department of Pathology, Leiden, The Netherlands.
- ⁶⁴ Leiden University Medical Center, Department of Human Genetics, Leiden, The Netherlands.
- ⁶⁵ Vall dHebron Institute of Oncology (VHIO), Oncogenetics Group, Barcelona, Spain.
- ⁶⁶ University Hospital Vall dHebron, Clinical and Molecular Genetics Area, Barcelona, Spain.
- ⁶⁷ Beckman Research Institute of City of Hope, Department of Population Sciences, Duarte, CA, 168
168 USA 168 USA.

 $\bar{\mathbf{r}}$

- 169 ⁶⁸ University of Utah, Huntsman Cancer Institute, Department of Population Health Sciences, 170 Salt Lake City UT USA 170 Salt Lake City, UT, USA.
- 171 69 University of Pennsylvania, Basser Center for BRCA, Abramson Cancer Center,
172 Philadelphia PA USA 172 Philadelphia, PA, USA.
- 70^{70} Ev. Kliniken Essen-Mitte (KEM), Department of Gynecology and Gynecologic Oncology, 174 Essen Germany 174 Essen, Germany.
- 175⁷¹ Dr. Horst Schmidt Kliniken Wiesbaden, Department of Gynecology and Gynecologic
176 Oncology Wiesbaden Germany 176 Oncology, Wiesbaden, Germany.
- 177⁷² Jena University Hospital Friedrich Schiller University, Department of Gynaecology, Jena,
178 Germany 178 Germany.
- 179 ⁷³ University of Southampton, Faculty of Medicine, Southampton, UK.
- 180 74 Harvard T.H. Chan School of Public Health, Department of Epidemiology, Boston, MA, 181 $\overline{1154}$ 181 USA.
- 182 ⁷⁵ Brigham and Women's Hospital and Harvard Medical School, Channing Division of Network
183 Medicine Boston MA USA 183 Medicine, Boston, MA, USA.
- ⁷⁶ University of Leipzig, Institute for Medical Informatics, Statistics and Epidemiology, Leipzig,
185 Germany 185 Germany.
- 186 ⁷⁷ University of Leipzig, LIFE Leipzig Research Centre for Civilization Diseases, Leipzig, Germany 187 Germany.
- ⁷⁸ University of Manchester, Manchester Academic Health Science Centre, Division of 189 189 Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine
190 and Health, Manchester, UK. and Health, Manchester, UK.
- ⁷⁹ 191⁷⁹ St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic
1921 Health Science Centre, North West Genomics Laboratory Hub, Manchester Centre for Genomic 192 Health Science Centre, North West Genomics Laboratory Hub, Manchester Centre for Genomic
193 Medicine, Manchester, UK. Medicine, Manchester, UK.
- 80 University of California at Los Angeles, David Geffen School of Medicine, Department of Medicine Division of Hematology and Oncology Los Angeles CA USA 195 Medicine Division of Hematology and Oncology, Los Angeles, CA, USA.
- ⁸¹ Imperial College London, Division of Cancer and Ovarian Cancer Action Research Centre,
197 Department of Surgery and Cancer London UK 197 Department of Surgery and Cancer, London, UK.
- ⁸² Masaryk Memorial Cancer Institute, Department of Cancer Epidemiology and Genetics,
199 Brno Czech Republic 199 Brno, Czech Republic.
- 200⁸³ Chaim Sheba Medical Center, The Susanne Levy Gertner Oncogenetics Unit, Ramat Gan, 201⁸ 201 Israel.
- 202 ⁸⁴ Tel Aviv University, Sackler Faculty of Medicine, Ramat Aviv, Israel.
- 203 85 Jonsson Comprehensive Cancer Centre, UCLA, Schools of Medicine and Public Health,
204 Division of Cancer Prevention & Control Research Los Angeles CA USA 204 Division of Cancer Prevention & Control Research, Los Angeles, CA, USA.

205 ⁸⁶ Dana-Farber Cancer Institute, Cancer Risk and Prevention Clinic, Boston, MA, USA. 206 ⁸⁷ University of Florence, Department of Experimental and Clinical Biomedical Sciences 'Mario
207 Serio' Medical Genetics Unit Florence Italy 207 Serio', Medical Genetics Unit, Florence, Italy. 208 ⁸⁸ Cancer Council Victoria, Cancer Epidemiology Division, Melbourne, Victoria, Australia. 209 ⁸⁹ The University of Melbourne, Centre for Epidemiology and Biostatistics, Melbourne School
210 of Population and Global Health Melbourne Victoria Australia 210 of Population and Global Health, Melbourne, Victoria, Australia. 211 ⁹⁰ Monash University, Precision Medicine, School of Clinical Sciences at Monash Health,
212 Clayton Victoria Australia 212 Clayton, Victoria, Australia. 213 ⁹¹ University of Kansas Medical Center, Department of Pathology and Laboratory Medicine,
214 Kansas City KS USA 214 Kansas City, KS, USA. 215 92 Cedars-Sinai Medical Center, Samuel Oschin Comprehensive Cancer Institute, Cancer 216 Prevention and Genetics Program Los Angeles CA USA 216 Prevention and Genetics Program, Los Angeles, CA, USA. 217 ⁹³ National Cancer Institute, Clinical Genetics Branch, Division of Cancer Epidemiology and
218 Genetics Bethesda MD USA 218 Genetics, Bethesda, MD, USA. ⁹⁴ Pomeranian Medical University, Department of Genetics and Pathology, Szczecin, Poland. 220⁹⁵ QIMR Berghofer Medical Research Institute, Population Health Department, Brisbane, 221 Oueensland Australia 221 Queensland, Australia. 222 96 Faculty of Medicine and University Hospital Cologne, University of Cologne, Center for 223 Integrated Oncology (CIO) Cologne Germany 223 Integrated Oncology (CIO), Cologne, Germany. 224 $\frac{97}{225}$ University of Southern California, Department of Preventive Medicine, Keck School of 225 225 Medicine, Los Angeles, CA, USA. 226 ⁹⁸ Karolinska Institutet, Institute of Environmental Medicine, Stockholm, Sweden. ⁹⁹ German Cancer Research Center (DKFZ), Molecular Genetics of Breast Cancer, Heidelberg,
228 Germany 228 Germany. 100 ¹⁰⁰ Rigshospitalet, Copenhagen University Hospital, Department of Clinical Genetics,
230 Copenhagen, Denmark. Copenhagen, Denmark. 231 ¹⁰¹ Fred Hutchinson Cancer Research Center, Program in Epidemiology, Division of Public
232 Health Sciences Seattle WA USA 232 Health Sciences, Seattle, WA, USA. ¹⁰² University of Washington, Department of Epidemiology, Seattle, WA, USA. 234 103 National University of Singapore and National University Health System, Saw Swee Hock
235 School of Public Health Singapore Singapore 235 School of Public Health, Singapore, Singapore. ¹⁰⁴ National University Health System, Department of Surgery, Singapore, Singapore. 237 ¹⁰⁵ Humboldt-UniversitŠt zu Berlin, and Berlin Institute of Health, Department for Gynecology
238 with the Center for Oncologic Surgery CharitŽ Campus Virchow-Klinikum, CharitŽ Đ 238 with the Center for Oncologic Surgery CharitŽ Campus Virchow-Klinikum, CharitŽ Đ
239 UniversitŠtsmedizin Berlin, corporate member of Freie UniversitŠt Berlin, Berlin, Germany. ²³⁹UniversitŠtsmedizin Berlin, corporate member of Freie UniversitŠt Berlin, Berlin, Germany.

- 240 ¹⁰⁶ University of Texas MD Anderson Cancer Center, Department of Epidemiology, Houston,
241 TX USA 241 TX, USA.
- 242¹⁰⁷ Danish Cancer Society Research Center, Department of Virus, Lifestyle and Genes, 243 Copenhagen, Denmark.
- 244 ¹⁰⁸ University of Copenhagen, Molecular Unit, Department of Pathology, Herlev Hospital,
245 Copenhagen Denmark 245 Copenhagen, Denmark.
- 246 ¹⁰⁹ University of Copenhagen, Department of Gynaecology, Rigshospitalet, Copenhagen, 247 Denmark 247 Denmark.
- 248 ¹¹⁰ Roswell Park Cancer Institute, Center For Immunotherapy, Buffalo, NY, USA.
- 249 $\frac{111}{11}$ BC Cancer, Vancouver General Hospital, and University of British Columbia, British Columbia's Ovarian Cancer Research (OVCARE) Program Vancouver BC Canada 250 Columbia's Ovarian Cancer Research (OVCARE) Program, Vancouver, BC, Canada.
- 251 ¹¹² University of British Columbia, Department of Pathology and Laboratory Medicine, 252 Vancouver, BC, Canada.
- 253 ¹¹³ University of British Columbia, Department of Obstetrics and Gynecology, Vancouver, BC, 254 254 Canada.
- 255 ¹¹⁴ BC Cancer Research Centre, Department of Molecular Oncology, Vancouver, BC, Canada.
- 256 ¹¹⁵ N.N. Petrov Institute of Oncology, St. Petersburg, Russia.
- 257 ¹¹⁶ Coordinating center: The Netherlands Cancer Institute, The Hereditary Breast and Ovarian
258 Cancer Research Group Netherlands (HEBON) Amsterdam The Netherlands 258 Cancer Research Group Netherlands (HEBON), Amsterdam, The Netherlands.
- 259 ¹¹⁷ Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA.
- 260 ¹¹⁸ Pomeranian Medical University, Independent Laboratory of Molecular Biology and Genetic
261 Diagnostics Szczecin Poland 261 Diagnostics, Szczecin, Poland.
- 262 ¹¹⁹ Peter MacCallum Cancer Center, Parkville Familial Cancer Centre, Melbourne, Victoria,
263 Australia 263 Australia.
- 264 ¹²⁰ Vilnius University Hospital Santariskiu Clinics, Hematology, oncology and transfusion
265 medicine center Dent of Molecular and Regenerative Medicine Vilnius Lithuania ²⁶⁵medicine center, Dept. of Molecular and Regenerative Medicine, Vilnius, Lithuania.
- 266 ¹²¹ State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania.
- ¹²² Landspitali University Hospital, Department of Oncology, Reykjavik, Iceland.
- 268 ¹²³ Stanford University School of Medicine, Department of Epidemiology & Population Health,
269 Stanford CA USA 269 Stanford, CA, USA.
- 270 124 Stanford Cancer Institute, Stanford University School of Medicine, Department of Medicine, Division of Oncology Stanford CA JISA 271 Division of Oncology, Stanford, CA, USA.

