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Abstract

The effective reproductive number Re is a key indicator of the growth of an epidemic. Since
the start of the SARS-CoV-2 pandemic, many methods and online dashboards have sprung up
to monitor this number through time. However, these methods are not always thoroughly tested,
correctly placed in time, or are overly confident during high incidence periods. Here, we present
a method for near real time estimation of Re, applied to epidemic data from 170 countries. We
thoroughly evaluate the method on simulated data, and present an intuitive web interface for
interactive data exploration. We show that in the majority of countries the estimated Re dropped
below 1 only after the introduction of major non-pharmaceutical interventions. For Europe the
implementation of non-pharmaceutical interventions was broadly associated with reductions in
the estimated Re. Globally though, relaxing non-pharmaceutical interventions had more varied
effects on subsequent Re estimates. Our framework is useful to inform governments and the
general public on the status of the epidemic in their country, and is used as the official source
of Re estimates in Switzerland. It further allows detailed comparison between countries and in
relation to covariates such as implemented public health policies, mobility, behaviour, or weather
data.
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1 Introduction1

During an infectious-disease outbreak, such as the ongoing SARS-CoV-2 pandemic, accurate moni-2

toring of the epidemic situation is critical to the decision-making process of governments and public3

health authorities. The magnitude of an epidemic, as well as its spatial and temporal infection dy-4

namics determine the exposure risk posed to citizens in the near and long-term future, the pressure5

on critical infrastructure like hospitals, and the overall burden of disease to society.6

The effective reproductive number Re is a key indicator to describe how a pathogen spreads in a7

given population at a given time [1, 2, 3]. It quantifies the average number of secondary infections8

caused by a primary infected individual. It also has a natural threshold value of 1, below which the9

epidemic reduces in size [1, 4]. Re typically changes during the course of an epidemic as a result of10

the depletion of susceptible individuals, changed contact behaviour, seasonality of the pathogen, or11

the effect of pharmaceutical and non-pharmaceutical interventions (NPIs) [1, 5, 6, 7, 8].12

Different methods have been developed to estimate Re. They broadly fall into two categories: those13

based on compartmental models, e.g. [5, 9, 10], and those that infer the number of secondary infec-14

tions per infected individual directly, based on a time series of infection incidence, e.g. [11, 12]. We15

focus on the latter class of methods as they rely on few, simple assumptions, are less prone to model16

misspecifications, and are well-suited for near real-time monitoring of the epidemic [13]. In particular,17

we consider the EpiEstim method of Cori et al. [12].18

The infection incidence based methods face the difficulty that infection events cannot be observed19

directly [13]. These events can only be surmised with a certain time lag, e.g. when individuals show20

symptoms and are tested, via contact tracing, or via periodic testing of a cohort of individuals [4]. To21

use these methods, one must thus employ a proxy for infection events (e.g. the observed incidence of22

confirmed cases, hospitalisations, or deaths). This proxy is either used directly in lieu of the infection23

incidence, or it is used as an indirect observation to infer past infections [13]. It is important to relate24

Re estimates to the timing of infection events because this allows multiple proxies of infection events,25

with differing delays, to be used independently to monitor the same epidemic [6]. In addition, any26

factors that may affect transmission dynamics will do so at the time infections occurred. If Re is27

placed properly on this timescale, it can be compared directly to external covariates like weather28

and interventions [8, 14]. However, depending on the method used to infer the timing of infections29

from the observed incidence time series, one can also introduce biases such as smoothing sudden30

changes in Re [13, 15, 16].31

Several methods, software packages, and online dashboards have been developed to monitor de-32

velopments in Re during the SARS-CoV-2 pandemic (e.g. [17, 18, 19]). A pipeline for the continuous33

estimation ofRe using infection incidence based methods should include four critical steps: (i) gather-34

ing and curation of observable proxy data of infection incidence, (ii) reconstruction of the unobserved35

infection events, (iii) Re estimation, and (iv) communication of the results, including uncertainty and36

potential biases. These four axes also define the differences between existing methods. The first37

step dictates e.g. the geographical scope of the Re estimates reported. During the SARS-CoV-238

epidemic, many local public health authorities have made case data publicly available. Depending39

on the data sources used, estimated Re values span from the scale of a city, region, country, or40

the entire globe [18, 20, 21]. The second step, i.e. going from a noisy time series of indirect obser-41

vations to an infection incidence time series, is technically challenging. Biases can be introduced42

easily, and accurately assessing the uncertainty around the inferred infection incidence is a chal-43

lenge in itself [13]. For the third step, i.e. to estimate Re from a timeline of infection events, there are44

ready-to-use software packages [12, 22], which produce Re estimates along with an estimate of the45

uncertainty resulting from this step. Finally, the communication of results to the general public and46

decision makers is essential, but often overlooked.47

We present a pipeline, together with an online dashboard, for near real-time monitoring of Re. We48

use publicly available data gathered by different public health authorities. Wherever possible, we49

show results obtained from different types of case reports (confirmed cases, hospitalisations or50

