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Abstract 16 

Cochlear implants (CIs) restore hearing in patients with severe to profound deafness by 17 

delivering electrical stimuli inside the cochlea. Understanding CI stimulus spread, and how it 18 

correlates to patient-dependent factors, is hampered by the poor accessibility of the inner ear 19 

and by the lack of suitable in vitro, in vivo or in silico models. Here, we present 3D printing-20 

neural network co-modelling for interpreting clinical electric field imaging (EFI) profiles of 21 

CI patients. With tuneable electro-anatomy, the 3D printed cochleae were shown to replicate 22 

clinical scenarios of EFI profiles at the off-stimuli positions. The co-modelling framework 23 
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demonstrated autonomous and robust predictions of patient EFI or cochlear geometry, 24 

unfolded the electro-anatomical factors causing CI stimulus spread, assisted on-demand 25 

printing for CI testing, and inferred patients’ in vivo cochlear tissue resistivity (estimated 26 

mean = 6.6 kΩcm) by CI telemetry. We anticipate our framework will facilitate physical 27 

modelling and digital twin innovations for electrical prostheses in healthcare. 28 

 29 

Introduction 30 

The use of neuromodulation implants and bioelectronic devices has been increasing rapidly, 31 

and is anticipated to form a new era of medicine1,2. By delivering local electrical stimuli to 32 

tissues, these electronic implants restore lost neural functions in tissues or nerves, or 33 

modulate signalling patterns for therapeutic outcomes2,3. Cochlear implants (CIs) are by far 34 

the most widely used neuromodulation electronic implants, with well over 500,000 CIs 35 

having been implanted worldwide4, and their prevalence is only expected to grow more 36 

rapidly with the projected increase in the elderly population1,4. Bypassing the malfunctioning 37 

peripheral auditory mechanisms by direct neural stimulation, the CI electrode array is 38 

designed to restore sound perception. It also attempts, in broad terms, to reproduce the 39 

tonotopic architecture of the cochlea by delivering frequency specific programmed 40 

stimulation at localised regions of the cochlear lumen; this in turn stimulates separate 41 

auditory neural elements5,6 (Fig.1a), with lower sound frequencies represented apically and 42 

higher frequencies basally. 43 

  44 
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Fig.1: 3PNN co-modelling approach with embedded 3D printing of biomimetic cochleae 45 

for reproducing the CI stimulus spread characteristics. 46 

 47 

a, Schematic of the auditory system and the cochlea with a CI implanted. The ‘current 48 

spread’ problem induced by a stimulated electrode of the CI electrode array is indicated. b, 49 

Schematic of the routine CI assessment process; 1. Pre-operative CT scan of a patient’s 50 

cochlea, which typically only has sufficient resolution to reveal the ensemble spiral-shaped 51 

cavity of a cochlea; 2. Implantation of the electrode array of a CI in the scala tympani of the 52 

cochlea; 3. Acquisition of an intra-operative EFI (electric field imaging) profile from a 53 

patient, which is derived from recording the induced intracochlear voltage V measured at 54 

each electrode upon injecting consecutive current pulses at each electrode in the array. The 55 

voltage measurements are then converted to transimpedance magnitude |z| by normalising the 56 

voltage V with the stimulation current impulse Istim (|z| = V / Istim). The off-stimulation (off-57 

diagonal) measurements in the EFI present information about the tissue impedance7. c, 58 

Overview of the 3PNN co-modelling framework for providing clinical informatics. d, 59 

Schematic of the embedded 3D printing strategy to produce the electro-mimetic bone 60 

matrices and the biomimetic cochleae. 61 

 62 

A major limitation of today’s neural prostheses is their imprecise control of the administered 63 

stimulus, arising from the intrinsic conductive nature of biological tissues8,9, and particularly 64 

of the biological fluids in the inner ear5,7. This limitation is well exemplified by the ‘current 65 

spread’ problem of CIs, where the uncontrolled spread of electrical stimulus leads to off-66 
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target excitation of the neighbouring auditory nerve fibres (thus causing a mismatch or 67 

‘smeared’ representation in the perceived sound from that intended)7 (Fig.1a). Cochlear 68 

anatomy, tissue conductivity, and implant positioning are suggested to be the primary patient-69 

specific factors controlling the intracochlear voltage distribution induced by CIs7,10–12. In 70 

particular, cochlear anatomy (in terms of size and shape) is variable13, with different levels of 71 

volumetric conductance of cochlear fluids affecting the intracochlear voltage induced by 72 

stimulation. Moreover, pathophysiological conditions could affect electrical conductivity of 73 

the cochlear bony walls, and thus CI induced electric fields14. As the cochlea is embedded 74 

deep inside the temporal bone and has a complex anatomy, its electrical characteristics are 75 

difficult to quantify in a living subject. As a result, a model that deciphers how different 76 

characteristics of a patient’s cochlea affect the stimulus spread would be a valuable tool for 77 

predicting and optimizing the stimulus signals, and provide insights into factors controlling 78 

the large variation in patient-specific CI performance and sound perception. 79 

 80 

Although various physical and computational models have been developed for CI 81 

testing7,12,15–17, they are insufficient to evaluate the stimulus spread in human cochleae. 82 

Animal models are well-established for in vivo CI testing, but due to the drastic differences 83 

between the cochlear anatomies of humans and animals18, incomplete insights into human 84 

responses are obtained1,3. Though human cadavers can provide anatomical fidelity, they are 85 

limited in supply and have altered electrical properties due to preservation and post-mortem 86 

changes19. In silico approaches, such as finite element modelling (FEM), can overcome 87 

ethical, sample availability and cost issues20. However, existing FEM modelling is limited by 88 

several factors, including scant knowledge of the electrical properties of live human cochlear 89 

tissues to fit different in vivo cases21, the inability to capture patient-dependent anatomically-90 
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guided CI positioning, and the underdetermined boundary conditions and physical/empirical 91 

law descriptions15 (discussed in Supplementary Fig.1a).  92 

 93 

To establish a robust modelling framework for interpreting clinical CI testing data, here we 94 

created a library of 3D printed cochlear models (n = 82). These biomimetic cochleae capture 95 

the diverse geometries that human cochlear lumens can take, along with a spectrum of bone 96 

tissue resistivities, using ranges reported in in vivo human studies. Supplementary Video 1 97 

shows CT scans of exemplar 3D printed biomimetic cochleae. Using these models, a broad 98 

spectrum of clinically representative electric field imaging (EFI) profiles (normalised 99 

intracochlear voltage distribution along the CI electrode array) was acquired by varying the 100 

model electro-anatomical characteristics. Then, by inputting EFI profiles acquired from the 101 

biomimetic cochleae as the training dataset, we establish a neural network machine learning 102 

model termed 3PNN (3D printing and neural network co-modelling, overview shown in 103 

Fig.1c), which provides powerful clinical informatics such as deciphering patient-specific 104 

attributes of CI current spread, and inferring patient-dependent cochlear tissue resistivity.  105 

 106 

Results 107 

Designable electro-mimetic bone matrices 108 

The human cochlea is a spiral-shaped hollow organ embedded in the temporal bone (Fig.1a). 109 

Since there were no established reports of in vivo cochlear tissue conductivities, our first goal 110 

was to establish a printable material system that could emulate the range of reported bone 111 

tissue conductivities (hereafter, termed electro-mimetic bone matrix). In vivo human studies 112 

estimated that the electrical resistivities of human skulls vary widely between 0.6 to 26.6 113 

kΩcm, depending on the site, composition, age and porosity22–26 (Supplementary Fig.2).   114 
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To reproduce the mesoscale electrical properties of bone, we take inspiration from the micro-115 

architecture of bones, which consists of conductive fluid-filled interconnected pores 116 

surrounded by a poorly conductive mineralised phase27. Thus, we structured an electro-117 

mimetic bone matrix that exhibits interconnected saline-filled channels inside a crosslinked 118 