 $\mathbf Q$

¹²⁵ The Institute of Cancer Research, Division of Genetics and Epidemiology, London, UK.

- 273 ¹²⁶ Seoul National University College of Medicine, Department of Preventive Medicine, Seoul,
274 Korea 274 Korea.
- 275 ¹²⁷ Seoul National University Graduate School, Department of Biomedical Sciences, Seoul,
276 Korea 276 Korea.
- 277 ¹²⁸ Seoul National University, Cancer Research Institute, Seoul, Korea.
- 278 ¹²⁹ University of California at Los Angeles, David Geffen School of Medicine, Department of 279 Obstetrics and Gynecology Los Angeles CA USA 279 Obstetrics and Gynecology, Los Angeles, CA, USA.
- 280 ¹³⁰ UC Davis Medical Center, Department of Pathology and Laboratory Medicine, Sacramento, 281 CA USA 281 CA, USA.
- 282 ¹³¹ Medical University of South Carolina, Hollings Cancer Center, Charleston, SC, USA.
- 283 ¹³² Saint Petersburg State University, Saint Petersburg, Russia.

284 ¹³³ Sungkyunkwan University School of Medicine, Department of Obstetrics and Gynecology,
285 Samsung Medical Center Seoul Korea 285 Samsung Medical Center, Seoul, Korea.

- 286 ¹³⁴ City of Hope Clinical Cancer Genetics Community Research Network, Duarte, CA, USA.
- 287 ¹³⁵ Cancer Genetics Centre, Hong Kong Hereditary Breast Cancer Family Registry, Happy
288 Valley Hong Kong 288 Valley, Hong Kong.
- 289 ¹³⁶ The University of Hong Kong, Department of Surgery, Pok Fu Lam, Hong Kong.
- 290 ¹³⁷ Hong Kong Sanatorium and Hospital, Department of Surgery, Happy Valley, Hong Kong.
- 291 ¹³⁸ VIB Center for Cancer Biology, Leuven, Belgium.
- 1392 139 University of Leuven, Laboratory for Translational Genetics, Department of Human Genetics Leuven Belgium 293 Genetics, Leuven, Belgium.
- 294 ¹⁴⁰ Mayo Clinic, Department of Health Sciences Research, Division of Biomedical Statistics and
295 Informatics Rochester MN USA 295 Informatics, Rochester, MN, USA.
- 296 ¹⁴¹ ONCOBELL-IDIBELL-IGTP, Catalan Institute of Oncology, CIBERONC, Hereditary
297 Cancer Program Barcelona Spain 297 Cancer Program, Barcelona, Spain.
- 298 ¹⁴² BC Cancer, Cancer Control Research, Vancouver, BC, Canada.
- 299¹⁴³ Inserm U900, Genetic Epidemiology of Cancer team, Paris, France.
- 144 NYU Langone Medical Center, Gynecologic Oncology, Laura and Isaac Pearlmutter Cancer
301 Center, New York, NY USA 301 Center, New York, NY, USA.
- 302 ¹⁴⁵ Genome Institute of Singapore, Human Genetics Division, Singapore, Singapore.

146 University of Texas MD Anderson Cancer Center, Department of Gynecologic Oncology
304 and Clinical Cancer Genetics Program Houston TX USA 304 and Clinical Cancer Genetics Program, Houston, TX, USA.

- 147 Magee-Womens Hospital, University of Pittsburgh School of Medicine, Pittsburgh, PA, 164 306 USA.
- 1⁴⁸ Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Unit of Medical Genetics,
308 Department of Medical Oncology and Hematology Milan Italy 308 Department of Medical Oncology and Hematology, Milan, Italy.
- ¹⁴⁹ Duke University Hospital, Department of Surgery, Durham, NC, USA.
- ¹⁵⁰ University of Hawaii Cancer Center, Cancer Epidemiology Program, Honolulu, HI, USA.
- 151 ¹⁵¹ Aichi Cancer Center Research Institute, Division of Cancer Epidemiology and Prevention, 312 Nagoya, Japan.
- 152 Nagoya University Graduate School of Medicine, Division of Cancer Epidemiology, 314 Nagoya, Japan.
- ¹⁵³ Samuel Lunenfeld Research Institute, Public Health Ontario, Toronto, ON, Canada.
- 154 Imperial College London, Division of Cancer and Ovarian Cancer Action Research Centre,
 154 Department Surgery & Cancer London LIK 317 Department Surgery & Cancer, London, UK.
- ¹⁵⁵ University of Glasgow, Institute of Cancer Sciences, Glasgow, UK.
- 156 University College London, MRC Clinical Trials Unit at UCL, Institute of Clinical Trials & $\frac{320}{\text{Methodology}}$ London, LIK 320 Methodology, London, UK.
- 157 157 Roswell Park Cancer Institute, NRG Oncology, Statistics and Data Management Center, 322 Buffalo, NY, USA.
- 158 323¹⁵⁸ Roswell Park Cancer Institute, Division of Cancer Prevention and Control, Buffalo, NY, 324 USA.
- 159 159 Magee-Womens Research Institute and Hillman Cancer Center, Womens Cancer Research
326 Center Pittsburgh PA JISA 326 Center, Pittsburgh, PA, USA.
- ¹⁶⁰ University of Pittsburgh School of Medicine, Division of Gynecologic Oncology,
328 Department of Obstetrics Gynecology and Reproductive Sciences Pittsburgh PA USA 328 Department of Obstetrics, Gynecology and Reproductive Sciences, Pittsburgh, PA, USA.
- 161 ³²⁹Oregon Health & Science University, Department of Obstetrics and Gynecology, Portland, 330 OR, USA.
- 331 162 Oregon Health & Science University, Knight Cancer Institute, Portland, OR, USA.
- 163 University of Helsinki, Department of Obstetrics and Gynecology, Helsinki University
1833 Hospital Helsinki Finland ³³³Hospital, Helsinki, Finland.
- ¹⁶⁴ National Cancer Centre, Cancer Genetics Service, Singapore, Singapore.
- 335 ¹⁶⁵ Nanyang Technological University, Lee Kong Chian School of Medicine, Singapore, 336 Singapore, 336 Singapore.
- ¹⁶⁶ Odense University Hospital, Department of Clinical Genetics, Odence C, Denmark.
- 338 167 Latvian Biomedical Research and Study Centre, Riga, Latvia.

- ¹⁶⁸ Roswell Park Cancer Institute, Department of Gynecologic Oncology, Buffalo, NY, USA.
- ¹⁶⁹ Memorial Sloan Kettering Cancer Center, Clinical Genetics Research Lab, Department of 341 Cancer Biology and Genetics New York NY USA 341 Cancer Biology and Genetics, New York, NY, USA.
- 170 Memorial Sloan Kettering Cancer Center, Clinical Genetics Service, Department of 343 Medicine New York NY USA 343 Medicine, New York, NY, USA.
- ¹⁷¹ National Institute of Oncology, Department of Molecular Genetics, Budapest, Hungary.
- 172 University Hospitals Leuven, Division of Gynecologic Oncology, Department of Obstetrics
346 and Gynaecology and Leuven Cancer Institute, Leuven, Belgium 346 and Gynaecology and Leuven Cancer Institute, Leuven, Belgium.
- ¹⁷³ The University of Chicago, Center for Clinical Cancer Genetics, Chicago, IL, USA.
- 174 Memorial Sloan-Kettering Cancer Center, Department of Epidemiology and Biostatistics, New York NY USA 349 New York, NY, USA.
- 350¹⁷⁵ Centro de Investigación en Red de Enfermedades Raras (CIBERER), Madrid, Spain.
- 176 QIMR Berghofer Medical Research Institute, Department of Genetics and Computational 352 Riology Brisbane Queensland Australia 352 Biology, Brisbane, Queensland, Australia.
- ¹⁷⁷ Aalborg University Hospital, Molecular Diagnostics, Aalborg, Denmark.
- ¹⁷⁸ Aalborg University Hospital, Clinical Cancer Research Center, Aalborg, Denmark.
- ¹⁷⁹ Aalborg University, Department of Clinical Medicine, Aalborg, Denmark.
- ¹⁸⁰ Portuguese Oncology Institute, Department of Genetics, Porto, Portugal.
- ¹⁸¹ Moffitt Cancer Center, Department of Cancer Epidemiology, Tampa, FL, USA.
- 182 IFOM the FIRC Institute of Molecular Oncology, Genome Diagnostics Program, Milan, 1859 Italy 359 Italy.
- ¹⁸³ Bashkir State University, Department of Genetics and Fundamental Medicine, Ufa, Russia.
- 184 361 ¹⁸⁴ Fondazione IRCCS Istituto Nazionale dei Tumori (INT), Unit of Molecular Bases of Genetic
1862 Bisk and Genetic Testing, Department of Besearch Milan, Italy 362 Risk and Genetic Testing, Department of Research, Milan, Italy.
- 363 ¹⁸⁵ Karolinska Institutet, Clinical Genetics, Stockholm, Sweden.
- ¹⁸⁶ Duke University Hospital, Department of Gynecologic Oncology, Durham, NC, USA.
- ¹⁸⁷ Yale School of Public Health, Chronic Disease Epidemiology, New Haven, CT, USA.
- ¹⁸⁸ Fox Chase Cancer Center, Population Studies Facility, Philadelphia, PA, USA.
- 189 367 ¹⁸⁹ National Institute of Environmental Health Sciences, NIH, Epidemiology Branch, Research
368 Triangle Park NC USA
- 368 Triangle Park, NC, USA.
- 369 ¹⁹⁰ Fundación Pública Galega Medicina Xenómica, Santiago De Compostela, Spain.