2

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 18, 2021. ; https://doi.org/10.1101/2020.11.26.20239368doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.26.20239368
http://creativecommons.org/licenses/by-nc/4.0/


deaths). This allows comparison across observation types and to balance the biases inherent in51

the different types. Results are updated daily, and can be found on https://ibz-shiny.ethz.52

ch/covid-19-re-international/. The results of this method are used directly in public health53

policy making in Switzerland, and are also communicated by the Federal Office of Public Health54

https://www.covid19.admin.ch/en/overview. Through continuous engagement with the public,55

scientific experts, and thorough evaluation on simulated scenarios, we have created a robust and56

transparent method of enduring relevance for the current and future epidemics.57

Because Re estimates reflect changes in virus transmission dynamics, they can be used to as-58

sess the impact of public health interventions. Prior work on the relative impact of specific non-59

pharmaceutical interventions on Re has shown conflicting results [8, 23, 24, 14, 25, 26]. These60

differences can be attributed mostly to different model formulations [14, 27], including differing as-61

sumptions on the independence of NPIs [27], differing timescales over which the effect of the NPI62

was analysed [8, 25], whether the time point of the NPI was assumed fixed or allowed to vary [26],63

and differing geographical scope. There is a need to address whether the strength of measures and64

the speed of their implementation resulted in a larger and faster decrease in the Re, and specifically65

whether highly restrictive lockdowns were necessary to achieve Re < 1. Further, it remains unclear66

how the impact of interventions differed across time and geographical regions. We add to this de-67

bate by using our Re estimates across geographical regions and timescales that include the lifting68

of many NPIs. While we cannot determine causal relationships, we use our method to assess likely69

associations.70

2 Results71

A pipeline to estimate the effective reproductive number of SARS-CoV-2. We have developed72

a pipeline to estimate the time-varying effective reproductive number of SARS-CoV-2 from observed73

COVID-19 case incidence time series (see Materials and Methods). The objective was to achieve74

stable estimates for multiple types of data, and with an adequate representation of uncertainty. To75

the best of our knowledge, no existing method fulfills this aim out-of-the box. At the core, we use the76

EpiEstim method [12] to estimate Re from a time series of infection incidence. To infer the infection77

incidence from a time series of (noisy) observations, we extended the deconvolution method by78

Goldstein et al. to deal with partially observed data and time-varying delay distributions [13, 15].79

We smooth the data prior to deconvolution to reduce numerical artefacts resulting from their weekly80

patterns and overall noisy nature. We compute pointwise 95% confidence intervals for the true Re81

values, using the union of a block bootstrap method, designed to account for variation in the case82

observations, and the credible intervals from EpiEstim. As observed incidence data we use COVID-83

19 confirmed case data, hospital admissions, and deaths (with type specific delay distributions, see84

Materials and Methods).85

Evaluation on simulated data. The method was evaluated with simulations of several epidemic86

scenarios (see Materials and Methods for more details). For each scenario, we specified an Re time87

series, from which we simulated infection - and noisy observation incidence time series 100 times.88

Then we used our method to infer the infection incidence and Re from the observation incidence,89

and compared these to the true underlying Re values (Fig. 1). The specified Re trajectories were90

parametrised in a piecewise linear fashion. To mimic the course of the epidemic observed in many91

European countries in 2020 [28], we started with Re values around 3, then dropped to a value below92

1 (the ‘initial decrease’), stayed around 1 in summer and slightly above 1 (the ‘second wave’) in93

autumn (Fig. 1). We added additional noise to the observations, to mimic the observation noise in94

different countries around the world.95

The results show that our method allows accurate estimation of the effective reproductive number96

(Fig. 1; metrics described in the Materials and Methods). Across most time points, our 95% confi-97

dence interval includes the true value of Re (coverage; Fig. 1B). The low root mean squared error98

3

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 18, 2021. ; https://doi.org/10.1101/2020.11.26.20239368doi: medRxiv preprint 

https://ibz-shiny.ethz.ch/covid-19-re-international/
https://ibz-shiny.ethz.ch/covid-19-re-international/
https://ibz-shiny.ethz.ch/covid-19-re-international/
https://www.covid19.admin.ch/en/overview
https://doi.org/10.1101/2020.11.26.20239368
http://creativecommons.org/licenses/by-nc/4.0/


Figure 1: A The specified Re trajectory (black line; described in Methods) was used to simulate a
trajectory of reported cases (with noise) 100 times. From each trajectory we estimated Re (yellow
boxplots), and constructed a 95% confidence interval (purple boxplots of the lower/upper endpoint).
B The fraction of simulations where the true Re value was within the 95% confidence interval. The
dashed red line indicates the nominal 95% coverage. C The root mean squared relative error for
every time point. D The fraction of simulations where we estimate Re to be significantly above or
below one, depending on the true value of Re.