PDMS (polydimethylsiloxane) elastomer. The interconnected channels were created by 119 

embedded printing a Pluronic F127 sacrificial ink in pre-crosslinked PDMS (Fig.1d, 120 

Supplementary Video 2), permitting flexible and precise tuning of the void density and, 121 

therefore, the resistivity of the electro-mimetic bone matrices (Supplementary Fig.3e). 122 

Comparing our printing method with stereolithography, Pluronic F127 can be easily removed 123 

after printing28 and further enhances the wettability of PDMS due to its amphiphilic nature. 124 

The channels were then filled with a physiological saline, which we hypothesise is important 125 

to emulate the electrical impedance properties of bone tissues, as pores in bone are normally 126 

wet with extracellular fluids. The electrochemical impedance spectroscopy (EIS) 127 

measurements in Fig.2a and Supplementary Fig.4 show that an electro-mimetic bone matrix 128 

can be designed to exhibit impedance properties matching those of a cadaveric cochlear bone 129 

in a human head for the entire frequency range (f  = 10 Hz – 100 kHz) studied in EIS. In 130 

particular, the Fourier fundamental frequency associated with the EFI stimulation pulse, 131 

(estimated to be f  ~14 kHz to ~20 kHz depending on CI type), lies in the frequency-132 

independent impedance magnitude plateau region. By varying the void fraction in the electro-133 

mimetic bone matrix from 20% to 84%, the resistivity of the matrix that is derived from the 134 

impedance magnitude plateau, can be tuned from 0.2 to 23.4 kΩcm (Fig.2b), covering almost 135 

the entire reported resistivity range of live human skull tissues22–26 (0.6 – 26.6 kΩcm, Fig.2c).  136 

137 
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Fig.2: Electrical properties of electro-mimetic bone matrices. 138 

139 
a, Bode plot showing the impedance properties of a cadaveric cochlea in a human head, and 140 

3D printed cochlear models made of an electro-mimetic bone matrix and a hydrogel. The 141 

frequency range associated with the impedance magnitude plateau is indicated. b, µ-CT 142 

reconstructed images (top) and optical microscopic images (bottom) of the electro-mimetic 143 

bone matrices at different volumetric void fractions (fvoid). Scale bar of the optical 144 

microscopic images = 500 µm. The resistivities of the matrices were determined from their 145 

plateau impedance magnitude and the size of samples. n = 3 independent samples. c, 146 

Resistivity of the electro-mimetic bone matrices (plateau value, n = 3 independent samples) 147 

as a function of fvoid, compared to the reported resistivities of bovine cortical and trabecular 148 

bones27. The relationship between the resistivity of the electro-mimetic bone matrix and fvoid 149 

is well-described by a percolation equation of a conductor-insulator composite29 150 

(Supplementary Fig.3e). Data are presented as mean values ± SD.  151 

 152 

Fig.3 shows a material property chart summarising the electrical resistivity and the Young’s 153 

modulus for a range of biological tissues and polymeric materials. The 3D printed electro-154 

mimetic bone matrices cover a wide resistivity range, which cannot be imitated by a single 155 

printable material (i.e. thermoplastics or hydrogels) alone or a hydrogel-fillers matrix (i.e. 156 

bioceramics and PDMS microbeads dispersed in hydrogels) (Supplementary Fig.5a). Apart 157 

from electrical resistivity, we suggest that Young’s modulus of the model is also an important 158 

consideration for electronic implant testing. Adopting PDMS as the solid phase of the 159 

electro-mimetic bone matrix not only facilitates the ease of embedded printing, but also 160 

imparts favourable mechanical properties as a CI testing platform. With a Young’s modulus 161 
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in the 106 Pa range, we estimate that the force associated with CI electrode insertion will not 162 

induce a significant deformation to the matrix (Supplementary Note 1). At the same time, the 163 

compliance of the matrix mitigates mechanical damage to the fine electrodes of a CI, which 164 

is commonly experienced when inserting CI electrode arrays repeatedly in cadaveric samples 165 

(modulus of hard tissues > 109 Pa). Hence, multiple insertions can take place for the same CI 166 

electrode array, which is of practical importance due to the time-consuming fabrication and 167 

costs associated with a fully functioning CI. Overall, the above results suggest the electro-168 

mimetic bone matrices to be a suitable material system for creating electroanatomical models 169 

of human cochleae.    170 

Fig.3: Wide resistivity tuneability and adequate mechanical properties of electro-171 

mimetic bone matrices. 172 

 173 
A map of resistivity versus Young’s modulus of human tissues, thermoplastics, the hydrogel-174 

fillers matrices, and the electro-mimetic bone matrices (plateau values) tested in this study (n 175 

= 3 independent samples). The compositions of the hydrogel and hydrogel-fillers matrices 176 

tested here are listed in Supplementary Fig.5a. Young’s modulus of the electro-mimetic bone 177 

matrix was estimated by scaling the Young’s modulus of pure PDMS (1.7 MPa at a curing 178 

temperature of 60 oC30) linearly with the fvoid of the matrix. Tissues and thermoplastics data, 179 

and the Young’s modulus of hydrogels were compiled from literature22–27,31–35. Data of the 180 

electro-mimetic bone matrices are presented as mean values ± SD.  181 
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3D printed biomimetic cochleae  182 

Clinically, a CI electrode array is inserted into the scala tympani, one of the three cochlear 183 

ducts14 (Fig.1a). As a coarse-grained approach to replicate the electroanatomical features of a 184 

CI implanted cochlea, we approximate the cochlea as one ensemble spiral cavity with 185 

continuously narrowing diameter, and omit the inner soft-tissue membranous structures 186 

inside the cochlea, such as the basilar membrane and Reissner’s membrane. This is because, 187 

firstly, in a typical patient’s pre-operative CT scan as routine clinical assessment (Fig.1b), the 188 

scan resolution only permits the identification of the shape of the ensemble cochlear lumen 189 

and not the fine microanatomical soft tissue structures (Supplementary Fig.6); and secondly, 190 

our preliminary finite element modelling shows that the effect of the basilar membrane and 191 

the Reissner’s membrane inside a cochlea on the off-stimulation EFI profile is likely to be 192 

insignificant, as the boundary impedances are dominated by surrounding bone tissues (see 193 

Supplementary Fig.1b). Therefore, we constructed the biomimetic cochleae by embedded 3D 194 

printing a tapered and spiral-shaped cochlear lumen cavity inside an electro-mimetic bone 195 

matrix (Fig.1d and Supplementary Video 2). The spiral-shaped cavity was filled with a 196 

physiological saline to mimic the ionic conduction milieu in the cochlea (perilymph) 197 

(Supplementary Fig.3c) and the conduction properties at the electrode-electrolyte interface. 198 

 199 

Since the size and the shape of a cochlea is unique to each individual and can vary greatly 200 

from person-to-person13,36,37, we assign four geometrical descriptors to parametrically 201 

describe the reported anatomical variations in CI implanted human cochleae; they are basal 202 

lumen diameter, taper ratio, cochlear width and cochlear height (see definitions in Fig.4a and 203 

Supplementary Table 1). For electroanatomical modelling of cochleae, we incorporated a 204 

fifth descriptor, the matrix resistivity, which is controlled by the void fraction of the electro-205 

mimetic bone matrix. In total, 82 biomimetic cochleae were printed at different combinations 206 
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of model descriptors. With this physical model library, we artificially reconstructed a broad 207 

spectrum of the electroanatomical features of human cochleae with even feature distributions.  208 

 209 

Fig.4:  3D printed biomimetic cochleae replicate the broad anatomical spectrum of 210 

human cochleae, enable geometrically-guided CI positioning, and give patient-relevant 211 