- 370 ¹⁹¹ Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago De Compostela, ³⁷¹ Spain 371 Spain.
- 372 ¹⁹² Centre Hospitalier Universitaire de Québec Université Laval Research Center, Genomics
373 Center, Québec City OC Canada 373 Center, Québec City, OC, Canada.
- 274 ¹⁹³ Faculty of Medicine and University Hospital Cologne, University of Cologne, Center for 375 Molecular Medicine Cologne (CMMC) Cologne Germany 375 Molecular Medicine Cologne (CMMC), Cologne, Germany.
- 194 Hebei Medical University, Fourth Hospital, Department of Obstetrics and Gynaecology, Shijiazhuang China 377 Shijiazhuang, China.
- 195 195 Icahn School of Medicine at Mount Sinai, Department of Population Health Science and 379 Policy New York NY USA 379 Policy, New York, NY, USA.
- $\frac{196}{196}$ Icahn School of Medicine at Mount Sinai, Department of Genetics and Genomic Sciences, New York NY USA 381 New York, NY, USA.
- 382 197 Centre Hospitalier Universitaire de Québec-Université Laval Research Center, Genomic 383 383 Center, Québec City, QC, Canada.
- 198 Medical University of Vienna, Dept of OB/GYN and Comprehensive Cancer Center, Vienna, 285 Austria 385 Austria.
- ¹⁹⁹ University of Cambridge, Department of Public Health and Primary Care, Cambridge, UK.
- 200 The University of Melbourne, Department of Clinical Pathology, Melbourne, Victoria, $\frac{200}{4}$ Australia 388 Australia.
- 201 Royal Alexandra Hospital, Department of Obstetrics and Gynecology, Division of 390 Gynecologic Opeology Edmonton Alberta Canada 390 Gynecologic Oncology, Edmonton, Alberta, Canada.
- 391 202 Institut Curie, Service de Génétique, Paris, France.
- 392 203 Université Paris Descartes, Paris, France.
- ²⁰⁴ University of South Florida, Epidemiology Center, College of Medicine, Tampa, FL, USA.
- ²⁰⁵ The Institute of Cancer Research, Division of Breast Cancer Research, London, UK.
- 2^{206} Medical University of Vienna, Dept of OB/GYN and Comprehensive Cancer Center, Vienna, 2^{206} Austria 396 Austria.
- $207 \, \text{University of Porto, Biomedical Sciences Institute (ICBAS), Porto, Portugal.}$
- ²⁰⁸ Cancer Research Malaysia, Breast Cancer Research Programme, Subang Jaya, Selangor,
399 Malaysia 399 Malaysia.
- 400 209 University of Malaya, Department of Surgery, Faculty of Medicine, Kuala Lumpur, Malaysia 401 Malaysia.
- 402²¹⁰ Brigham and Women's Hospital and Harvard Medical School, Obstetrics and Gynecology
403 Enidemiology Center Boston MA USA ⁴⁰³Epidemiology Center, Boston, MA, USA.

- 2²¹¹ Columbia University, Department of Epidemiology, Mailman School of Public Health, New
205 North NY USA 405 York, NY, USA.
- 406 212 Magee-Womens Hospital, University of Pittsburgh School of Medicine, Department of Medicine, Pittsburgh PA USA 407 Medicine, Pittsburgh, PA, USA.
- 408 ²¹³ McGill University, Program in Cancer Genetics, Departments of Human Genetics and Oncology Montréal OC Canada 409 Oncology, Montréal, QC, Canada.
- 410 ²¹⁴ University of Cambridge, Department of Medical Genetics, Cambridge, UK.
- 411 ²¹⁵ Dartmouth College, Geisel School of Medicine, Hanover, NH, USA.
- 412 ²¹⁶ The Ohio State University, Department of Cancer Biology and Genetics, Columbus, OH, 113 ISA 413 USA.
- 414 $\frac{217}{\pi}$ Pontificia Universidad Javeriana, Institute of Human Genetics, Bogota, Colombia.
- 415 ²¹⁸ University of Oxford, Cancer Epidemiology Unit, Oxford, UK.
- 416 ²¹⁹ Beth Israel Deaconess Medical Center, Department of Medical Oncology, Boston, MA, 417 USA.
- 418 220 Harvard T.H. Chan School of Public Health, Department of Epidemiology, Boston, MA, 119 419 USA.
- 420²²¹ University Medical Center Groningen, University Groningen, Department of Genetics, 421 Groningen, The Netherlands.
- 422 ²²² University of Pretoria, Department of Genetics, Arcadia, South Africa.
- ²²³ Centro de Investigación en Red de Enfermedades Raras (CIBERER), Madrid, Spain.
- 424 ²²⁴ Fundación Pública Galega de Medicina Xenómica, Santiago de Compostela, Spain.
- 425 ²²⁵ Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complejo
426 Hospitalario Universitario de Santiago SERGAS Santiago de Compostela Spain 426 Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain.
- 226 Vanderbilt University Medical Center, Division of Quantitative Sciences, Department of Approximate Cynecology, Department of Biomedical Sciences, Women's Health Research 428 Obstetrics and Gynecology, Department of Biomedical Sciences, Women's Health Research, A29 Nashville, TN, USA. Nashville, TN, USA.
- 430 227 Duke Cancer Institute, Cancer Control and Population Sciences, Durham, NC, USA.
- 431 228 Duke University Hospital, Department of Community and Family Medicine, Durham, NC, 432 ISA 432 USA.
- 433 229 National Institute of Environmental Health Sciences, NIH, Biostatistics and Computational Riology Branch Research Triangle Park NC USA 434 Biology Branch, Research Triangle Park, NC, USA.
- 435 230 City of Hope, Clinical Cancer Genomics, Duarte, CA, USA.
- 436 ²³¹ Fred Hutchinson Cancer Research Center, Seattle, WA, USA.

- 2^{32} Stanford University School of Medicine, Department of Biomedical Data Science, Stanford, \overline{C} A JISA 438 CA, USA.
- 439 ²³³ Uppsala University, Department of Surgical Sciences, Uppsala, Sweden.
- ²³⁴ University of Malaya, Department of Obstetrics and Gynaecology, University of Malaya
441 Medical Centre Kuala Lumpur Malaysia 441 Medical Centre, Kuala Lumpur, Malaysia.
- ²³⁵ Hebei Medical University, Fourth Hospital, Department of Molecular Biology, Shijiazhuang,
443 China ⁴⁴³China.
- 444 ²³⁶ National Centre for Scientific Research 'Demokritos', Molecular Diagnostics Laboratory,
445 INRASTES Athens Greece 445 INRASTES, Athens, Greece.
- 446 237 Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-
447 Sinai Medical Centre, Department of Obstetrics and Gynecology, Los Angeles, CA, USA ⁴⁴⁷Sinai Medical Centre, Department of Obstetrics and Gynecology, Los Angeles, CA, USA.
- 448 238 1032 Royal Pass Road, Tampa, FL, USA.
- 449 239 University of NSW Sydney, School of Women's and Children's Health, Faculty of Medicine, 450 450 Sydney, New South Wales, Australia.
- 451 240 University of NSW Sydney, Adult Cancer Program, Lowy Cancer Research Centre, Sydney, New South Wales, Australia 452 New South Wales, Australia.
- 241 University of Michigan School of Public Health, Department of Epidemiology, Ann Arbor, 254 MILISA 454 MI, USA.
- 455 $\frac{242}{156}$ University of Southern California Norris Comprehensive Cancer Center, Department of 456 Preventive Medicine Keck School of Medicine Los Angeles CA USA 456 Preventive Medicine, Keck School of Medicine, Los Angeles, CA, USA.
- 457 ²⁴³ Mayo Clinic, Department of Health Science Research, Division of Epidemiology, Rochester,
458 MN USA 458 MN, USA.
- 2^{244} Emory University, Department of Epidemiology, Rollins School of Public Health, Atlanta, $60 \overline{64}$ USA 460 GA, USA.
-
- 462 *These authors had equal contributions.
- 463 Corresponding Author: pp10001@medschl.cam.ac.uk

464

⁴⁶⁵**Running Title: Polygenic Risk Modelling for Prediction of Epithelial Ovarian**

- ⁴⁶⁶**Cancer Risk**
-

⁴⁶⁸**Abstract**

⁴⁶⁹Polygenic risk scores (PRS) for epithelial ovarian cancer (EOC) have the potential to 470 improve risk stratification. Joint estimation of Single Nucleotide Polymorphism (SNP) 471 effects in models could improve predictive performance over standard approaches of ⁴⁷²PRS construction. Here, we implemented computationally-efficient, penalized, logistic 473 regression models (lasso, elastic net, stepwise) to individual level genotype data and a ⁴⁷⁴Bayesian framework with continuous shrinkage, "select and shrink for summary 475 statistics" (S4), to summary level data for epithelial non-mucinous ovarian cancer risk 476 prediction. We developed the models in a dataset consisting of 23,564 non-mucinous ⁴⁷⁷EOC cases and 40,138 controls participating in the Ovarian Cancer Association 478 Consortium (OCAC) and validated the best models in three populations of different 479 ancestries: prospective data from 198,101 women of European ancestry; 7,669 women 480 of East Asian ancestry; 1,072 women of African ancestry, and in 18,915 *BRCA1* and ⁴⁸¹12,337 *BRCA2* pathogenic variant carriers of European ancestry. In the external 482 validation data, the model with the strongest association for non-mucinous EOC risk 483 derived from the OCAC model development data was the S4 model (27,240 SNPs) with 484 odds ratios (OR) of $1.38(95\% \text{ CI} : 1.28-1.48, \text{AUC} : 0.588)$ per unit standard deviation, in 485 women of European ancestry; 1.14(95%CI:1.08–1.19,AUC:0.538) in women of East ⁴⁸⁶Asian ancestry; 1.38(95%CI:1.21-1.58,AUC:0.593) in women of African ancestry; ⁴⁸⁷hazard ratios of 1.37(95%CI:1.30–1.44,AUC:0.592) in *BRCA1* pathogenic variant 488 carriers and 1.51(95%CI:1.36-1.67,AUC:0.624) in *BRCA2* pathogenic variant carriers. 489 Incorporation of the S4 PRS in risk prediction models for ovarian cancer may have 490 clinical utility in ovarian cancer prevention programs.