(RMSE) indicates that our point estimates closely track the true Re value (Fig. 1C). Importantly, we99

correctly infer whether Re is significantly above or below 1 in this scenario: we never infer that Re100

is significantly above 1 when the true value is below 1, and only for two time points the estimates101

are significantly below 1 for some simulations when the true value is a little above 1 (Fig. 1D). Due102

to the smoothing step prior to deconvolution, we slightly misestimate the Re during steep slopes103

(see Supplementary Discussion 7.2, and Fig. S2 for more scenarios). However, the inclusion of104

smoothing greatly improves our performance across scenarios with different types of observation105

noise (Figs. S3, S4). For a wide range of infection incidences, our 95% confidence interval is infor-106

mative and covers the true value of Re (Fig. S5). This is the merit of our block bootstrap method,107
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and greatly improves the out-of-the-box EpiEstim method. Our method also clearly outperforms the108

common approach of using a fixed delay to infer the infection incidence time series (Supplementary109

Fig. S6).110

We further tested the impact of model misspecification. Misspecifying the mean of the delay distribu-111

tion between infection and case observation by up to 2 days does not have a strong effect on the Re112

estimates (Supplementary Fig. S7). Correspondingly, our ability to allow for empirical, time-varying113

distributions in the estimation has a pronounced effect on the estimated Re only for large changes in114

the mean of the delay distribution (Supplementary Fig. S8). Further model misspecifications, e.g. of115

the generation time interval, have been investigated by Gostic et al. [13].116

Figure 2: A Stability of Swiss Re estimates upon adding additional days of observations. For each
day we show Re estimates and the corresponding uncertainty intervals, from the first possible esti-
mate up to estimates including 3 additional weeks of data. Line segments correspond to 3 weeks
of estimates made with the same input data (e.g. data up to December 1st) and were coloured for
ease of distinction. The left of each segment corresponds to stable estimates, whereas the right
endpoint will be unstable. B Percentage of the first estimated CI that is contained in the stable CI
based on data from 30 April 2021. This percentage was calculated as the width of the intersection
of both CIs, divided by the width of the first CI. The colour indicates whether the stable Re estimate
was contained in the first reported CI. In both rows, the left column shows uncertainty intervals from
EpiEstim on the original data, and the right our improved 95% confidence intervals. Both columns
include the same deconvolution steps.

Stability of the estimates used for situation monitoring. In addition, we have assessed the117

stability of our estimates. Since our estimates are directly policy relevant in Switzerland, we specifi-118

cally investigated the stability of the Re(t), estimated for the most recent possible time point t, when119

adding additional days of data (up to 21 additional days; Fig. 2). When more observations become120

available, one can estimate further values of Re(s), where s > t, but also the estimates for Re(t)121
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are updated. This means that the Re(t) estimates initially change with each new day of data, before122

settling on a long-term, stable value. In the analysis in Fig. 2B, estimates for Sept 1 to April 1 based123

on data up to April 30 are referred to as ‘stable Re estimates’. Especially during rapid changes in Re,124

the initial estimates for Re(t) occasionally under- or overshoot the long-term trend. However, with125

our improved 95% confidence intervals (CI), the percentage of the first estimated CI for Re(t) that126

is contained within the stable CI is much improved compared to purely EpiEstim-based uncertainty127

intervals (Fig. 2). This difference is particularly striking during periods of high case incidence (e.g.128

October 2020), where the EpiEstim uncertainty interval is very narrow.129

Detailed data allows more precise analysis: the example of Switzerland. When detailed epi-130

demiological data about individual cases (i.e. line list data) is available, we can increase the precision131

of our method by relaxing the assumptions that (i) distributions of delays between infection and obser-132

vation do not change through time and (ii) outbreaks occur in a well-mixed homogeneous population133

at the country-level. In particular, we collaborated with the Federal Office of Public Health (FOPH) in134

Switzerland to further refine the monitoring of the Swiss SARS-CoV-2 epidemic.135

The FOPH line list data contains information on the delays between onset of symptoms and report-136

ing (of a positive test, hospitalisation or death) for a significant fraction of the reported cases. We137

estimate the time-varying empirical delay distribution from this data and use it as input to the decon-138

volution step, instead of using fixed delay distributions from the literature (for details see Materials139

and Methods section 4.3). The delay distribution is thus tailored to the specifics of the Swiss popu-140

lation and health system. Moreover, each distribution varies through time and thus reflects changes141

caused by e.g. improved contact tracing or overburdened health offices (see Fig S9; Supplementary142