EFI profiles.  212 

 213 

a, µ-CT reconstructed images of the spiral lumen of the biomimetic cochlea with different 214 

geometric features. Scale bar = 2 mm. Four geometric descriptors are used – basal lumen 215 

diameter, taper ratio, cochlear width, and cochlear height. Detailed definitions and the range 216 

of the descriptors tested in this study can be found in Supplementary Table 1. b, µ-CT 217 

reconstructed images of (i) a cadaveric cochlea and (ii) the lumen of an exemplar 3D printed 218 

biomimetic cochlea with CI electrode array (marked green) implanted. Scale bar = 2 mm. 219 

c(i), The electrode-to-spiral centre distance (n = 48) of the biomimetic cochleae, compared to 220 
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the electrode-to-modiolus distance of human cochleae with the same CI electrode type 221 

implanted (HiFocusTM 1J electrode array), replotted from literature38. c(ii) Example showing 222 

overlapped CT and x-ray images of the CI electrode positions in a patient’s cochlea and in a 223 

biomimetic cochlea that has similar geometric descriptors to the patient (n = 3, 224 

Supplementary Fig.7b). Scale bar = 2 mm. d, Comparison of the mean patient EFI profile (n 225 

= 97), and the EFI profiles obtained from 3D printed models made of hydrogel, solid PDMS 226 

and electro-mimetic bone matrix (3.6 kΩcm). The mean patient EFI was derived from 97 227 

clinical EFIs that are not paired with CT information (with 91 independently acquired by 228 

Advanced Bionics® and 6 acquired by CI1J from our own repository), on the assumption that 229 

the insertion depths follow the suggested insertion depth of CI1J. EFIs induced by the 230 

stimulations of the basal electrode (electrode 15), the medial electrode (electrode 9) and the 231 

apical electrode (electrode 2) were shown.  232 

 233 

Fig.4b shows high-resolution µ-CT scans of a cadaveric cochlea and an exemplar 3D printed 234 

biomimetic cochlea with a CI inserted. It is worth noting that the CI electrode-to-spiral centre 235 

distance displayed in the 3D printed cochleae matches closely with the electrode-to-modiolus 236 

distances measured clinically from patients’ CT scans38 (Fig.4c(i)). Despite only 4 geometric 237 

descriptors being used to describe patient cochlear geometry, biomimetic cochleae with 238 

similar patients’ geometric descriptors can approximately capture the overall contour of the 239 

cochlear lumen which encapsulates the length of the CI array (up to 1.5 turn, n = 3, see 240 

corresponding analysis in Supplementary Fig.7a). Hence, similar plain X-ray imaged 241 

electrode positions and the angular insertion depths were observed in the biomimetic 242 

cochleae and in the patients implanted with the same type of CI (Fig.4c(ii) and 243 

Supplementary Fig.7b). Statistically, the dependence of the CI angular insertion depth on the 244 

cochlear width was also similar, comparing the biomimetic cochlea data and the patient data 245 

(Supplementary Fig.7c). This gives further confirmation that the 3D printed cochleae have 246 

adequate structural rigidity and anatomy to provide geometrically-guided implant insertion 247 

and positioning. It should be noted that since the 3D printed cochleae do not present the 248 

intracochlear membrane structures, the associated volume restriction effects on CI electrode 249 

positioning might not be fully captured in the 3D printed models.  250 
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 251 

Next, we acquired intracochlear EFI profiles (normalised intracochlear voltage distribution) 252 

in our cochlear models with a CI1J (Advanced Bionics HiRes 90K® implant with HiFocusTM 253 

1J electrode) electrode array inserted. EFI samples the intracochear voltage (V) along the 254 

electrode array in response to a current injection or a stimulation impulse (Istim) at each 255 

electrode (Fig.1b). The off-stimulation measurements in EFI profiles contain information 256 

about the induced voltage spread characteristics of the cochlea. EFIs and similar measures 257 

(e.g. transimpedance matrix from Cochlear Corporation® or Impedance Field Telemetry from 258 

MED-EL®) are commonly used as part of the routine CI clinical assessment.  259 

 260 

To further demonstrate the importance of having a realistic bone matrix resistivity in 261 

reproducing the patient EFI profile, we also fabricated models made of materials with 262 

contrasting conduction properties, hydrogels (representing the highly conductive case) and 263 

solid PDMS (representing the insulating case). Fig.4d shows the mean patient EFI profile 264 

derived from 97 patients compared with the EFI profiles of the 3D printed models with 265 

different matrix material properties. We found that the solid PDMS model led to a steeper 266 

and extremely asymmetrical EFI profile (as seen in the stimulation at the medial electrode), 267 

strongly mismatched with real patient profiles. In comparison, the conductive hydrogel 268 

model resulted in a low magnitude EFI profile, which sits outside the patient population EFI. 269 

By replicating realistic bone resistivities with electro-mimetic bone matrices, our biomimetic 270 

cochlea can be designed to match real patient stimulus spread characteristics.  271 
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Clinically validated 3PNN shows high statistical predictive performance 272 

By training a neural network (NN) machine learning model with the dataset of EFI profiles 273 

acquired from the 3D printed biomimetic cochleae, a 3D printing and neural network co-274 

modelling (3PNN) framework (Fig.5a) was established to model the relationship between 275 

EFIs and the electroanatomical features of the CI implanted biomimetic cochleae. Reasons 276 

for using neural network modelling instead of other existing computational models are 277 

discussed in Supplementary Note 2. To support various application needs, we developed 278 

forward-3PNN and inverse-3PNN. Forward-3PNN is used when patients’ cochlear geometry 279 

is known (i.e. through a pre-operative CT scan), and the algorithm can predict the most 280 

probable off-stimulation EFIs arising from different electroanatomical descriptors of a 281 

cochlea. The patient-specific EFI prediction covers the initial 2 – 18.5 mm section of a CI 282 

electrode array from different manufacturers that may have different electrode positions and 283 

spacings. Inverse-3PNN is used when a patient EFI is given, and the algorithm can infer the 284 

most probable distribution of the electroanatomical descriptors (i.e. the four geometric 285 

descriptors and the cochlear tissue resistivity) of the patient’s cochlea. The broad 286 

applicability of 3PNN on different electrode types (HiFocusTM 1J electrode array (CI1J), 287 

HiFocusTM SlimJ electrode array (CISlimJ), Cochlear TM Nucleus® slim straight electrode 288 

CI622 and Cochlear TM Nucleus® slim straight electrode CI522) is validated in 289 

Supplementary Figs.9-13, with its clinical predictive power demonstrated below. 290 

 291 

We validated the clinical applicability of 3PNN using routinely acquired clinical data of 292 

different implant types. In total, 31 paired sets of patient’s CT scan and EFI profile were used 293 

for validation. They were acquired using either a CISlimJ (n = 17), a CI622 (n = 6), or a CI522 294 

(n = 8). Here, we assumed the inputs of the stimulating and the recording electrode positions 295 

follow the manufacturers’ suggested insertion depths (Supplementary Table 2) for predicting 296 
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the most likely outcomes. Starting with our forward-3PNN, we predicted the patients’ off-297 

stimulation EFI profiles based on the four geometric descriptors measured from their CT 298 

scans, while taking the matrix resistivity input as 9.3 kΩcm (the mean reported resistivity of 299 

live human skulls22–26, see Supplementary Fig.2a). Without any model adjustment for the 300 

different CI types, 28 out of the 31 EFI reconstructions achieve a MAPE (median absolute 301 

percentage error) < 12% (Fig.5b and Supplementary Fig.11), despite of the limited resolution 302 

of patients’ cochlear CT scans, and the substitution of the unknown patient cochlear tissue 303 

resistivities with the reported mean human skull resistivity. For a selected patient (subject 304 

4CI522) whose EFI profile matches the population mean EFI (n = 97), forward-3PNN was 305 

shown to achieve a MAPE = 8.6% for the EFI reconstruction (Fig.5bi and Supplementary 306 

Fig.12b-c). The capability of 3PNN to give patient-dependent EFI predictions, is confirmed 307 

in Supplementary Table 3 which cross-compares the MAPEs calculated between the patients’ 308 