491

⁴⁹²**INTRODUCTION**

⁴⁹³Rare mutations in known high and moderate penetrance susceptibility genes (*BRCA1*, ⁴⁹⁴*BRCA2*, *BRIP1*, *PALB2*, *RAD51C*, *RAD51D* and the mis-match repair genes) account 495 for about 40 percent of the inherited component of EOC disease risk $(1,2)$. Genome 496 wide association studies (GWAS), reviewed in Kar et. al. and Jones et. al. (1,3), have 497 identified 39 common (minor allele frequency $[MAF] > 0.05$) susceptibility variants 498 which together explain about 6% of the heritability of EOC. Polygenic risk scores ⁴⁹⁹(PRS) provide an opportunity for refined risk stratification in the general population as 500 well as in carriers of rare moderate or high risk alleles (4,5).

⁵⁰¹A PRS is calculated as the weighted sum of the number of risk alleles carried for a 502 specified set of genetic variants. The best approach to identify the set of variants and 503 their weights in order to optimize the predictive power of a PRS is unknown. A 504 common approach involves selecting a set of variants that reach a threshold for ⁵⁰⁵association based on the p-value for each variant with or without clumping and pruning 506 to remove highly correlated variants $(6,7)$. More complex prediction models, based on ⁵⁰⁷machine learning approaches that do not assume variant independence have also been 508 used to construct PRS for complex traits in humans (8,9). To date, these methods have 509 produced only modest gains in predictive power for highly polygenic phenotypes (8,10). 510 Penalized regression approaches such as the lasso, elastic net and the adaptive lasso 511 have also been used for the joint estimation of variant effects using individual level data 512 for large data sets (11). While they have the potential advantage of improving 513 performance, the major drawback of these methods is the high computational burden 514 required to fit the models $(11,12)$.

⁵¹⁵In this study, we present a novel implementation of computationally-efficient PRS 516 models using two approaches: 1) penalized regression models including the lasso, 517 elastic net and minimax concave penalty, for use when individual genotype data are 518 available; and 2) a Bayesian regression model with continuous shrinkage priors on 519 variant effect sizes, for use in broader settings where summary statistics are available, 520 hereafter referred to as the "select and shrink with summary statistics" (S4) method. We 521 compare these models with two commonly used methods, stepwise regression with p-522 value thresholding and LDPred.

⁵²³**MATERIALS (SUBJECTS) AND METHODS**

⁵²⁴*EOC Histotypes*

⁵²⁵EOC is a highly heterogeneous phenotype with five major histotypes for invasive 526 disease – high-grade serous, low-grade serous, endometrioid, clear cell and mucinous 527 histotype. The mucinous histotype is the least common and its origin is the most 528 controversial with up to 60% of diagnosed cases of mucinous ovarian cancer often 529 being misdiagnosed metastasis from non-ovarian sites (13). Recent molecular analyses 530 have concluded that most primary invasive mucinous cases are not extra-ovarian 531 metastases (14). However, accurate diagnosis relies on expert histopathology and 532 immuno-histochemical profiling (15), which remains a challenge in clinical practice and 533 can be an issue in different cohorts from different time periods. Therefore, in this study, 534 we performed PRS modelling and association testing for all cases of invasive EOC, 535 excluding mucinous cases, hereafter referred to as non-mucinous EOC.

⁵³⁶*Model Development Study Population*

⁵³⁷We used genotype data from 23,564 invasive non-mucinous EOC cases and 40,138 538 controls with >80% European ancestry from 63 case-control studies included in the 539 Ovarian Cancer Association Consortium (OCAC) for model development. The study 540 protocol was approved by the institutional review boards of the Brigham and Women's 541 Hospital and Harvard T.H. Chan School of Public Health, and those of participating 542 registries as required. The distribution of cases by histotype was high-grade serous 543 (13,609), low-grade serous $(2,749)$, endometrioid $(2,877)$, clear cell $(1,427)$, and others ⁵⁴⁴(2,902). All mucinous EOC histotypes (2,587) were excluded. Sample collection, 545 genotyping and quality control have been previously described (16). Genotype data 546 were imputed to the Haplotype Reference Consortium reference panel on the Michigan ⁵⁴⁷Imputation server, using 470,825 SNPs that passed quality control. Of the 32 million SNPs imputed, 10 million had imputation $r^2 > 0.3$ and were included in this analysis.

⁵⁴⁹*Model Validation Study Population*

⁵⁵⁰**UK Biobank Population**

551 We validated the best-fitting PRS models developed in the OCAC data in 657 prevalent 552 and incident cases of invasive EOC (346 serous, 98 endometrioid, 51 clear cell and 162 553 other) and 198,101 female controls of European ancestry from the UK Biobank. As with 554 the model development data, all mucinous histotypes (166) were excluded. Samples ⁵⁵⁵were genotyped using either the Affymetrix UK BiLEVE Axiom Array or Affymetrix ⁵⁵⁶UK Biobank Axiom Array (which share 95% marker content), and then imputed to a 557 combination of the Haplotype Reference Consortium, the 1000Genomes phase 3 and 558 the UK10K reference panels (17). We restricted analysis to genetically confirmed

559 females of European/white British ancestry. We excluded individuals if they were 560 outliers for heterozygosity, had low genotyping call rate <95%, had sex chromosome 561 aneuploidy, or if they were duplicates (cryptic or intended) (16). All SNPs selected in 562 the model development phase were available in the UK Biobank.

⁵⁶³**Non-European Ancestry Population**

564 We investigated transferability of the best-fitting PRS models to populations of non-⁵⁶⁵European ancestry using genotype data from females of East Asian and African 566 ancestries that had been genotyped as part of the OCAC OncoArray Project (18,19). ⁵⁶⁷Women of East Asian ancestry - 2,841 non-mucinous invasive EOC (1,960 high-grade 568 serous, 136 low-grade serous, 400 endometrioid, 271 clear cell, 74 other histotypes) 569 and 4,828 controls - were identified using a criterion of >80% Asian ancestry. This 570 group included samples collected from population-based studies in China, Japan, Korea, ⁵⁷¹Malaysia as well as samples from studies conducted in the US, Europe and Australia. 572 Details of these data have been previously described (18). Similarly, women of African 573 ancestry - 368 cases of non-mucinous invasive EOC (261 high-grade serous, 35 low-574 grade serous, 47 endometrioid, 7 clear cell, 53 other histoptypes) and 704 controls, 575 mainly from studies conducted in the US, were identified using a criterion of $>80\%$ 576 African ancestry.as described previously (19).

⁵⁷⁷*BRCA1/BRCA2* **Pathogenic Variant Carrier Population**

⁵⁷⁸We also assessed the performance of the best-fitting PRS models in women of European 579 ancestry (>80% European ancestry) with the pathogenic *BRCA1* and *BRCA2* variants 580 from the Consortium of Investigators of Modifiers of *BRCA1/2* (CIMBA). We used ⁵⁸¹genotype data from 18,915 *BRCA1* (2,053 invasive EOC cases – 712 serous, 115

582 endometrioid, 9 clear cell, 1217 unknown/other) and 12,337 *BRCA2* (717 invasive EOC 583 cases – 26 serous, 4 endometrioid, 1 clear cell, 686 unknown/other) pathogenic variant 584 carriers from 63 studies contributing to CIMBA for independent model validation. 585 Details of the study population and sample collection have been described previously ⁵⁸⁶(16). Genotyping, data quality control measures, intercontinental ancestry assessment 587 and imputation to the HRC reference panel are as described for the OCAC study 588 population.

⁵⁸⁹**PRS from Meta-analysis of Summary Statistics**

⁵⁹⁰We leveraged the increase in sample size resulting from a meta-analysis of EOC risk 591 associations, using both the CIMBA and OCAC data described above, to explore 592 performance of PRS approaches based on summary statistics.

⁵⁹³**Statistical Analysis**

⁵⁹⁴*Polygenic Risk Models*

595 For all PRS models, we created scores as linear functions of the allele dosage in the

general form $PRS_i = \sum_j^p x_{ij} \beta_j$ 596 general form $PRS_i = \sum_j^p x_{ij} \beta_j$ where genotypes are denoted as x (taking on the minor

597 allele dosages of 0, 1 and 2), with x_{ij} representing the *i*th individual for the *j*th SNP

598 (out of p SNPs) on an additive log scale and β_j represents the weight - the log of the

599 odds ratio - of the j th SNP. We used different approaches to select and derive the

600 optimal weights, β_j , in models as described below.

⁶⁰¹*Penalized logistic regression models: the lasso, elastic net and minimax concave* ⁶⁰²*penalty*

⁶⁰³A penalized logistic regression model for a set of SNPs aims to identify a set of 604 regression coefficients that minimize the regularized loss function given by

$$
plr(x; \lambda, \kappa) = \begin{cases} x - \lambda sign(x) / (1 - \kappa) & \text{if } |x| < \lambda / \kappa \text{ and } |(x)| > \lambda \\ x & \text{if } |x| \geq \frac{\lambda}{\kappa} \\ 0 & \text{if } |(x)| < \lambda \end{cases}
$$

605 where x is the effect estimate of a SNP, λ is the tuning parameter and κ is the threshold 606 (penalty) for different regularization paths. λ and κ are parameters that need to be 607 chosen during model development to optimize performance. The lasso, elastic net, ⁶⁰⁸minimax concave penalty (MCP), and p-value thresholds are instances of the function 609 with different κ values. We minimized the winner's curse effect on inflated effect 610 estimates for rare SNPs by penalizing rarer SNPs more heavily than common SNPs. 611 Details are provided in the Supplementary Methods.

