Quantifying superspreading for COVID-19 using Poisson mixture distributions
View ORCID ProfileCécile Kremer, Andrea Torneri, Sien Boesmans, Hanne Meuwissen, Selina Verdonschot, Koen Vanden Driessche, Christian L. Althaus, Christel Faes, Niel Hens
doi: https://doi.org/10.1101/2020.11.27.20239657
Cécile Kremer
1Interuniversity Institute for Biostatistics and statistical Bioinformatics, Data Science Institute, Hasselt University, Hasselt, Belgium
Andrea Torneri
2Centre for Health Economics Research and Modelling Infectious Diseases, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
Sien Boesmans
3Faculty of Sciences, Hasselt University, Hasselt, Belgium
Hanne Meuwissen
3Faculty of Sciences, Hasselt University, Hasselt, Belgium
Selina Verdonschot
3Faculty of Sciences, Hasselt University, Hasselt, Belgium
Koen Vanden Driessche
4Division of Pulmonology, Department of Pediatrics, Antwerp University Hospital, Edegem, Belgium
5Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
Christian L. Althaus
6Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
Christel Faes
1Interuniversity Institute for Biostatistics and statistical Bioinformatics, Data Science Institute, Hasselt University, Hasselt, Belgium
Niel Hens
1Interuniversity Institute for Biostatistics and statistical Bioinformatics, Data Science Institute, Hasselt University, Hasselt, Belgium
2Centre for Health Economics Research and Modelling Infectious Diseases, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
Data Availability
The data from Hong Kong and India used in this study are publicly available. The empirical offspring distribution from Rwanda and the code to generate data as used in the simulation study, as well as all R code used in the analyses, are available on GitHub (https://github.com/cecilekremer/PoiMixtSS).
Posted November 30, 2020.
Quantifying superspreading for COVID-19 using Poisson mixture distributions
Cécile Kremer, Andrea Torneri, Sien Boesmans, Hanne Meuwissen, Selina Verdonschot, Koen Vanden Driessche, Christian L. Althaus, Christel Faes, Niel Hens
medRxiv 2020.11.27.20239657; doi: https://doi.org/10.1101/2020.11.27.20239657
Quantifying superspreading for COVID-19 using Poisson mixture distributions
Cécile Kremer, Andrea Torneri, Sien Boesmans, Hanne Meuwissen, Selina Verdonschot, Koen Vanden Driessche, Christian L. Althaus, Christel Faes, Niel Hens
medRxiv 2020.11.27.20239657; doi: https://doi.org/10.1101/2020.11.27.20239657
Subject Area
Subject Areas
- Addiction Medicine (383)
- Allergy and Immunology (699)
- Anesthesia (192)
- Cardiovascular Medicine (2848)
- Dermatology (244)
- Emergency Medicine (429)
- Epidemiology (12559)
- Forensic Medicine (10)
- Gastroenterology (806)
- Genetic and Genomic Medicine (4433)
- Geriatric Medicine (401)
- Health Economics (716)
- Health Informatics (2850)
- Health Policy (1048)
- Hematology (375)
- HIV/AIDS (893)
- Medical Education (413)
- Medical Ethics (114)
- Nephrology (462)
- Neurology (4192)
- Nursing (222)
- Nutrition (617)
- Oncology (2204)
- Ophthalmology (624)
- Orthopedics (254)
- Otolaryngology (318)
- Pain Medicine (268)
- Palliative Medicine (82)
- Pathology (486)
- Pediatrics (1171)
- Primary Care Research (483)
- Public and Global Health (6779)
- Radiology and Imaging (1490)
- Respiratory Medicine (900)
- Rheumatology (430)
- Sports Medicine (369)
- Surgery (473)
- Toxicology (57)
- Transplantation (201)
- Urology (174)