EFIs and the 3PNN predictions, and the MAPEs between the patients’ EFIs and the 309 

population mean. Next, we validated our 3PNN by inversely inferring the distribution of the 310 

four cochlear geometric descriptors that could match a patient’s off-stimulation EFI profile 311 

with a similarity > 89% (Similarity (%) = 1 – MAPE (%)). Comparing the predicted 312 

distributions of the geometric descriptors with the corresponding patient’s features measured 313 

from their CT scans, the median MAPE is ≤ 8% (Fig.5c and Supplementary Fig.13). The 314 

above high statistical prediction accuracy demonstrates the capacity of 3PNN to 315 

autonomously predict clinical EFIs or patients’ cochlear features for different electrode types 316 

without further need to adjust the machine learning model that is trained by the dataset 317 

acquired from the CI1J.   318 

  319 
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Fig.5: Clinical Validation of 3PNN. 320 

 321 

 322 
 323 

a, Schematic of the workflow of 3PNN. 3PNN was developed by training a neural network 324 

machine learning algorithm with the EFI profiles acquired from the 3D printed biomimetic 325 

cochleae. 3PNN maps the correlation between the 5 model descriptors and the most probable 326 

EFI profile as a function of CI electrode position. The hyperparameters of 3PNN were tuned 327 

using 10-fold cross-validation to achieve the best predictive performance (Supplementary 328 

Fig.9). b, Validation of forward-3PNN for predicting patient off-stimulation EFIs (matrix 329 

resistivity input = 9.3 kΩcm). (i) Representative off-stimulation EFI predictions for different 330 

CI electrode types, as compared to the corresponding clinical patient data; and (ii) boxplots 331 

summarising the overall performance of forward-3PNN, with the median MAPE of each CI 332 

electrode type indicated on the figure. Full validation results can be found in Supplementary 333 

Fig.11. c, Overall performance of inverse-3PNN for inferring the patients’ cochlear 334 

geometric descriptors for different CI electrode types, with the median MAPE stated for each 335 

descriptor. Full validation results of inverse-3PNN can be found in Supplementary Fig.13. In 336 

b(ii) and c, the line in each box represents the median, with the box denoting the interquartile 337 

range and the whiskers denoting the ± 1.5 of the interquartile range.  338 

 339 

  340 
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Effect of cochlear electroanatomy on CI voltage spread  341 

With the validated 3PNN model, we proceeded to investigate how the CI voltage spread 342 

characteristics could be affected by the four geometric descriptors and the matrix resistivity. 343 

Using forward-3PNN, we simulated EFI profiles by sweeping through different combinations 344 

of the 5 model descriptors (examples shown in Supplementary Fig.14). In total, we sampled 345 

3125 (5x5x5x5x5) combinations to represent the entire modelling space of the 5 model 346 

descriptors, and predicted their off-stimulation EFIs. To parameterise the voltage spread 347 

characteristics for each predicted EFI profile, we fitted a power law following Equation (1), 348 

to each stimulus spread toward the apex and toward the base (detailed example shown in 349 

Supplementary Fig.15), 350 

|z| =
V

Istim

= A|x|−b + C (1) 

d|z|

dx
=  −Abx−b−1 (2) 

where |z| is transimpedance magnitude, V is voltage between the recording electrode and the 351 

ground electrode, Istim is stimulation impulse current, x is distance between the stimulating 352 

and the recording intracochlear electrodes along the CI, A and b are fitting coefficients, and C 353 

is baseline constant of the EFI, which is defined as the minimum value of the EFI. Equation 354 

(1) was adopted here because, theoretically, volume conduction from a point source in a 355 

homogeneous medium should follow an inverse relationship with the form of |𝑧| =
1

4𝜋𝜎𝑟
 356 

(where σ is conductivity of the homogeneous medium and r is distance between the 357 

stimulating and the recording intracochlear electrode)39, and the constant C captures the 358 

baseline feature of EFIs as |z| approaches the baseline when x → ∞. Our goodness-of-fit test 359 

in Supplementary Fig.16 also supports the use of Equation (1) to describe EFI features. To 360 

quantify the slope of the stimulus spreads, we computed the derivative of Equation (1) fitted 361 

EFI with respect to x (as shown in Equation (2)) for toward the apex or toward the base 362 
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directions, and used the mean slope at the x = 1 mm position (Slope̅̅ ̅̅ ̅̅ ̅
x=1mm) as an indicator of 363 

the sharpness of voltage drop toward the apex and the base of the cochlea.  364 

 365 

As shown in Fig.6a, we found that the voltage drop is shallower (smaller Slope̅̅ ̅̅ ̅̅ ̅
x=1mm value) 366 

in cochleae with larger basal lumen diameter and less tapered cochlear lumen (i.e. taper ratio 367 

closer to 1). Therefore, we predict that cochleae with these geometric features could 368 

experience broader ‘current spread’, which may activate neurons over a broader spatial 369 

region (thus broader spectral convolution). It should be noted, however, that the activation 370 

function for neurons should also be considered for a more sophisticated prediction of the 371 

induced firing of neurons40. To further evaluate the relative importance of each descriptor on 372 

EFI and its parametric fitting coefficients (i.e. Slope̅̅ ̅̅ ̅̅ ̅
x=1mm and the baseline constant C in 373 

Equation (1)), we performed a global sensitivity analysis (see Methods, Supplementary 374 

Fig.17 and Supplementary Tables 4-5). The finding suggests that the taper ratio is the most 375 

important factor affecting the sharpness of voltage drop (Slope̅̅ ̅̅ ̅̅ ̅
x=1mm), whereas the matrix 376 

resistivity and the cochlear width are the dominant factors affecting the baseline constant (C 377 

in Equation (1). 378 

 379 

On-demand creation of biomimetic cochleae inheriting patient EFIs 380 

The clinical validation of 3PNN demonstrates that the 3D printed biomimetic cochleae can 381 

reproduce the off-stimulation EFIs of CI users with high fidelity, despite the physical 382 

simplicity of the models. With this validated platform, we further demonstrate its application 383 

to construct on-demand cochlear models that can yield patient-specific off-stimulation EFI 384 

profiles. To do this, we first used inverse-3PNN to obtain the distribution of the model 385 

descriptors that could match each patient’s off-stimulation EFI profile with an average 386 
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similarity over 90% (Fig.6b(i) and Supplementary Fig.18). Subsequently, embedded 3D 387 

printing was used to fabricate a patient-specific biomimetic cochlea exhibiting the features of 388 

the median set of the model descriptors inferred from inverse-3PNN. As shown in Fig.6b(ii), 389 

the EFI profiles measured from the 3D printed biomimetic cochleae show good resemblance 390 

to their corresponding patients’ off-stimulation EFI profiles, with MAPE < 12%, while the 391 

patients’ EFI profiles show a dissimilarity of > 30% MAPE.  392 

 393 

Beyond the application of reproducing patient-specific EFI profile with a physical 3D printed 394 

model, our platform further points to the potential occurrence of atypical EFI profiles, such as 395 

the ‘mid-dip’ characteristics observed in patients. The ‘mid-dip’ characteristic (Fig.6c), 396 

which is distinguished by a dip in the EFI profile at the medial electrodes, has not been given 397 

a clear clinical explanation. It is uncertain whether unusual implantation orientations or 398 

patient-specific cochlear biologic properties could be the origin. By visualising the positions 399 

of electrodes in our 3D printed models with µ-CT imaging, we found that the electrode 400 

position, which was guided by the cochlear geometry, could be a potential explanation. In the 401 

model with the ‘mid-dip’ characteristics, the electrode positions appear to change abruptly 402 

(left panel in Fig.6c(iii)), where electrode 8 (e8) was adjacent to two ‘near-wall’ electrodes 403 

(e9 and e10) that were in close proximity to the spiral centre. This sudden decrease in the 404 

electrode-to-wall distance can potentially cause a slight increase in the EFI profile, hence a 405 

dip at e8 in the profile. On the contrary, in the model without the ‘mid-dip’ characteristics, 406 

the electrode positions changed gradually. This suggests that the relative position of the 407 

electrode to the neighbouring electrodes and the lumen wall can be one of the causes giving 408 

rise to the mid-dip abnormality in the EFI profile.  409 

  410 
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Fig.6: Broad applicability of 3PNN for clinical informatics. 411 