⁶¹²We used a two-stage approach to reduce computational burden without a corresponding 613 loss in predictive power. The first stage was a SNP selection stage using a sliding ⁶¹⁴windows approach, with 5.5Mb data blocks and a 500kb overlap between blocks. SNP 615 selection was performed for each block and selected SNPs were collated. Single SNP 616 association analyses were then run, and all SNPs with a χ^2 test statistic of less than 2.25 ⁶¹⁷were excluded. Penalized regression models were applied to the remaining SNPs 618 using λ values of 3.0 and κ values of 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0. SNPs selected in any 619 of these models were included in subsequent analyses.

620 In the second stage, we fit penalized regression models to the training dataset with λ 621 values ranging from 3.0 to 5.5 in increments of 0.1 iterated over κ values from -3.0 to 1 622 in increments of 0.1. The lasso model ($\kappa = 0$) for each value of λ was fitted first, to 623 obtain a unique maximum. From the fitted maximum the κ value was changed, and the ⁶²⁴model refitted.

⁶²⁵We applied this two-stage approach with five-fold cross-validation (**Figure 1**). The 626 variants and their weights from the two-stage penalized logistic regression modelling in 627 the training data were used to calculate the area under the receiver operating 628 characteristic curve (AUC) in the test data. We repeated this process for each cross-629 validation iteration to obtain a mean AUC for each combination of λ and κ .

⁶³⁰Finally, we selected the tuning and threshold parameters from the lasso, elastic net and 631 minimax concave penalty models with the maximum mean cross-validated AUC and 632 fitted penalized logistic regression models with these parameters to the entire OCAC 633 dataset to obtain SNP weights for PRS scores.

⁶³⁴*Stepwise logistic regression with variable P-value threshold*

635 This model is a general PLR model with $\kappa=1$. As with the other PLR models, we 636 investigated various values for λ values (corresponding to a variable P-value threshold 637 for including a SNP in the model). However, we observed that the implementation of 638 this model on individual level data was more difficult than for other κ values because 639 the model would sometimes converge to a local optimum rather than the global 640 optimum. Therefore, we applied an approximate conditional and joint association ⁶⁴¹analysis using summary level statistics correcting for estimated LD between SNPs,

642 using a reference panel of 5,000 individual level genotype OCAC data as described in 643 Yang et.al (20). Details are provided in the Supplementary Methods.

⁶⁴⁴*LDPred*

⁶⁴⁵LDPred is a Bayesian approach that adjusts GWAS summary statistics for the effects of 646 LD by shrinking the posterior mean effect size of each genetic marker based on a point-647 normal prior on the effect sizes and LD information from an external reference panel. ⁶⁴⁸We derived seven candidate polygenic risk scores assuming the fractions of associated 649 variants were 0.001, 0.003, 0.01, 0.03, 0.1, 0.3 and 1.0 respectively (21) using an LD 650 reference panel of 503 samples of European ancestries from the 1000 Genomes phase 3 651 release and effect estimates from the genome wide association analysis on the OCAC 652 model development data.

⁶⁵³*Select and shrink using summary statistics (S4)*

⁶⁵⁴The S4 algorithm is similar to the PRS-CS algorithm (22) which is a Bayesian approach 655 that uses summary statistics and between-SNP correlation data from a reference panel to 656 generate the PRS scores by placing a continuous shrinkage prior on effect sizes. We 657 adapted this method with penalization of rarer SNPs by correcting for the standard 658 deviation resulting in the selection of fewer SNPs. To implement this algorithm, we ⁶⁵⁹varied three parameters, *a, b,* ^φ, which together control the degree of shrinkage of effect 660 estimates. Φ , the overall shrinkage parameter, is influenced by values of *a* which 661 control shrinkage of effect estimates around 0 and *b* which control shrinkage of larger 662 effect estimates. Smaller values of *a* result in more severe shrinkage of effect estimates 663 than larger values. Conversely, smaller values of *b* produce less severe shrinkage than 664 larger values.

⁶⁶⁵We generated summary statistics for each cross-validation training set and selected the 666 parameters that gave the best results on average from the cross-validation and applied 667 these to the set of summary statistics for the complete OCAC data set to obtain the final 668 set of weights.

⁶⁶⁹*PRS based on meta-analysis of OCAC-CIMBA summary statistics*

⁶⁷⁰We conducted a meta-analysis of the EOC associations in *BRCA1* variant carriers, ⁶⁷¹*BRCA2* variant carriers and the participants participating in OCAC using previously 672 described methodological approaches (16). Additional details are provided in the ⁶⁷³Supplementary Methods. We constructed two PRS models using results from the ⁶⁷⁴OCAC-CIMBA meta-analysis: the Select and Shrink (OCAC-CIMBA) PRS and the 675 Stepwise (OCAC-CIMBA) PRS. To construct the Select and Shrink (OCAC-CIMBA) ⁶⁷⁶PRS, we applied the *a, b* and ^φ parameters from the Select and Shrink model described ⁶⁷⁷above to the summary statistics from the meta-analysis to obtain a different set of SNPs 678 and weights. We generated the Stepwise (OCAC-CIMBA) PRS by using histotype-679 specific results from the meta-analysis. We selected all SNPs that were genome-wide 680 significant at nominal thresholds ($p \leq 5x10^{-8}$), along with any independent signals in the 681 same region with $p<10^{-5}$ from the histotype specific analyses for low-grade serous, ⁶⁸²high-grade serous, endometrioid, clear cell ovarian cancer and non-mucinous invasive 683 EOC.

⁶⁸⁴*Polygenic risk score performance.*

685 The best lasso, elastic net, stepwise and S4 models from the model development stage ⁶⁸⁶were validated using two independent data sources: the UK Biobank data and ⁶⁸⁷*BRCA1/BRCA2* pathogenic variant carriers from the CIMBA. In the UK Biobank data,

⁶⁸⁸we evaluated discriminatory performance of the models using the AUC and examined 689 the association between standardized PRS and risk of non-mucinous EOC using 690 logistic regression analysis. For the CIMBA data, we assessed associations for each 691 version of the PRS and invasive non-mucinous EOC risk using weighted Cox regression ⁶⁹²methods previously described (5). PRSs in the CIMBA data were scaled to the same ⁶⁹³PRS standard deviations as the OCAC data, meaning that per standard deviation hazard ⁶⁹⁴ratios estimated on CIMBA data are comparable to PRS associations in the OCAC and ⁶⁹⁵UK Biobank data. The regression models were adjusted for birth cohort (<1920, 1920- 696 1929, 1930-1939, 1940-1949, \geq 1950) and the first four ancestry informative principal 697 components (calculated separately by iCOGS/OncoArray genotyping array) and ⁶⁹⁸stratified by Ashkenazi Jewish ancestry and country. Absolute risks by PRS percentiles ⁶⁹⁹adjusting for competing risks of mortality from other causes were calculated as 700 described in the Supplementary Material.

⁷⁰¹*Transferability of PRS scores to non-European Ancestry*

⁷⁰²We implemented two straightforward approaches to disentangle the role of ancestry on 703 polygenic risk scoring. We selected homogenous ancestral samples by using a high cut-704 off criterion of 80% ancestry and we standardized the polygenic risk scores by mean-705 centering within each population. These approaches led to a more uniform distribution 706 of polygenic risk scores within each ancestral population. Further adjustments using 707 principal components of ancestry did not attenuate risk estimates.

⁷⁰⁸**Data Availability**

709 OncoArray germline genotype data for the OCAC studies have been deposited at the ⁷¹⁰European Genome-phenome Archive (EGA; https://ega-archive.org/), which is hosted

711 by the EBI and the CRG, under accession EGAS00001002305. Summary results are 712 available from the Ovarian Cancer Association Consortium ⁷¹³(http://ocac.ccge.medschl.cam.ac.uk/). A subset of the OncoArray germline genotype 714 data for the CIMBA studies will be made publically available through the database of ⁷¹⁵Genotypes and Phenotypes (dbGaP) under accession phs001321.v1.p1. The complete 716 data set will not be made publically available because of restraints imposed by the ethics 717 committees of individual studies; requests for further data can be made to the Data 718 Access Coordination Committee (http://cimba.ccge.medschl.cam.ac.uk/)

⁷¹⁹**Ethics Statement**

⁷²⁰All study participants provided written informed consent and participated in research or 721 clinical studies at the host institute under ethically approved protocols. The studies and

722 their approving institutes are listed in the Supplementary Material (Ethics Statement)

⁷²³**Results**

⁷²⁴*Model development*

725 For models based on individual level genotype data, the elastic net model had the best 726 predictive accuracy (model parameters: $\lambda = 3.3$, $\kappa = -2.2$, AUC=0.586) Predictive accuracy 727 for the lasso model $(\lambda = 3.3, \text{ AUC} = 0.583)$ was slightly lower (**Table 1**). The optimal 728 value of λ obtained from regularization paths for the MCP model was 3.3. Further 729 reductions in the degree of penalization for the MCP models did not improve prediction 730 accuracy. Therefore, the best MCP model was equivalent to the lasso model. For 731 models based on summary statistics, the best-fitting S4 model had the best performance 732 (a=2.75, b=2, φ =3e-6, AUC=0.593), whereas the best LDPred model had the poorest

733	performance of the methods tested (ρ =0.001, AUC=0.552). The mean odds ratios per
734	standard deviation are shown in Table 1 along with the number of SNPs included in the
735	final model when the models were built with the relevant parameters using the complete
736	dataset. All SNPs selected and the associated weights for each model are provided in
737	Supplementary Tables $1 - 6$. Given the poorer performance of the LD pred model and
738	the very large number of SNPs included in the final model it was not considered for
739	further validation in other datasets.

Model Number of SNPs* Tuning parameter for best performance AUC OR per 1 SD of PRS 95% CI a) Models based on individual level genotype data Lasso 1,403 $\lambda = 3.3$ 0.583 1.35 1.30 – 1.39 Elastic net 10,797 $\lambda = 3.3$, $\kappa = -2.2$ 0.586 1.36 1.31 – 1.40 MCP $1,403$ $\lambda=3.3$ 0.583 1.35 $1.30-1.39$ b) Models based on summary statistics LDPred 5,291,719 $\rho = 0.001$ 0.552 1.21 1.13 – 1.29 Stepwise 22 $\lambda = 5.4$ 0.572 1.30 1.26 – 1.34 Select and Shrink (OCAC) 27,240 a=2.75, b=2, φ=3e-6 0.593 1.39 1.34 – 1.44

⁷⁴⁰**Table 1: Performance of different PRS models in five-fold cross validation of OCAC data**

Abbreviations: AUC-Area Under the Receiver Operating Characteristic (ROC) Curve AUC); OR-Odds Ratio; SD-Standard deviation; PRS-Polygenic Risk Score; CI-Confidence Interval. NA-Not Applicable.