Discussion). Whenever available in the FOPH line list, we use the symptom onset date of patients143

as the date of observation and thus only deconvolve the incubation period to obtain a time series of144

infection dates. The effect of these modifications is relatively minor in most parts of the estimated Re145

curve (Fig. S10), yet the difference between Re point estimates for a particular day can be as big as146

20%. The difference between Re estimates has dwindled since early 2021 as the fraction of cases147

for which the date of onset of symptoms was collected has been very low.148

Using FOPH data on the fraction of cases infected abroad, we can correct our Re estimate for im-149

ports to reflect only local transmission. This is especially important in phases during which the local150

epidemic is seeded from abroad, and local transmission occurs at a low rate relative to case impor-151

tation (Fig. S11). Since we do not have data on the number of cases infected in Switzerland that are152

”exported” to other countries, we cannot correct for exports. Thus, the estimated Re value corrected153

for imports is a lower bound for the Re estimate which would be obtained if we could account for the154

location of infection of all cases detected in Switzerland or exported out of the country.155

Monitoring Re during the COVID-19 pandemic. We developed an online dashboard (https://156

ibz-shiny.ethz.ch/covid-19-re-international/) on which we present daily-updated results of157

this Re estimation method applied to COVID-19 case data from 170 countries (Fig. 3). For most158

countries, we include multiple observation sources, such as daily incidence of COVID-19 cases159

and deaths, and, when available, hospitalisation incidence. We make these estimates available for160

download, as resource for other researchers and the public alike.161

The online app allows for comparison through time within a single country, between multiple obser-162

vation traces, and between multiple countries. The data download further allows users to put these163

estimates in relation to external covariates such as mobility, weather, or behavioural data. The map164

view enables comparison across larger geographical areas and additionally reports the cases per165

100’000 inhabitants per 14 days. We additionally show the Oxford Stringency Index and vaccination166

coverage for context [29, 30].167
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Figure 3: Example panels from the online dashboard. (A) Swiss case incidence with evidence
of weekly testing patterns (top row), Re estimates from four types of observation data (middle row),
and timeline of stringency index and vaccination coverage (bottom row). (B) World map of incidence
per 100’000 inhabitants over the last 14 days. One can also display the worldwide Re estimates
instead. (C) Comparison of Re estimates across a handful of countries, with timelines of stringency
indices and vaccination coverage. All panels were extracted on May 5. 2021. Dashboard url: https:
//ibz-shiny.ethz.ch/covid-19-re-international.

In the majority of countries the critical threshold R=1 was crossed only after the implemen-168

tation of nationwide lockdowns. With our method, we can now assess the association between169

non-pharmaceutical interventions (NPIs) and the estimated effective reproductive number Re. We170

selected 20 European countries for which the reported data was free of major gaps or spikes, and171

for which we could estimate Re prior to the nationwide implementation of a lockdown in spring 2020.172

The dates of interventions were extracted from news reports (sources listed in Supplementary Table173

S3), and ‘lockdown’ taken to refer to stay-at-home orders of differing intensity. Of the countries in-174

vestigated, all except Sweden implemented a lockdown (19/20). Using case data, we inferred that175

Re was significantly above one prior to the lockdown measures in nearly all countries with a lock-176

down (15/19; Table 1). Denmark, which had a complex outbreak consisting of two initial waves, and177

Germany, which experienced a cluster of early cases, had an estimated Re significantly below one178

prior to this date. For countries with very short delays between the lockdown and the estimated date179

that Re < 1 (e.g. Austria, Switzerland) we can not exclude the possibility that the ‘true’ Re may have180

been below 1 prior to the lockdown since our pipeline introduces smoothing to the estimates (see181

Supplementary Discussion 7.2). The results are remarkably consistent across the different observa-182

tion types (Supplementary Table S2). However, the 95% confidence intervals tend to be wider for the183
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estimates based on death incidence data because the number of deaths is much smaller than the184

number of cases, and the relative noise in observations tends to be higher.185

Table 1: Investigating the relation between the date of ‘lockdown’ and the date that the Re
estimated from case reports dropped below 1. Based on news reports, we report when a country
implemented stay-at-home orders (a ‘lockdown’). The column ‘R̂e < 1’ indicates when the Re point
estimate first dropped below 1. The column ‘CI includes 1’ details the corresponding time interval
where the 95% confidence interval included 1. Of the investigated countries that implemented a
nationwide lockdown, four (Denmark, Germany, the Netherlands, Slovenia) had 95% confidence
intervals that included 1 or were below before a nationwide lockdown was implemented. The column
‘Time until R̂e < 1’ indicates the number of days between the lockdown and the date that the Re point
estimate dropped below 1.