 412 

a, (i) Schematic showing the stimuli spreads towards the apex and the base of the cochleae in 413 

an EFI. (ii) The trend of Slope̅̅ ̅̅ ̅̅ ̅
x=1mm of the stimulus spreads toward the cochlear apex and 414 

the cochlear base across each model descriptor. The line in the box represents the median of 415 

the Slope̅̅ ̅̅ ̅̅ ̅
x=1mm of 625 (5x5x5x5) predicted samples, with the box denoting the interquartile 416 

range and the whiskers denoting the ± 1.5 of the interquartile range. n = 625 inferred using 417 

the model descriptors sampled uniformly in the modelling space. b, (i) Schematic showing 418 

the process to generate the patient-specific biomimetic cochlear model, where inverse-3PNN 419 

was used to deduce the distribution of the model descriptors best-fitting the patient off-420 

stimulation EFI, and the patient cochlear model was then fabricated by 3D printing with a 421 

predicted set of the model descriptors (Supplementary Fig.18). (ii) Comparison of the off-422 

stimulation EFIs of two patients and the off-stimulation EFIs acquired in their corresponding 423 

biomimetic cochleae. c, The electrode positions in a model showing an atypical ‘mid-dip’ 424 

EFI profile (left) and a model with a typical EFI profile (right). (i) Reconstructed 3D µ-CT 425 

volumes of the cochlear lumens of the biomimetic cochleae with a CI electrode array inserted 426 

(marked green). Scale bar = 2 mm; (ii) Off-stimulation EFI profiles of the models with the 427 

peaks indicating the maximum |z| of the spread distributions at off-stimulation positions; (iii) 428 

Top view and (iv) side view of the cochlear lumens of the models, showing the positions of 429 

the electrodes in the lumens of the models relative to the lumen wall. Distance in the negative 430 

direction refers to the distance towards the cochlear centre, vice versa. Electrode 8 (red) and 431 

electrodes 9 – 10 (blue) are highlighted to contrast the electrode contour which generates the 432 

mid-dip EFI.  433 
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Informing patient-specific cochlear tissue resistivity 434 

As the absolute resistivity of patients’ temporal bones near the cochlear vicinity cannot be 435 

measured non-invasively in living subjects, our inverse-3PNN further presents a unique 436 

capability in inferring the resistivities of patients’ cochlear tissues based on their individual 437 

EFI profiles. Supplementary Fig.19 shows the ranges of the patient-specific resistivities (n = 438 

37), which were deduced with unknown geometric descriptors for subjects1J 1 – 6 and with 439 

paired pre-operative CT (thus known patient geometric descriptors) for the remaining 31 440 

subjects. All the predicted patient resistivity ranges (0.6 – 20.3 kΩcm) lie within the reported 441 

resistivity range of live human skulls (0.6 – 26.6 kΩcm)22–26. In particular, the mean 442 

predicted patient cochlear resistivity (6.6 kΩcm, n = 37) is close to the mean reported 443 

resistivity of live human skulls (9.3 kΩcm).   444 

 445 

Discussion 446 

We created a physical library of 3D printed biomimetic cochlear models that statistically 447 

captures the reported broad spectrum of off-stimulation EFI profiles of CI patients, which are 448 

dependent on the patterns of electrical conduction through tissues. The 3D printed cochlear 449 

models can be used multiple times (Supplementary Fig.5c-d) and were designed with 450 

impedance-tuneable electro-mimetic bone matrices that display suitable mechanical stiffness 451 

for geometrically-guided CI electrode insertion, while limiting damage to CI electrodes 452 

during insertion. Complementary to FEM, the 3D printed biomimetic cochleae offer a robust 453 

physical means to replicate the dynamics of ionic conduction and the electron-ion interaction 454 

in cochleae with implanted CIs. This is useful as it bypasses the sensitivity in the choice of 455 

boundary conditions that are required in FEM (Supplementary Fig.1a), and it intrinsically 456 

captures physical phenomena that could be difficult to replicate fully in FEM.  457 
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The use of standard-of-care patient CT scans in 3PNN is practical for clinical translation 458 

because high-resolution micro-CT scans cannot be performed in living patients. As the 459 

associated resolution of clinical CT scans does not allow for detailed construction of cochlear 460 

surface contours, nor the inclusion of the membranous structures (~2 to 4 µm thick as 461 

reported in literature10,41), 3PNN does not aim to capture the thorough structural details of 462 

human cochleae. Several potential sources of uncertainty are noted in 3PNN. These include 463 

the discrepancy caused by the absence of the intracochlear membranes in the 3D printed 464 

models, the uncertainties in the measurements of the low-resolution clinical CT scans, the 465 

deviations in the vertical position of CI electrode array in cochlear lumen, the deviations in 466 

the CI electrode insertion depth due to different surgical practices, and the dimensional 467 

discrepancy between the patient’s cochlea and the cochlear lumen described using the four 468 

geometrical descriptors. Their potential effects on EFIs are summarized in Supplementary 469 

Table 6. In addition, the 3D printed cochleae did not account for the frictional force generated 470 

during CI electrode insertions beneath the basilar membrane in human cochleae, which may 471 

occasionally cause electrode array buckling or even intracochlear trauma affecting CI 472 

performance42,43. We suggest that friction could have attributed to the localised buckling 473 

configuration of the CI electrode array captured in the 3D model giving the ‘mid-dip’ EFI. 474 

Future studies can explore the possibility of incorporating the membranous structures into 3D 475 

printed cochlear models, and coupling computational mechanics in the modelling process. 476 

 477 

Adopting machine learning along with parametric descriptions of the cochlear geometry, 478 

3PNN requires only a fraction of the computation time per EFI prediction (estimated 300 479 

times faster) compared to our FEM models (for Intel i5 CPU). The fast and automated nature 480 

of 3PNN facilitates the generation of sufficient amount of simulated data for deciphering 481 

trend and sensitivity in a high dimensional problem. This is imperative for solving the 482 
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‘volume conduction’ problem, the first step in computational neuroengineering for modelling 483 

electrical stimulation in a biological structure20. Our work also suggests that the intracochlear 484 

excitation spread can be largely reproduced by physically replicating the volumetric 485 

conduction within the cochlear lumen and the cochlear tissue vicinity without biological 486 

components. Further studies that evaluate the correlation between the intracochlear voltage 487 

distribution and the excitation of neural cells will be of particular benefit to expand the use of 488 

3PNN in modelling the signal perception at the neuronal level. 489 

 490 

Our framework could potentially provide the first approach to readily infer the in vivo bulk 491 

resistivity of individual patient’s cochlear bone matrix via CI telemetry. Validation of the 492 

accuracy of the cochlear tissue resistivity prediction is not performed in the current work; this 493 

is because, as of yet, there is no reported method to measure cochlear tissue resistivity in live 494 

patients. In the present work, a default resistivity value of 9.3 kΩcm (mean resistivity of live 495 

human skull) was used to approximate the patient-specific resistivity of cochleae tissues in 496 

forward-3PNN. Thus, providing future validation to the inferred mean cochlear tissue 497 

resistivities (e.g. 6.6 kΩcm, n = 37) can potentially further improve the predictive power of 498 

forward-3PNN. Alternatively, future investigations which explore the correlation between the 499 

3PNN inferred cochlear tissue resistivity and the cochlear physiological and pathological 500 

status, may provide a foundation for the use of CI telemetry as a diagnostic indicator. This 501 

might enable the detection of early abnormalities after CI implantation, without resorting to 502 

imaging methodologies that use ionizing radiation in patients (which particularly should be 503 

avoided in children). 504 

 505 

Overall, 3PNN was demonstrated to be predictive for correlating the off-stimulation EFI and 506 

the geometric parameters collected from clinical patient CTs, without the need for model 507 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted October 13, 2021. ; https://doi.org/10.1101/2020.11.28.20240176doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.28.20240176