* Number of SNPs in PRS model run on full OCAC data set after selection of model parameters

⁷⁴¹*Model validation in women of European ancestry: general population (UK Biobank)*

⁷⁴²*and BRCA1/BRCA2 pathogenic variant carriers (CIMBA)*

743 The best AUC estimates derived from cross-validation are likely to be upwardly biased ⁷⁴⁴due to overfitting. Therefore, we used the UK Biobank data as an external validation 745 dataset. Overall the PLR models performed slightly better in the UK Biobank data than 746 the model development data (**Table 2**). Of the models developed using the OCAC ⁷⁴⁷model development data, the association between PRS and non-mucinous EOC was 748 strongest with the Select and Shrink derived PRS (OR per unit SD=1.38, 95%CI:1.28– 749 1.48) and slightly lower for the lasso PRS (OR per unit SD=1.37, 95%CI:1.27–1.48),

750	the elastic net PRS (OR per unit $SD=1.36$, 95%CI:1.26–1.47) and the stepwise PRS
751	model (OR per unit SD=1.35, 95%CI:1.26–1.46). In BRCA1 and BRCA2 variant
752	carriers, prediction accuracy was generally higher among BRCA2 carriers than BRCA1
753	carriers. Consistent with results from the general population in the UK Biobank, the
754	Select and Shrink PRS model also had the strongest association and predictive accuracy
755	for invasive EOC risk in both <i>BRCA1</i> (HR per unit SD=1.37, 95%CI:1.30-1.44,
756	AUC=0.592) carriers and <i>BRCA2</i> carriers (HR per unit SD=1.51, 95%CI:1.36–1.67,
757	AUC=0.624). The PRS models developed using the OCAC-CIMBA meta-analysis
758	results had better discriminative ability in the UK Biobank than the PRS models
759	developed using only OCAC data. Compared with the Select and Shrink model using
760	only OCAC data, the Select and Shrink PRS model derived from the meta-analysis had
761	fewer SNPs $(n=18,007)$, a stronger association with invasive EOC risk (OR per unit
762	$SD=1.42$, 95%CI:1.32–1.54) and better predictive accuracy (AUC=0.596). Similarly,
763	the Stepwise model from the OCAC-CIMBA meta-analysis performed better than the
764	Stepwise model from only OCAC data (OR per unit SD=1.39, 95%CI:1.29–1.50,
765	AUC=0.595), but included more SNPs $(n=36)$

⁷⁶⁶**Table 2: External validation of PRS models in European populations using data from UK** ⁷⁶⁷**Biobank and CIMBA**

Abbreviations: AUC-Area Under the Receiver Operating Characteristic Curve; OR-Odds Ratio; HR-Hazards ratio

*results in CIMBA are overfitted as the CIMBA data was used for model development

† HR are adjusted for birth cohort and the first four ancestry informative principal components. AUC were estimated from models fitting only the PRS as the independent variable.

768

Table 3: Association between polygenic risk scores and non-mucinous EOC by PRS percentiles and ancestry

OR: Odds Ratio; CI: Confidence Interval.

³⁸⁹*Absolute Risk of Developing Ovarian Cancer by PRS percentiles*

³⁹⁰We estimated cumulative risk of EOC experienced between birth and the age of 80 within ³⁹¹PRS percentiles for women in the general population (**Figure 2**), by applying the odds ratio 392 from the PRS models to age-specific population incidence and mortality data for England in ³⁹³2016. For *BRCA1* and *BRCA2* pathogenic variant carriers, we applied the estimated hazard 394 ratios from PRS models to age-specific incidence rates obtained from Kuchenbaecker et al. ³⁹⁵(23).

396 For women in the general population, the estimated cumulative risks of EOC by age 80 for 397 women at the 99th centile of the PRS distribution were 2.24%, 2.18%, 2.54% and 2.81% for 398 the lasso, elastic net, stepwise and S4 models, respectively. In comparison, the absolute risks 399 of EOC by age 80 for women at the $1st$ centile were 0.76%, 0.78%, 0.64% and 0.56% for the 400 lasso, elastic net, stepwise and S4 models, respectively.

⁴⁰¹The absolute risks of developing EOC in *BRCA1* and *BRCA2* pathogenic variant carriers 402 were considerably higher than for women in the general population (Figures S1:Cumulative 403 risk of ovarian cancer risk in *BRCA1* carriers by polygenic risk score percentiles and S2: ⁴⁰⁴Cummulative risk of ovarian cancer risk in *BRCA2* carriers by polygenic risk score ⁴⁰⁵percentiles). The estimated absolute risk of developing ovarian cancer by age 80 for *BRCA1* 406 carriers at the 99th PRS centiles were 63.2%, 66.3%, 59.0% and 68.4% for the lasso, elastic 407 net, stepwise and S4 models, respectively. The corresponding absolute risks for women at the 408 $1st PRS$ centile were 27.7%, 25.6%, 30.8% and 24.2%. Absolute risks of developing EOC 409 were lower for *BRCA2* carriers than *BRCA1* carriers, with absolute risks for women in the 410 99th centile being 36.3%, 36.3%, 33.0% and 36.9%; and absolute risks for women in the 1st 411 centile being 7.10%, 7.12%, 8.24% and 6.92% for the lasso, elastic net, stepwise and S4

412 models, respectively. Absolute risks for *BRCA1* and *BRCA2* carriers at the 10^{th} and 90^{th} 413 percentile are provided in Supplementary Table 7.

414

⁴¹⁵*PRS distribution and ancestry*

⁴¹⁶To investigate the transferability of the PLR derived PRS to other populations, we applied the 417 scores to women of African $(N=1,072)$ and Asian $(N=7,669)$ ancestry genotyped as part of 418 the OncoArray project. In general, the distributions of the raw polygenic scores were 419 dependent on both the statistical methods used in SNP selection and ancestral group. PRS 420 models that included more variants had less dispersion, such that the elastic net models had 421 the least between individual variation in all ancestral groups (standard deviation= $0.15, 0.19$) 422 and 0.22 for individuals of Asian, African and European ancestries respectively), while the 423 distributions from the stepwise models were the most dispersed (standard deviation $= 0.23$, ⁴²⁴0.27 and 0.30 for individuals of Asian, African and European ancestries respectively). As 425 expected, given the variation in variant frequencies by population, the distribution of 426 polygenic scores was significantly different across the three ancestral groups, with the least 427 dispersion among women of Asian ancestry and the most variation in women of European 428 ancestry. The difference in polygenic risk score distribution was minimized after correction 429 for ancestry by standardizing the PRS to have unit standard deviation using the control 430 subjects for each ancestral group. For comparison, we investigated the use of the first 20 ⁴³¹principal components to correct for ancestry and we obtained similar results.

432 High PRSs were significantly associated with risk of non-mucinous EOC in both Asian and ⁴³³African ancestries (**Table 4**), although the effects were weaker than in women of European ⁴³⁴ancestry. For example, with the lasso model, the odds ratio (95% CI) per unit standard 435 deviation increment in polygenic score was estimated to be 1.16 (1.11–1.22) in women of

⁴⁵²**Discussion**

453 Genetic risk profiling with polygenic risk scores has led to actionable outcomes for cancers 454 such as breast and prostate (24,25). Previous PRS scores for invasive EOC risk in the general 455 population and *BRCA1/BRCA2* pathogenic variant carriers have been based on genetic 456 variants for which an association with EOC risk had been established at nominal genome-457 wide significance (4,5,26–28). Here, we explored the predictive performance of 458 computationally-efficient, penalized, regression methods in modelling joint SNP effects for ⁴⁵⁹EOC risk prediction in diverse populations and compared them with common approaches. By ⁴⁶⁰leveraging the correlation between SNPs which do not reach nominal genome-wide 461 thresholds and including them in PRS models, the polygenic risk scores derived from ⁴⁶²penalized regression models in this analysis provide stronger evidence of association with ⁴⁶³risk of non-mucinous EOC than previously published PRSs in both the general population 464 and in *BRCA1/BRCA2* pathogenic variant carriers.

465 Recently, Barnes et. al derived a PRS score using 22 SNPs that were significantly associated ⁴⁶⁶with high-grade serous EOC risk in GWAS (PRSHGS) to predict EOC risk in *BRCA1/BRCA2* ⁴⁶⁷pathogenic variant carriers (5). To make effect estimates obtained in this analysis comparable 468 to the effect estimates obtained from the PRS_{HGS} , we standardized all PRSs using the ⁴⁶⁹standard deviation from unaffected *BRCA1/BRCA2* carriers; all PRS models in this analysis 470 except the Stepwise (OCAC only) had higher effect estimates (5). However, the ⁴⁷¹corresponding AUCs were higher for the PRSHGS model (0.604 for *BRCA1* carriers and 0.667 472 for *BRCA2* carriers), most likely as a result of inclusion of other predictors (birth cohort and 473 principal components) in the model. The AUC estimates for women in the general 474 population, as estimated from the UK Biobank, are slightly higher than estimates from

475 previously published PRS models for overall EOC risk by Wei et al $(AUC=0.57)$ and Yang et 476 al (AUC=0.58) $(26,28)$

⁴⁷⁷In theory, polygenic risk profiling has the potential for clinical utility, being the earliest 478 measurable contributor to risk which may lead to actionable outcomes. The level of risk among women considered to have a high polygenic risk score, for example women in the $95th$ 480 percentile, for all of the models we considered approaches the same level of risk conferred by 481 pathogenic variants in moderate penetrance genes such as *FANCM* (RR=2.1, 95%CI=1.1– ⁴⁸²3.9) and *PALB2* (RR=2.91 95%CI=1.40–6.04) (29,30). The inclusion of other risk factors 483 such as family history of ovarian cancer, presence of rare pathogenic variants, age at ⁴⁸⁴menarche, oral contraceptive use, hormone replacement therapy, parity, and endometriosis in 485 combination with the PRS models could potentially improve risk stratification as has been 486 implemented in the CanRisk tool (www.canrisk.org), which currently uses a PRS model 487 based on 36 SNPs with the potential to use other PRS models (31,32).