Country Lockdown R̂e < 1 CI includes 1 Time until R̂e < 1

Austria 16-03 20-03 [20-03, 20-03] 4 days
Belgium 18-03 30-03 [25-03, 03-04] 12 days
Denmark 18-03 ≤10-03 [≤10-03, 20-06] -8 days
Finland 16-03 02-04 [29-03, 30-04] 17 days
France 17-03 27-03 [23-03, 07-04] 10 days
Germany 22-03 18-03 [17-03, 19-03] -4 days
Ireland 27-03 08-04 [04-04, 15-04] 12 days
Italy 10-03 18-03 [17-03, 19-03] 8 days
Netherlands 23-03 05-04 [22-03, 10-04] 13 days
Norway 14-03 21-03 [17-03, 19-03] 7 days
Poland 25-03 02-04 [31-03, 17-04] 8 days
Portugal 16-03 28-03 [23-03, 15-04] 12 days
Romania 24-03 06-04 [31-03, 29-04] 13 days
Russian Federation 30-03 04-05 [01-05, 08-05] 35 days
Slovenia 20-03 23-03 [≤13-03, 26-03] 3 days
Spain 14-03 26-03 [25-03, 26-03] 12 days
Sweden 01-04 [06-03, ≥03-05-2021]
Switzerland 17-03 22-03 [20-03, 22-03] 5 days
Turkey 21-03 08-04 [01-04, 13-04] 18 days
United Kingdom 24-03 30-03 [28-03, 20-04] 6 days

To consider the association between NPIs and the estimated Re for countries outside of Europe,186

we used the stringency index (SI) of the Blavatnik School of Government [31] to describe the public187

health response in different countries (Fig. 3C). This is a compound measure describing e.g. whether188

a state has closed borders, schools, or workplaces. For example, a country with widespread informa-189

tion campaigns, partially closed borders, closed schools, and a ban on public events and gatherings190

with more than 10 people would have an SI slightly above 50. As reference date, we determined191

when a country first exceeded a stringency index of 50 (tSI50). Then, we investigated whether the192

estimated Re was significantly above 1 prior to the reference date (i.e. the lower bound of the 95%193

confidence interval was above 1), where we excluded countries without Re estimates before the ref-194

erence date tSI50. We found that this was the case for 35 out of the 42 countries world-wide which195

fulfilled the criteria for inclusion (list in Supplementary Section 8.3). As an additional analysis we196

calculated, for each day, the change of SI within the past 7 days. We used the day with the maxi-197

mal change as the new reference date (tmax). This analysis yielded very similar results with 38/45198

countries significantly above one before tmax (Supplementary Section 8.3).199

Insights into continent-specific responses to NPIs. To investigate the association between changes200

in the stringency of measures and changes in Re in more depth, we extended our analysis beyond201

the first wave and included both the implementation and lifting of NPIs (increases and decreases202

in stringency; data until May 3rd 2021). For each week and country, we determined the change in203
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stringency index over the past week (∆SI−7 = SI(t) − SI(t − 7)) and the change in the estimated204

Re the following week (∆R̂e,+7 = R̂e(t + 7) − R̂e(t)). If NPIs are working as expected, increases in205

stringency should be associated with a decrease in the estimated Re and vice versa. We do find this206

for increases in stringency e.g. in Europe, but decreases in stringency have a more varied effect on207

Re estimates on all continents (Fig. 4).208

Africa Asia Europe North America Oceania South America

−1 0 1 −1 0 1 −1 0 1 −1 0 1 −1 0 1 −1 0 1

−50

−25

0

25
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Change in Re over 7 days

C
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e 
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Figure 4: The association between the implementation or lifting of non-pharmaceutical in-
terventions and changes in Re. Violin plot of the estimated 7-day change in Re following the
implementation (above x-axis) or lifting (below x-axis) of NPIs in a given week. If NPIs are working
as expected, we would expect an increase in stringency (i.e. above the x-axis) to be more associ-
ated with a decrease in Re (shifted to the left) and a decrease in stringency (below the x-axis) to be
associated with an increase in Re (shifted to the right).

3 Discussion209

We have developed a pipeline to estimate the effective reproductive number Re of SARS-CoV-2 in210

near real-time, and evaluated our estimates using simulations. We showed that the inferred Re curve211

can be over-smoothed on simulated data, but that this disadvantage is outweighed by the increased212

stability of the estimates. Overall, we show that the relative error in the Re estimates is small.213

During the ongoing SARS-CoV-2 pandemic, Re estimates are of interest to health authorities, politi-214

cians, decision makers, the media and the general public. Because of this broad interest and the215

importance of Re estimates, it is crucial to communicate both the results as well as the associ-216

ated uncertainty and caveats in an open, transparent and accessible way. This is why we dis-217

play daily updated results on an online dashboard, accessible at https://ibz-shiny.ethz.ch/218

covid-19-re-international/. The dashboard shows Re estimates in the form of time series for219

each included country or region, and a global map containing the latest Re estimates and normalised220

incidence. For all countries, we further display a timeline of the stringency index of the Blavatnik221