23 

 

adjustment and re-calibration. This was validated with clinical EFI data of four different CI 508 

types (up to a position of 18.5 mm along the cochlear lumen),  and 28 out of 31 predictions 509 

show good accuracy, MAPE < 12% (median MAPE = 8.6%). Therefore, the co-modelling 510 

framework has a potential capability of forecasting the stimulation performance of CIs from 511 

different manufacturers, hence assisting the development of CI electrode arrays tailored to 512 

patient’s cochlear anatomy. Comparing to conventional animal and cadaver models, the 513 

‘print-and-learn’ modelling concept proposed here offers a physical-manipulatable, ethical 514 

and economic approach, which may help reduce the need for animal experiments. 515 

Complemented with FEM, 3PNN could form a building block for future cochlear digital 516 

twins for CI testing. With the rising usage of neuromodulating electronic implants, we 517 

anticipate that our ‘print-and-learn’ co-modelling concept could facilitate the physical 518 

modelling and digital twin innovation of other bioelectronic implant prototypes, beyond its 519 

applications in CIs. 520 

  521 
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Methods 522 

3D printing material preparation 523 

The fugitive ink was prepared by dissolving 30 w/v% Pluronic F127 (P2443, Sigma-Aldrich) 524 

in a 1 w/v% NaCl (10616082, Fisher Scientific) solution. For creating 3D printed models 525 

made of PDMS or electro-mimetic bone matrices, PDMS elastomer (SylgardTM 184 Dow, 526 

10:1 base polymer to curing agent ratio) was used. The pre-crosslinked mixture was poured 527 

in a petri dish, and degassed in a vacuum desiccator for at least 3 hours prior to printing. For 528 

preparing 3D printed models made of hydrogels, hydrogels were prepared with 1 w/v% NaCl 529 

solution as the base solution according to their weight/volume concentration (w/v%) listed in 530 

Supplementary Fig.5a. The types of hydrogels investigated were gelatin from porcine skin 531 

(G1890, Sigma-Aldrich), xanthan gum (G1253, Sigma-Aldrich), agarose (A9539, Sigma-532 

Aldrich), gellan gum (P8169, Sigma-Aldrich); the types of fillers were talc (243604, Sigma-533 

Aldrich), hydroxyapatite (21223, Sigma-Aldrich) and PDMS microbeads.  534 

 535 

Embedded 3D printing of biomimetic cochleae 536 

All models were fabricated with a bespoke multi-material robotic bioprinter. Five model 537 

descriptors (basal lumen diameter, taper ratio, cochlear width, cochlear height, and matrix 538 

resistivity) were used to define the model features. Prior to the fabrication process, the 539 

structure of the microchannels in the PDMS matrix was designed on Slic3R (1.3.0, 540 

slic3R.org) for tuning the void in the electro-mimetic bone matrix to achieve the desired 541 

matrix resistivity (Supplementary Fig.3a). The correlation between the resistivity of the 542 

electro-mimetic bone matrix and its void fraction can be found in Supplementary Fig.3e. The 543 

printing path of the microchannel structure was then converted to Gcode using Slic3R. 544 

 545 
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In the fabrication process (Supplementary Video 2), first, the sacrificial interconnected grid 546 

network designed above was embedded printed inside uncured PDMS using a 30 w/v% 547 

Pluronic F127 ink. At ambient temperature, Pluronic F127 ink at 30 w/v% retains its 3D 548 

structural integrity inside the PDMS matrix, and the interconnected network provides 549 

sufficient mechanical support for the following embedded printing of a cochlea-shaped 550 

structure. Next, a cochlea-shaped spiral was printed inside the electro-mimetic bone matrix. 551 

The printing path of this cochlea-shaped structure was defined by the four geometric 552 

descriptors and a spiral trajectory derived from the mathematical model of human cochlear 553 

geometry developed by Pietsch et al.44. The correlation between the dimensions of the 554 

features and the process parameters of the printer can be found in Supplementary Fig.22. The 555 

distances between the edges of the model and the printed cochlear lumen are at least 4 mm to 556 

ensure that the boundary is far enough and will not cause any effect on the EFI measurement. 557 

The total printing time of a model ranges from 30 min to 3 hrs depending on the density of 558 

the embedded interconnected channels. After printing, the matrix was cured at 60 oC in an 559 

oven for 3 hrs and stored in a bath of 1 w/v% NaCl solution at 4 oC for dissolving the 560 

sacrificial Pluronic F127 embedded in the electro-mimetic bone matrix. The NaCl bath was 561 

changed several times to ensure that all Pluronic F127 inside the matrix was removed. In 562 

total, 82 biomimetic cochlear models with different combinations of model descriptors were 563 

fabricated. The specifications of the 82 models can be found in Supplementary Table 7. 564 

 565 

The hydrogel and hydrogel-fillers models were similarly fabricated but without the procedure 566 

of creating the microchannel networks. The composition of the models tested in this study 567 

can be found in Supplementary Fig.5a. The hydrogel and hydrogel-fillers solutions were 568 

heated at 40 oC during printing to maintain a liquid state. The models were then solidified at 569 

room temperature via thermal crosslinking45.   570 
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EFI measurements in 3D printed biomimetic cochleae 571 

Prior to measurement, the 3D printed biomimetic cochleae were flushed with a 1 w/v% NaCl 572 

solution to ensure no bubble trapped in the microchannels and the cochlear lumen of the 573 

models. 1 w/v% NaCl solution was used here as it has a similar resistivity to the conductive 574 

perilymph inside human cochleae (Supplementary Fig.3c). All EFI (or transimpedance 575 

matrix) measurements of the 3D printed models were obtained using either an Advanced 576 

Bionics (AB) HiRes 90K® implant with HiFocusTM 1J electrode array (CI1J), an Advanced 577 

Bionics HiResTM Ultra implant with HiFocusTM SlimJ electrode array (CISlimJ) or a 578 

CochlearTM Nucleus® Profile with slim straight electrode (CI522). Both CI1J and CISlimJ have 579 

16 electrodes in total with electrode 1 being the apical-most electrode and electrode 16 being 580 

the basal-most electrode. CI522 has 22 electrodes in total with electrode 22 being the apical-581 

most electrode and electrode 1 being the basal-most electrode. The electrode array was 582 

inserted in the cochlear lumen of the model until the distal marker of the electrode array was 583 

positioned at the lumen opening of the model, as illustrated in Supplementary Fig.23, and the 584 

model was placed on top of the extracochlear case ground of the CI (known as the ‘case 585 

ground’ of CI1J and CISlimJ, or the ‘MP2 plate extracochlear electrode’ of CI522). The EFI 586 

profiles were acquired using the telemetry function of the CI with either the AB Volta version 587 

1.1.1 software (research only) or Custom Sound® EP 5.1 (with research option) using the 588 

default stimulation and recording settings. The default stimulation and recording setting used 589 

in AB Volta software is a biphasic pulse with pulse width and amplitude of 36 µs (equivalent 590 

Fourier fundamental frequency ~14 kHz) and 32 µA, and a maximum sampling rate of 56 591 

kHz, whereas Custom Sound® EP 5.1 employs a setting of a biphasic pulse with pulse width 592 

and amplitude of 25 µs (equivalent Fourier fundamental frequency ~20 kHz) and 125 µA 593 

respectively. During the acquisition of EFI, each electrode was activated individually at a 594 

time in monopolar mode, and subsequently other electrodes measured the resulting voltage at 595 
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their positions. All electrodes on the electrode array were activated one-by-one to generate 596 

the entire EFI profile. Electrodes 12 and 16 of the CI1J electrode array were missing as 597 

received, but this does not affect the measurements of other electrodes and the general shape 598 

of the EFI profile. For all the data presentations, the on-stimulation EFI data (contact 599 

impedance) were not compared, due to the fact that on-stimulation EFI data is dominated by 600 

the electrode interface resistance7,46 and do not inherently reflect the electroanatomical 601 

characteristics of human cochleae (or the 3D printed biomimetic cochleae); and on-602 

stimulation EFI data varies over time47 and among different CIs.  603 

 604 

Resistivity measurements 605 

Resistivities of NaCl solutions, hydrogels and hydrogel-fillers matrices 606 

Impedance properties of NaCl solutions at various concentrations (Supplementary Fig.3c), 607 

hydrogel and hydrogel-fillers matrices (Supplementary Fig.5a) were measured using a four-608 

terminal configuration with Solartron 1260 impedance analyser and SMaRT 3.0.1 software. 609 