⁴⁸⁸An important consideration in the clinical utility of polygenic risk scores is the degree to 489 which results are applicable to diverse populations. We found that the discriminative ability 490 varied substantially by ancestral group. As expected, given that the model development 491 dataset consisted entirely of women of European ancestry, the models had greater 492 discriminative power in women of European ancestry, relative to women of African and East 493 Asian ancestry. We observed greater attenuation of discriminative ability in East Asian 494 populations than African populations. This finding is in contrast to what one would expect 495 given human demographic history, and results from genome wide association studies for ⁴⁹⁶EOC (18,19,33,34). One possible explanation for this disparity is the small sample size and ⁴⁹⁷imprecise effect estimates for women of African ancestry in this study, due to the larger 498 differences in allele frequency between this population and that of the cohort used to develop

499 the model. Although the model development data for this analysis was predominantly women 500 of European ancestry, the models developed using our approach performed substantially 501 better in women of African ancestry than a PRS model developed by combining 24 published 502 GWAS SNPS associated with non-mucinous EOC, for which the odds of EOC risk was 1.20 503 fold per standard deviation of PRS (19).

504 Further refinements to our models, by exploring other penalty functions, may improve the 505 predictive value of the PRS. However, this approach may be complicated by difficulties that 506 arise due to the correlation structure between SNPs. Another option to optimizing the models 507 could be varying the penalization function based on prior knowledge. In genomic regions that 508 are known to have variants associated with EOC, one is more likely to find other risk-509 associated variants. Therefore, varying the penalty function in these regions such that more ⁵¹⁰SNPs are selected into the model may improve the PRS. Finally, as more functional data 511 become available, modifying penalty functions to incorporate functional data may further 512 improve the PRS. Current approaches for incorporating functional annotation have resulted in 513 only modest gains in prediction accuracy for complex traits such as breast cancer, celiac 514 disease, type 2 diabetes and rheumatoid arthritis, much of which is attributed to the SNPs 515 selected in the models and not the functional annotation (35).

516 The UK Biobank, our model validation dataset for women in the general population, had a 517 small number of invasive EOC cases with a disproportionately high number of mucinous 518 cases (166 of the 823 invasive EOC cases or \sim 20%). Furthermore, cases of the serous 519 histotype could not be classified as either high-grade or low-grade. Therefore, we could not 520 investigate EOC histotype-specific polygenic scores. As the serous histotype is the most 521 common, it is possible that a high-grade serous EOC specific polygenic score may have 522 better predictive value than a non-mucinous polygenic score.

⁵²³*Conclusion*

524 In conclusion, our results indicate that using the lasso model for individual level genotype 525 data and the S4 model for summary level data in polygenic risk score construction provide an 526 improvement in risk prediction for non-mucinous EOC over more common approaches. Our 527 approach overcomes the computational limitations in the use of penalized methods for large 528 scale genetic data, particularly in the presence of highly-correlated SNPs and the use of cross-529 validation for parameter estimation is preferred. In practical terms, the polygenic risk score 530 provides sufficient discrimination, particularly for women of European ancestry, to be 531 considered for inclusion in risk prediction and prevention approaches for EOC in the future. ⁵³²Further studies are required to optimize these polygenic risk scores in ancestrally diverse 533 populations and to validate their performance with the inclusion of other genetic and lifestyle 534 risk factors.

⁵³⁵**Acknowledgements and Funding**

536 Full acknowledgement and funding details are provided in the Supplementary Material

537
538

⁵³⁸**Conflicts of Interest**

⁵³⁹Anna DeFazio has received a research grant from AstraZeneca, not directly related to the 540 content of this manuscript. Matthias W. Beckmann conducts research funded by Amgen, 541 Novartis and Pfizer. Peter A. Fashing conducts research funded by Amgen, Novartis and 542 Pfizer. He received Honoraria from Roche, Novartis and Pfizer. Allison W. Kurian reports 543 research funding to her institution from Myriad Genetics for an unrelated project. Usha ⁵⁴⁴Menon owns stocks in Abcodia Ltd. Rachel A. Murphy is a consultant for Pharmavite. The 545 other authors declare no conflicts of interest.

⁵⁴⁶**References**

547 1. Jones MR, Kamara D, Karlan BY, Pharoah PDP, Gayther SA. Genetic epidemiology of ovarian cancer and prospects for polygenic risk prediction. Gynecol Oncol. 548 ovarian cancer and prospects for polygenic risk prediction. Gynecol Oncol.
549 2017:147(3):705–13. ⁵⁴⁹2017;147(3):705–13.

- 550 2. Lyra PCM, Rangel LB, Monteiro ANA. Functional Landscape of Common Variants
551 Associated with Susceptibility to Epithelial Ovarian Cancer. Curr Epidemiol Rep. 2020 551 Associated with Susceptibility to Epithelial Ovarian Cancer. Curr Epidemiol Rep. 2020
552 Mar 1:7(1):49–57. Mar 1;7(1):49–57.
- 553 3. Kar SP, Berchuck A, Gayther SA, Goode EL, Moysich KB, Pearce CL, et al. Common Genetic Variation and Susceptibility to Ovarian Cancer: Current Insights and Future 554 Genetic Variation and Susceptibility to Ovarian Cancer: Current Insights and Future
555 Directions. Cancer Epidemiol Biomark Prev Publ Am Assoc Cancer Res Cosponsored 555 Directions. Cancer Epidemiol Biomark Prev Publ Am Assoc Cancer Res Cosponsored
556 Am Soc Prev Oncol. 2018:27(4):395–404. Am Soc Prev Oncol. 2018;27(4):395-404.
- 557 4. Kuchenbaecker KB, McGuffog L, Barrowdale D, Lee A, Soucy P, Dennis J, et al.
558 Evaluation of Polygenic Risk Scores for Breast and Ovarian Cancer Risk Prediction in 558 Evaluation of Polygenic Risk Scores for Breast and Ovarian Cancer Risk Prediction in
559 BRCA1 and BRCA2 Mutation Carriers. J Natl Cancer Inst. 2017 01;109(7). ⁵⁵⁹BRCA1 and BRCA2 Mutation Carriers. J Natl Cancer Inst. 2017 01;109(7).
- 560 5. Barnes DR, Rookus MA, McGuffog L, Leslie G, Mooij TM, Dennis J, et al. Polygenic
561 six scores and breast and epithelial ovarian cancer risks for carriers of BRCA1 and 561 risk scores and breast and epithelial ovarian cancer risks for carriers of BRCA1 and 562 BRCA2 pathogenic variants. Genet Med Off J Am Coll Med Genet. 2020 Jul 15; ⁵⁶²BRCA2 pathogenic variants. Genet Med Off J Am Coll Med Genet. 2020 Jul 15;
- 563 6. Wray NR, Goddard ME, Visscher PM. Prediction of individual genetic risk to disease from genome-wide association studies. Genome Res. 2007 Oct:17(10):1520–8. from genome-wide association studies. Genome Res. 2007 Oct;17(10):1520–8.
- 565 7. International Schizophrenia Consortium, Purcell SM, Wray NR, Stone JL, Visscher PM,
566 0'Donovan MC, et al. Common polygenic variation contributes to risk of schizophrenia 566 ^{O'}Donovan MC, et al. Common polygenic variation contributes to risk of schizophrenia
567 and bipolar disorder. Nature. 2009 Aug 6:460(7256):748–52. and bipolar disorder. Nature. 2009 Aug 6;460(7256):748–52.
- ⁵⁶⁸8. Abraham G, Kowalczyk A, Zobel J, Inouye M. Performance and robustness of 569 penalized and unpenalized methods for genetic prediction of complex human disease.
570 Genet Epidemiol. 2013 Feb:37(2):184–95. ⁵⁷⁰Genet Epidemiol. 2013 Feb;37(2):184–95.
- 571 9. Habier D, Fernando RL, Kizilkaya K, Garrick DJ. Extension of the bayesian alphabet for genomic selection. BMC Bioinformatics. 2011 May 23:12:186. for genomic selection. BMC Bioinformatics. 2011 May 23;12:186.
- 573 10. Szymczak S, Biernacka JM, Cordell HJ, González-Recio O, König IR, Zhang H, et al.
574 Machine learning in genome-wide association studies. Genet Epidemiol. 2009:33 Suppl 574 Machine learning in genome-wide association studies. Genet Epidemiol. 2009;33 Suppl
575 1:S51-57. ⁵⁷⁵1:S51-57.
- 576 11. Privé F, Aschard H, Blum MGB. Efficient Implementation of Penalized Regression for
577 Genetic Risk Prediction. Genetics. 2019;212(1):65–74. ⁵⁷⁷Genetic Risk Prediction. Genetics. 2019;212(1):65–74.
- 578 12. Mak TSH, Porsch RM, Choi SW, Zhou X, Sham PC. Polygenic scores via penalized regression on summary statistics. Genet Epidemiol. 2017:41(6):469–80. ⁵⁷⁹regression on summary statistics. Genet Epidemiol. 2017;41(6):469–80.
- ⁵⁸⁰13. Perren TJ. Mucinous epithelial ovarian carcinoma. Ann Oncol. 2016 Apr 1;27:i53–7.
- 581 14. Cheasley D, Wakefield MJ, Ryland GL, Allan PE, Alsop K, Amarasinghe KC, et al. The
582 molecular origin and taxonomy of mucinous ovarian carcinoma. Nat Commun. 2019 582 molecular origin and taxonomy of mucinous ovarian carcinoma. Nat Commun. 2019
583 02;10(1):3935. $02;10(1):3935.$

584 15. Meagher NS, Wang L, Rambau PF, Intermaggio MP, Huntsman DG, Wilkens LR, et al.
585 A combination of the immunohistochemical markers CK7 and SATB2 is highly 585 A combination of the immunohistochemical markers CK7 and SATB2 is highly
586 sensitive and specific for distinguishing primary ovarian mucinous tumors from 586 sensitive and specific for distinguishing primary ovarian mucinous tumors from
587 colorectal and appendiceal metastases. Mod Pathol Off J U S Can Acad Pathol Inc. 587 colorectal and appendiceal metastases. Mod Pathol Off J U S Can Acad Pathol Inc.
588 2019:32(12):1834–46. ⁵⁸⁸2019;32(12):1834–46.