School of Government [29], and current vaccination coverage.222

A unique advantage of the monitoring method we have developed is the parallel use of different types223

of observation data, all reflecting the same underlying infection process [6]. Wherever we have data224
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of sufficient quality, we estimate Re separately based on confirmed cases, hospitalisations and death225

reports. The advantages and disadvantages of the different observation types are discussed in the226

Supplementary Discussion 6.1. Comparing estimates from several types of data is a powerful way227

to evaluate the sensitivity of the results to the type of observations they were derived from. More228

generally, the method would be applicable to any other type of incidence data, such as admissions229

to intensive care units or excess death data. The potential limitations of our Re estimation method230

are discussed in detail in the Supplementary Discussion 6.2.231

The decision to implement, remove or otherwise adjust measures aimed at infection control will be232

informed by epidemiological, social and economic factors [32]. We can aid this decision making233

process by investigating the association between adjustments of public-health measures and the es-234

timated Re. In particular, the merits of nation-wide lockdowns have been heavily discussed, both in235

the scientific literature and the public sphere [8, 25, 24, 14, 33]. Analyses showing that Re estimates236

had dropped below 1 before the strictest measures were enforced were frequently used to claim that237

a lockdown was not necessary [33]. We showed that this argumentation cannot be applied univer-238

sally: for 15 out of 20 European countries, we found that the estimated Re was significantly above239

1 prior to the lockdown in spring of 2020. Interestingly, the result we obtain for Germany critically240

depends on whether we use symptom onset data, or more widely available case reports.241

Extending our analysis beyond the first wave, we find differences between continents in the corre-242

lation of changes in the stringency of NPIs and changes in Re. This could reflect differences in the243

speed with which lockdowns were put into practice [26], the de facto lockdown stringency, or socio-244

cultural aspects [32, 34]. It is often argued that, especially in countries with a large informal business245

sector, there may be a difference between the official containment measures and those adhered to246

or implemented de facto [34]. However, for continents where we find no significant correlation, this247

could also be because a large fraction of NPIs were implemented at a time for which we could not es-248

timate changes in Re. Many African countries had early and strict government responses, often prior249

to the first detected cases. These are thought to have delayed the virus in establishing a foothold on250

the continent [34].251

Importantly, our analysis suggests that reversing non-pharmaceutical interventions may have a very252

different effect than introducing them. This could be because the situation is not fully reverted: due253

to increased public awareness, testing, contact tracing, and quarantine measures still in place. In254

addition, the epidemic situation - in terms of number of infected individuals - is likely different when255

measures are implemented or lifted.256

Our analysis could be confounded by economic, social, and psychological factors motivating the257

implementation or release of measures. With the current stringency measures we cannot account for258

diversity in adherence to NPIs across geographic regions and through time. Cultural norms, defiance259

towards public authorities, ”lockdown fatigue”, and economic pressures are all among the factors that260

may determine whether NPIs are in fact adhered to. In addition, there is increasing evidence that261

weather may be a factor influencing Re through its effect on people’s behaviour and on properties of262

the virus [35]. In the future, our tools to estimate Re could be used to explore associations of these263

many factors with Re estimates, with the aim of identifying minimal sets of factors that may ensure264

an Re < 1 for a particular location.265
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4 Materials and Methods278

4.1 Overview of the pipeline279

The pipeline allows the estimation of Re from different proxies for the infection incidence, such as the280

time series of confirmed cases, hospitalisations or deaths. In a first step, we smooth the case obser-281

vations and deconvolve by the type-specific delay distribution to obtain an estimate of the infection282

incidence time series. Second, we used the package EpiEstim to estimate the effective reproductive283

number Re from this infection incidence. We assess the uncertainty in the estimates using the union284

of a block bootstrap method, designed to account for variation in the case observations, and the285

credible intervals from EpiEstim.286

4.2 Smoothing the case observations287

To reduce the influence of weekly patterns in case reporting data, as well as reporting irregularities,288

we smooth the observed incidence data prior to deconvolution. To smooth the incidence data, we use289

local polynomial regression (LOESS) with 1st order polynomials and tricubic weights. The smoothing290

parameter alpha is set such that we include 21 days of data in the local neighbourhood of each point.291

After smoothing, we normalise to the original total number of cases.292

4.3 Estimating the infection incidence through deconvolution293

To recover the non-observed time series of infection incidence, we deconvolve the smoothed ob-294

served time series of COVID-19 case incidence with a delay distribution specific to the type of case295

detection (case confirmation, hospital admission, death). To this end we extended the deconvolution296

method of Goldstein et al. [15], which is itself an adaptation of the Richardson-Lucy algorithm [36, 37],297

to deal with zero-incidence case observations and time-varying delay distributions.298