In this configuration, the current was passed through the sample using two 1.25 cm2 square 610 

electrode plates, and the voltage was measured using two separate inner electrodes. 611 

Resistivity was converted from the plateau impedance magnitude using the following 612 

relation, 613 

𝜌 = |𝑧|
𝐴

𝑑
 (3) 

 614 

where ρ = the resistivity of the sample (plateau value), |z| = the plateau impedance magnitude, 615 

A = the area of the electrode plate in contact with the sample, and d = the spacing between the 616 

two inner electrodes, which was 8.4 mm here.  617 

  618 
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Resistivities of electro-mimetic bone matrices 619 

The resistivity of the electro-mimetic bone matrix ρmatrix associated with the plateau 620 

impedance magnitude (~300 Hz – 100 kHz) was determined using transmission line method 621 

(n ≥ 3). In this method, each sample was segmented into at least 4 segments. Impedance of 622 

each segment was obtained using a two-terminal configuration with Solartron analyser, and 623 

the width of each segment was measured. The total impedance 𝑍𝑡𝑜𝑡 can be expressed by 624 

𝑍𝑡𝑜𝑡 = 𝑍𝑐 + 𝑍𝑠𝑎𝑚𝑝𝑙𝑒, where Zc is the contact impedance between the electrode plates and the 625 

samples, and Zsample is the impedance of the sample. The plateau value of the total impedance 626 

magnitudes |Ztot| of the segments were therefore plotted against the widths of the segments L, 627 

and a linear regression was then used to fit the experimental data (see Supplementary Fig.3d). 628 

ρmatrix was determined by multiplying the gradient of the linear regression 
𝜕|𝑍𝑡𝑜𝑡|

𝜕𝐿
  with the area 629 

of the electrode plate in contact with the sample A, denoted as follows: 630 

𝜌𝑚𝑎𝑡𝑟𝑖𝑥 = 𝐴
𝜕|𝑍𝑡𝑜𝑡|

𝜕𝐿
  (4) 

 631 

Electrochemical impedance spectroscopy (EIS) measurements 632 

Electrochemical impedance spectroscopy measurements of a human cadaveric cochlea in a 633 

head, and 3D printed cochlear models made of hydrogel and electro-mimetic bone matrix 634 

were carried out using an impedance analyser (RS PRO LCR-6100) with a three-terminal 635 

configuration48. The measurements were taken at frequencies ranging from 10 Hz to 100 636 

kHz, which covers the most common operating frequencies of CIs. 637 

 638 

Micro-computed tomography scans of the 3D printed biomimetic cochleae 639 

CT scans of samples were acquired using a micro-CT microscope (ZEISS Xradia 510 Versa) 640 

with the following scanning parameters: Source filter LE2, tube voltage 80 kV, tube current 641 

88 mA, exposure time 2 s, Bin 2, image taken 1024 and pixel size 17.8 µm. The volume 642 
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rendering of the samples was carried out using 3D Slicer (Version 4.10.2, www.slicer.org/49). 643 

The dimensions of the samples were measured using the measurement tool in 3D Slicer.  644 

To evaluate the positions of electrodes in the samples and to avoid the image distortion 645 

caused by the metallic artifacts from electrodes, pre- and post-insertion CT scans of the 646 

samples were acquired. CT volume of the cochlear lumen of the sample was rendered from 647 

the pre-insertion CT scan where there is no metallic artifact, whereas CT volume of the 648 

electrode array in the sample was rendered from the post-insertion CT scan. The two CT 649 

volumes were then aligned, and the relative position of each electrode from the centre of the 650 

cross-sectional plane of the cochlear lumen was measured using ImageJ. The 2D images of 651 

the electrode array inside the cochlear lumen of the samples were acquired using the 652 

following parameters: tube voltage 80 kV, tube current 88 mA, exposure time 5 s, Bin 2 and 653 

pixel size 25.6 µm. 654 

 655 

Patient EFI profiles and CT scans 656 

The use of anonymous patient EFI profiles with or without paired CT scans in our study was 657 

approved by the University of Cambridge Human Biology Research Ethics Committee 658 

(HBREC.2019.42) and the Cambridge Biomedical Research Centre (Ref: A095451). 659 

Informed consent from the human participants is not required for this study as the clinical 660 

data used here are retrospective and anonymous. In total, 128 clinical intra-operative EFIs 661 

(also known as transimpedance matrix profiles) were used in this study. Of the 128 profiles, 662 

91 profiles (without paired CT scan data) were kindly provided by Advanced Bionics® and 663 

the rest were obtained from 37 anonymous patients (31 with paired CT scan data and 6 664 

without paired CT data) who have undergone cochlear implantation at the Emmeline Centre 665 

for Hearing Implants in Cambridge, UK. As the implant types of the EFIs provided by 666 

Advanced Bionics® are not known, their insertion depths were assumed to be equal to the 667 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted October 13, 2021. ; https://doi.org/10.1101/2020.11.28.20240176doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.28.20240176


30 

 

suggested insertion depth of HiFocusTM 1J electrode array. The 37 anonymous EFI profiles 668 

acquired in our centre were randomly chosen to represent the variation in the patient data 669 

without CT scans (n = 97) (Supplementary Fig.12a). Out of the 37 EFI profile data sourced 670 

from our centre, 6 profiles were acquired from the Advanced Bionics HiRes 90K® implant 671 

with HiFocusTM 1J electrode array, 17 profiles from the Advanced Bionics HiResTM Ultra 672 

implant with HiFocusTM SlimJ electrode array, 6 profiles from the CochlearTM Nucleus® 673 

Profile Plus with slim straight electrode CI622, and 8 profiles from the CochlearTM Nucleus® 674 

Profile with slim straight electrode CI522. These EFI profiles were collected using the 675 

telemetry function of the CI with either the AB’s Volta 1.1.1 software (research only) and the 676 

Custom Sound® EP 5.1 software (with TIM research option) using the default stimulation and 677 

recording settings.  678 

 679 

Thirty-one CT scans of the patients (which had paired EFI) implanted via the round window 680 

approach with either a HiFocusTM SlimJ electrode array (n = 17), a CochlearTM Nucleus® 681 

CI622 electrode (n = 6), or a CochlearTM Nucleus® CI522 electrode (n = 8) were used in the 682 

validation of 3PNN. They were obtained as part of the routine pre-operative assessment at 683 

our centre, and were acquired in helical scan mode using Siemens scanners (Siemens Flash 684 

and Siemens Definition AS) with tube voltage of 120 kV and automatic tube current ranging 685 

from 139 to 214 mA. The images were reconstructed at a resolution of 0.4 x 0.4 x 0.4 mm 686 

using Siemens 80u bone reconstruction algorithm in axial plane.  687 

 688 

Development of 3PNN 689 

3PNN was developed by employing a multilayer perceptron (MLP), a class of feedforward 690 

artificial neural network (NN), to learn the mapping from the inputs (the 5 model descriptors 691 

of the biomimetic cochleae, the stimulus position and the recording position) to the outputs 692 
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(EFI, also known as transimpedance matrix profiles) (see Fig.5a, for detail of the choice of 693 

model see Supplementary Note 2). A MLP model is a fully connected network that consists 694 

of an input layer, hidden layers and an output layer of perceptrons (or nodes), and by varying 695 

the weight of how each of the nodes are connected, it approximates the complex relationship 696 

between the inputs and the output50. The activation function of the nodes was chosen to be 697 

the rectified linear unit (ReLU) function. Tensorflow51 (version 2.1.0), an open source Python 698 

library, was used to construct the MLP models. 3PNN was trained using backpropagation 699 

with the Adam stochastic optimization method52. Since 3PNN was developed based on the 700 