- 589 16. Phelan CM, Kuchenbaecker KB, Tyrer JP, Kar SP, Lawrenson K, Winham SJ, et al.
590 Identification of 12 new susceptibility loci for different histotypes of epithelial ovarian 590 Identification of 12 new susceptibility loci for different histotypes of epithelial ovarian cancer. Nat Genet. 2017 May:49(5):680–91. ⁵⁹¹cancer. Nat Genet. 2017 May;49(5):680–91.
- 592 17. Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, et al. The UK Biobank
593 resource with deep phenotyping and genomic data. Nature. 2018:562(7726):203–9. resource with deep phenotyping and genomic data. Nature. 2018;562(7726):203–9.
- 594 18. Lawrenson K, Song F, Hazelett DJ, Kar SP, Tyrer J, Phelan CM, et al. Genome-wide
595 sespective association studies identify susceptibility loci for epithelial ovarian cancer in east Asian 595 ssociation studies identify susceptibility loci for epithelial ovarian cancer in east Asian
596 women. Gynecol Oncol. 2019:153(2):343–55. women. Gynecol Oncol. 2019;153(2):343–55.
- 597 19. Manichaikul A, Peres LC, Wang X-Q, Barnard ME, Chyn D, Sheng X, et al.
598 Identification of novel epithelial ovarian cancer loci in women of African ancestry. Int J 598 Identification of novel epithelial ovarian cancer loci in women of African ancestry. Int J
599 Cancer. 2020 Jun 1;146(11):2987–98. Cancer. 2020 Jun 1;146(11):2987–98.
- ⁶⁰⁰20. Yang J, Ferreira T, Morris AP, Medland SE, Genetic Investigation of ANthropometric 601 Traits (GIANT) Consortium, DIAbetes Genetics Replication And Meta-analysis
602 (DIAGRAM) Consortium et al. Conditional and ioint multiple-SNP analysis of GWAS ⁶⁰²(DIAGRAM) Consortium, et al. Conditional and joint multiple-SNP analysis of GWAS 603 summary statistics identifies additional variants influencing complex traits. Nat Genet.
604 2012 Mar 18:44(4):369–75, S1-3. ⁶⁰⁴2012 Mar 18;44(4):369–75, S1-3.
- ⁶⁰⁵21. Vilhjálmsson BJ, Yang J, Finucane HK, Gusev A, Lindström S, Ripke S, et al. 606 Modeling Linkage Disequilibrium Increases Accuracy of Polygenic Risk Scores. Am J
607 Hum Genet. 2015 Oct 1;97(4):576–92. Hum Genet. 2015 Oct 1;97(4):576–92.
- 608 22. Ge T, Chen C-Y, Ni Y, Feng Y-CA, Smoller JW. Polygenic prediction via Bayesian regression and continuous shrinkage priors. Nat Commun. 2019 16:10(1):1776. regression and continuous shrinkage priors. Nat Commun. 2019 16;10(1):1776.
- 610 23. Kuchenbaecker KB, Hopper JL, Barnes DR, Phillips K-A, Mooij TM, Roos-Blom M-J,
611 et al. Risks of Breast, Ovarian, and Contralateral Breast Cancer for BRCA1 and BRCA2 611 et al. Risks of Breast, Ovarian, and Contralateral Breast Cancer for BRCA1 and BRCA2
612 Mutation Carriers. JAMA. 2017 20:317(23):2402–16. Mutation Carriers. JAMA. 2017 20;317(23):2402-16.
- 613 24. Mavaddat N, Michailidou K, Dennis J, Lush M, Fachal L, Lee A, et al. Polygenic Risk
614 Scores for Prediction of Breast Cancer and Breast Cancer Subtypes. Am J Hum Genet. 614 Scores for Prediction of Breast Cancer and Breast Cancer Subtypes. Am J Hum Genet.
615 2019 03:104(1):21–34. ⁶¹⁵2019 03;104(1):21–34.
- 616 25. Schumacher FR, Al Olama AA, Berndt SI, Benlloch S, Ahmed M, Saunders EJ, et al.
617 63 Association analyses of more than 140,000 men identify 63 new prostate cancer 617 Association analyses of more than 140,000 men identify 63 new prostate cancer
618 susceptibility loci. Nat Genet. 2018:50(7):928–36. susceptibility loci. Nat Genet. $2018;50(7):928-36$.
- 619 26. Jia G, Lu Y, Wen W, Long J, Liu Y, Tao R, et al. Evaluating the Utility of Polygenic
620 Risk Scores in Identifying High-Risk Individuals for Eight Common Cancers. JNCI 620 Risk Scores in Identifying High-Risk Individuals for Eight Common Cancers. JNCI
621 Cancer Spectr. 2020 Jun:4(3):pkaa021. Cancer Spectr. 2020 Jun;4(3):pkaa021.
- 622 27. Pearce CL, Stram DO, Ness RB, Stram DA, Roman LD, Templeman C, et al.
623 Population distribution of lifetime risk of ovarian cancer in the United States. Cancer ⁶²³Population distribution of lifetime risk of ovarian cancer in the United States. Cancer

624 Epidemiol Biomark Prev Publ Am Assoc Cancer Res Cosponsored Am Soc Prev Oncol.
625 2015 Apr:24(4):671–6. ⁶²⁵2015 Apr;24(4):671–6.

- 626 28. Yang X, Leslie G, Gentry-Maharaj A, Ryan A, Intermaggio M, Lee A, et al. Evaluation of polygenic risk scores for ovarian cancer risk prediction in a prospective cohort study. 627 of polygenic risk scores for ovarian cancer risk prediction in a prospective cohort study.
628 J Med Genet. 2018;55(8):546–54. J Med Genet. 2018;55(8):546–54.
- 629 29. Yang X, Leslie G, Doroszuk A, Schneider S, Allen J, Decker B, et al. Cancer Risks
630 Associated With Germline PALB2 Pathogenic Variants: An International Study of 524 630 Associated With Germline PALB2 Pathogenic Variants: An International Study of 524
631 Families. J Clin Oncol Off J Am Soc Clin Oncol. 2020 Mar 1:38(7):674–85. Families. J Clin Oncol Off J Am Soc Clin Oncol. 2020 Mar 1;38(7):674–85.
- 632 30. Song H, Dicks EM, Tyrer J, Intermaggio M, Chenevix-Trench G, Bowtell DD, et al.
633 Population-based targeted sequencing of 54 candidate genes identifies PALB2 as a 633 Population-based targeted sequencing of 54 candidate genes identifies PALB2 as a susceptibility gene for high-grade serous ovarian cancer. J Med Genet. 2020 Jun 16: susceptibility gene for high-grade serous ovarian cancer. J Med Genet. 2020 Jun 16;
- 635 31. Lee A, Mavaddat N, Wilcox AN, Cunningham AP, Carver T, Hartley S, et al.
636 BOADICEA: a comprehensive breast cancer risk prediction model incorporating 636 BOADICEA: a comprehensive breast cancer risk prediction model incorporating genetic and nongenetic risk factors. Genet Med. 2019 Aug:21(8):1708–18. genetic and nongenetic risk factors. Genet Med. 2019 Aug;21(8):1708–18.
- 638 32. Welcome to CanRisk [Internet]. [cited 2020 Aug 31]. Available from:
639 https://www.canrisk.org/ https://www.canrisk.org/
- 640 33. Chen K, Ma H, Li L, Zang R, Wang C, Song F, et al. Genome-wide association study
641 identifies new susceptibility loci for epithelial ovarian cancer in Han Chinese women. 641 identifies new susceptibility loci for epithelial ovarian cancer in Han Chinese women.
642 Nat Commun. 2014 Aug 19:5:4682. Nat Commun. 2014 Aug 19;5:4682.
- 643 34. Watkins WS, Rogers AR, Ostler CT, Wooding S, Bamshad MJ, Brassington A-ME, et al. Genetic variation among world populations: inferences from 100 Alu insertion 644 al. Genetic variation among world populations: inferences from 100 Alu insertion
645 bolymorphisms. Genome Res. 2003 Jul:13(7):1607–18. polymorphisms. Genome Res. 2003 Jul;13(7):1607–18.
- 646 35. Hu Y, Lu Q, Powles R, Yao X, Yang C, Fang F, et al. Leveraging functional annotations
647 in genetic risk prediction for human complex diseases. PLoS Comput Biol. 2017 647 in genetic risk prediction for human complex diseases. PLoS Comput Biol. 2017
648 Jun;13(6):e1005589. Jun;13(6):e1005589.

649

Figure captions

Figure 1: PRS model development using penalized regression and LDPred Bayesian approach

Figure 2: Cumulative risk of ovarian cancer between birth and age 80 by PRS percentiles and PRS models. Shown are the cumulative risk of ovarian cancer risk in UK women by polygenic risk score percentiles. The lasso (A) and elastic net (B) penalized regression models were applied to individual level genotype data, while the stepwise (C) and S4 (D) models were applied to summary level statistics**.**

Figure 3: Association between the PLR PRS models and non-mucinous ovarian cancer by PRS percentiles. Shown are estimated odds ratios (OR) and confidence intervals for women of European ancestry by percentiles of polygenic risk scores derived from lasso (A), elastic net (B), stepwise (C) and S4 (D) models relative to the middle quintile.

Figure 1: PRS model development using penalized regression and LDPred Bayesian approach.

Figure 2: Cumulative risk of ovarian cancer between birth and age 80 by PRS percentiles and PRS models

Figure 3: Association between the PLR PRS models and non-mucinous ovarian cancer by PRS percentiles