Formally, the method infers a deconvolved output time series (λ1, . . . , λN ) from an input time series
(D̄K , . . . , D̄N ), where K ≥ 1 and D̄i indicates the smoothed number of observations on day i (e.g.
confirmed cases, hospitalisations, or deaths). Let mj

l be the probability that an infection on day j
takes l ≥ 0 days to be observed. If no line list data is available, mj

l = ml and no time-variation of
the delay distribution is assumed. Let qj be the probability that an infection that occurred on day j is
observed during the time-window of observations, i.e. is counted towards (D̄K , . . . , D̄N ). Then:

qj =

N−j∑
l=K−j

mj
l . (1)

Let Ei be the expected number of observed cases on day i, for a given infection incidence (λk):

Ei =

{∑i
j=1 λjm

j
i−j for K ≥ i ≥ N

0 for 0 < i < K .
(2)

The Richardson-Lucy algorithm uses expectation maximisation [38] to find a final infection incidence
estimate, which has the highest likelihood of explaining the observed input time series. To do so, it
starts from an initial guess of the infection incidence time series Λ0 = (λ0

1, . . . , λ
0
N ), used to compute
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E0
i according to equation 2, and updates the estimate in each iteration n according to the following

formula:

λn+1
j =

λnj
qj
·
N∑
i=K

mj
i−jD̄i

Eni
. (3)

The iteration proceeds until a termination criterion is reached. Here, we follow Goldstein et al. and
iterate until the χ2 statistic drops below 1 [15]:

χ2 =
1

N −K + 1

N∑
i=K

(Eni − D̄i)
2

Eni
, (4)

or 100 iterations have been reached.299

Convergence is typically fast and the stopping criterion based on the χ2 statistic is reached in a few300

iterations. Due to the smoothing prior to deconvolution, this is the case for the vast majority of the301

empirical data we analyzed. In some cases, e.g. when the observed incidence is especially noisy,302

convergence is slower and the threshold of 100 iterations is reached. In 22 of the 170 countries303

analyzed, the iteration threshold was reached for at least 5 bootstrap replicates (out of 100).304

For the initial estimate of the incidence time series Λ0, we shift the observation time series backwards305

in time by the mode of the delay distribution µ [15]. However, this leaves a gap of unspecified values306

at the start and end of the time series Λ0. Contrary to Goldstein et al., we augment the shifted time307

series with the first observed value (D̄K) on the left, and with the last observed value (D̄N ) on the308

right, to avoid initialising with a zero-value anywhere. If a day is initialised with zero incidence, it will309

also have zero incidence in the final estimate (compare equation (3)), which would be a potential310

source of bias.311

We note that the Richardson-Lucy deconvolution algorithm accounts for ‘right truncation’, i.e. that not312

all infections are observed within the given observation time window (due to delay until symptoms/re-313

porting), through the qj indices.314

Use of line list data When information on the time variation of delays between symptom onset315

and observation is available (e.g. through a line list), this can be taken into account directly during316

the deconvolution step. In this case, we perform the deconvolution in two separate steps: first with317

the time-varying empirical onset-to-observation distributions, and then with the constant-through-318

time incubation period distribution. For those cases where symptom onset data is available, we only319

deconvolve with the incubation period distribution.320

The (mj
0, . . . ,m

j
K) time-varying delay distributions from onset of symptoms to observation are deter-321

mined as follows: for each date j, at least 300 of the most recent recorded delays between symptom322

onset and observation, with onset date before j, are taken into account. To avoid biases caused by323

the intensity of testing and reporting varying throughout the week, recorded delays are included in324

full weeks going in the past, until at least 300 delays are included.325

As the incidence data is right-truncated, we have to fix the distribution for the reporting delay (mj
l )326

after a certain day j, or the distributions would be downward biased for infection dates close to327

the present. Let (m̄0, . . . , m̄K) be the overall empirical delay distribution (aggregated over the en-328

tire window of observations) and n the 99th percentile of this distribution (n is the smallest inte-329

ger for which
∑n

i=1 m̄i ≥ 0.99). For infection dates z that are closer to the present than n (i.e.330

N − z < n, where N is the index of the last available data point), we fix (mz
0, . . . ,m

z
K) to be equal to331

(mN−n
0 , . . . ,mN−n

K ).332

4.4 Estimating the effective reproductive number Re333

Once we have obtained an estimate for the time series of infection incidence, we use the method334

developed by Cori et al. [12], implemented in the EpiEstim R package, to estimate Re.335
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Disease transmission is modelled with a Poisson process. At time t, an individual infected at time
t − s causes new infections at a rate Re(t) · ws, where ws is the value of the infectivity profile s days
after infection. The infectivity profile sums to 1, and can be approximated by the (discretised) serial
interval distribution [12]. The likelihood of the incidence It at time t is thus given by:

P (It|I0, . . . , It−1, Re(t)) =
(Re(t)Λt)