EFI profiles acquired by AB HiFocusTM 1J electrode array with electrodes at 2 – 18.5 mm 701 

along the cochlear lumen53, the predictable positions of EFIs are 2 – ~18.5 mm along the 702 

cochlear lumen.  703 

 704 

The performance of NN models depends on a good setting for hyperparameters, a grid search 705 

varying the number of hidden layers from 1 to 10 (1, 2, 3, 5, 10) and nodes from 16 to 64 (16, 706 

24, 32, 64) was performed to determine the best performing hyperparameters (see 707 

Supplementary Fig.9 for detail of the hyperparameter tuning). The best performing 708 

hyperparameters were defined as the hyperparameters that yield the highest average R2 score 709 

and the smallest average median absolute percentage error (MAPE) in 10-fold cross-710 

validation54. We found that the model trained with 1 hidden layer and 32 nodes has the 711 

highest average R2 score (0.87) and a smallest MAPE (11.9%). After tuning the 712 

hyperparameters, the 3PNN was retrained on the full dataset with the best performing 713 

hyperparameters to produce the final model.  714 

 715 

Inverse prediction was carried out by the Approximate Bayesian Computation-Sequential 716 

Monte Carlo (ABC-SMC) algorithm55. ABC is a computational framework under Bayesian 717 
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statistics that uses a sequence of intermediate threshold [ε0 > ε1 > ε2 > ε3 >…. > εf] to 718 

converge towards the optimal approximate posterior distribution through a number of 719 

intermediate posterior distributions. Here, the algorithm infers the distribution of the model 720 

descriptors that leads to an EFI profile with a MAPE less than a predefined threshold (εf) to 721 

the given EFI profile. εf was determined as the smallest MAPE the programme could reach 722 

from the previous threshold level within two hours when running the programme with a 723 

threshold sequence from 20% to 2% in increments of 0.5% (predictions with unknown 724 

geometric descriptors) or 0.1% (predictions with known geometric descriptors), which is 725 

subject to the noise level of the data. To approximate the final posterior distribution (which 726 

does not have a closed-form expression), for each inverse prediction, 1,000 samples of the 727 

posterior distribution of the model descriptors were plotted. PINTS56, an open-source Python 728 

package, was used to perform the inference and sampling.  729 

 730 

Clinical predictions of 3PNN 731 

As this study aims to predict the most likely EFI outcomes, in all predictions, the stimulating 732 

and the recording electrode positions were assumed to follow the CI specification, as shown 733 

in Supplementary Table 2. In the validation of forward-3PNN, patients’ model descriptors 734 

measured from their CT scans and the mean reported resistivity of live human skulls (9.3 735 

kΩcm) were used as the inputs in the forward predictions of patient EFIs. EFI arising from 736 

off-stimulation positions up to 18.6 mm along the cochlear lumen were predicted and 737 

compared with the corresponding EFI measurements acquired in patients. Each forward 738 

prediction takes ~ 0.4 s. For all inverse predictions performed in this study, patients’ model 739 

descriptors were predicted using their off stimulation EFI profiles up to 18.6 mm along the 740 

cochlear lumen. Supplementary Table 8 summarises the values of the final MAPE threshold, 741 

εf, used in the inverse predictions in this study. 742 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted October 13, 2021. ; https://doi.org/10.1101/2020.11.28.20240176doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.28.20240176


33 

 

 743 

Production of 3D printed models that give patient-specific EFI profiles 744 

Two extreme on-demand 3D printed models that give patient-specific EFI profiles were 745 

fabricated using the medians of the predicted model descriptors acquired from inverse-3PNN, 746 

as stated in Supplementary Fig.18 (matrix resistivity 6.5 versus 0.7 kΩcm, taper ratio 0.95 747 

versus 0.71, basal lumen diameter 2.4 versus 2.3 mm, cochlear width 9.6 versus 11.8 mm, 748 

and cochlear height 4.3 versus 3.9 mm). The EFIs of the models were measured using a 749 

HiFocusTM 1J electrode array, which is the same type of electrode implanted in the patients.  750 

 751 

Sensitivity analysis for 3PNN 752 

Sobol’s method57, a global sensitivity analysis technique for nonlinear models, was employed 753 

to investigate the contribution of each 3PNN model descriptor to the model output (EFI) and 754 

its summary statistics (Supplementary Fig.17 and Supplementary Tables 4-5). A total of 755 

1.68x105 samples of model descriptors were generated using Saltelli’s sequence58. On top of 756 

the EFI output, for the ease of interpretation, two summary statistics were analysed in this 757 

study; they are the baseline (the coefficient C in Equation (1)) and the slope at x = 1 mm (the 758 

coefficient product Ab in Equation (2)) of the EFI outputs. The sensitivity of each model 759 

descriptors on the EFI and its summary statistics were quantified using the Sobol first-order 760 

sensitivity indices (Si), which describe the contribution to the variance of the EFI or its 761 

summary statistics caused by one model descriptor only; the second-order indices (Sij), 762 

describing the contribution to the output variance due to the interaction of two model 763 

descriptors; and the total-order indices (ST), measuring the all order effect contribution to the 764 

output variance for each model descriptor. The analyses were performed using a Python open 765 

source package SALib59. Full results of the Sobol sensitivity analysis are available from the 766 

GitHub repository60. 767 
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 768 

Statistical method  769 

Median absolute percentage error (MAPE) was chosen as the error measure in this study 770 

because it presents the percentage change due to the error and avoids being too sensitive to 771 

outliers. The MAPE between the predicted EFIs (EFIpred) and the experimental EFIs (EFIexp), 772 

and the MAPE between the predicted geometric descriptors and the actual CT-measurements 773 

were evaluated using Equation (5) and Equation (6) respectively, where 𝑎𝑖𝑗,𝑒𝑥𝑝 and 𝑎𝑖𝑗,𝑝𝑟𝑒𝑑 774 

are the entries in EFIexp and EFIpred, and 𝐺𝐶𝑇 and {𝐺1, 𝐺2, … , 𝐺1000} are the CT-measured 775 

geometric features and the 1,000 predicted geometric features. Similarity is defined by 776 

Equation (7).   777 

EFIexp = [

a11,exp ⋯ a1j,exp

⋮ ⋱ ⋮
ai1,exp ⋯ aij,exp

]   (5.1) 

EFIpred = [

a11,pred ⋯ a1j,pred

⋮ ⋱ ⋮
ai1,pred ⋯ aij,pred

]  (5.2) 

MAPEEFI = median of {
|a11,pred− a11,exp,|

a11,pred
,  

|a12,pred− a12,exp,|

a12,pred
, …. ,  

|aij,pred− aij,|

aij,pred
}  x 100%  (5.3) 

MAPEgeometric features = median of {
G1−GCT

GCT
,

G2−GCT

GCT
 , …. , 

G1000−GCT

GCT
}  x 100%  (6) 

Similarity (%) = 100 (%) – MAPE (%)  (7) 

 778 

Data availability  779 

The raw data of the 3PNN validation, Sobol sensitivity analysis, the stimulus spread trend, 780 

the resistivity prediction and the uncertainty sensitivity analyses have been deposited in 781 

Github (https://github.com/chonlei/3PNN) and in Zenodo under accession code 782 

(https://doi.org/10.5281/zenodo.5353394)60. Other data generated in this study are provided 783 

in the Source Data file. Restrictions apply to the availability of the clinical EFI and CT scan 784 

data due to ethical restrictions as their containing information could compromise patient 785 
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confidentiality. These data will be made available upon reasonable request to the 786 

corresponding authors and in compliance with the ethical guideline used in the current study 787 

  788 
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Code availability 789 

The code of the neural network model and the Sobol sensitivity analysis used in this study are 790 

available on Github (https://github.com/chonlei/3PNN) and through Zenodo 791 

(https://doi.org/10.5281/zenodo.5353394)60. 792 
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