It e−Re(t)Λt

It!
, (5)

where Λt =

t∑
s=1

It−sws . (6)

The Re inference is performed in a Bayesian framework, and an analytical solution can be derived for336

the posterior distribution of Re(t) (see [12]; Web Appendix 1). We choose a gamma distributed prior337

on Re(t) with mean 1, and standard deviation 5. This is a conservative assumption, which means the338

Re estimates will tend to 1 during periods of low case incidence (i.e. when the posterior is dominated339

by the prior).340

For the smooth Re estimates, we assume Re is constant over a sliding window of 3 days (τ = 3 in341

EpiEstim), i.e. the reported Re estimate for day T summarises the average Re over a 3-day period342

ending on day T . In addition, we provide step-wise estimates of Re on our dashboard. In this step-343

wise analysis, Re is assumed to be constant on a number of intervals spanning the entire epidemic344

time window. These intervals are determined by dates at which public health interventions were345

implemented, altered, or lifted. All results in this paper are based on the smooth Re estimate. In both346

cases, we use the mean of the posterior distribution of Re as the point estimate.347

4.5 Estimating the uncertainty intervals348

To account for the uncertainty in the case observations, we construct 95% bootstrap confidence
intervals forRe. We first re-sample case observations as follows: given the original case observations
Dt, t = K, . . . , N , we apply the LOESS with smoothing parameter 21 days on the log-transformed
data log(Dt + 1) to obtain the smoothed value µ̂t and additive residuals et. Then we re-sample the
residuals to get e∗t . We obtain the bootstrap case observations by

D∗t = max(exp(µ̂t + e∗t )− 1, 0). (7)

We use overlapping block bootstrap in re-sampling the residuals to account for the time series nature349

of the data. Specifically, given the original residuals (eK , . . . , eN ), we first sample a block (e∗11 , . . . , e
∗1
b )350

with block length b = 10. To account for weekly patterns in the case observations, we make sure that351

the sampled block starts on the same day of the week as the original case observations DK (e.g.352

Tuesday). That is, we keep the longest possible (e∗1m , . . . , e
∗1
b ) such that e∗1m has the same day of the353

week as DK . Then, we sample a new block (e∗21 , . . . , e
∗2
b ) and keep the longest possible (e∗2m , . . . , e

∗2
b )354

such that the weekday of e∗2m follows on e∗1b (i.e. has the next day of the week). We glue these355

two sampled blocks together to get the temporal re-sampled residuals (e∗1m , . . . , e
∗1
b , e

∗2
m , . . . , e

∗2
b ). We356

repeat this process of adding blocks until the length of the re-sampled residuals is equal to or larger357

than the original residuals. In the latter case, we cut the last part of the re-sampled residuals to make358

sure its length is the same as the original residuals.359

Given the bootstrap case observations, we apply our method to obtain an estimate for Re(t), and
denote it by θ̂∗(t). By repeating the above steps 100 times, we obtain θ̂∗1(t), . . . , θ̂∗100(t). Then, we
construct a Normal based bootstrap confidence interval for each time point t by:

[θ̂(t)− qz(1−
α

2
)ŝd(θ̂∗(t)), θ̂(t) + qz(1−

α

2
)ŝd(θ̂∗(t))], (8)

where θ̂(t) denotes the estimated Re(t) based on the original case observations, qz(1 − α
2 ) denotes360

the 1 − α
2 quantile of the standard normal distribution, and ŝd(θ̂∗) denote the empirical standard361
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deviation of θ̂∗1(t), . . . , θ̂∗100(t). In this paper, we aim at confidence interval level 95%, so α = 0.05 is362

used.363

An implicit assumption for the above bootstrap confidence interval to be reasonable, is that the vari-364

ance of the residuals et is a constant over time t and does not depend on the value of the log-365

transformed data log(Dt + 1). This assumption roughly holds when the case incidence is high.366

During periods of low case incidence (e.g. deaths or regional data in summer 2020 in Switzerland),367

however, this assumption is no longer appropriate. Therefore, to be conservative and rather err on368

the side of too large uncertainty intervals, we also consider the credible interval of Re which is ob-369

tained by taking the 0.025 and 0.975 quantiles from the posterior distribution of Re using EpiEstim370

based on the original data Dt. The final reported interval is then the union of the credible interval371

and the 95 % bootstrap confidence interval. Based on our experience, the above credible interval372

will be reported during periods of very low case incidence. But at high case numbers, the bootstrap373

confidence interval will be much wider than the credible interval and so will be reported.374

4.6 Data375

We gather case incidence data directly from public health authorities. Whenever accessible, we rely376

on data from local authorities. Otherwise, we use data from ‘Our World in Data’ since the European377

Centre for Disease Control (ECDC) has stopped its daily updates (December 2020) [30, 39]. A table378

summarising the incidence data sources is available in Supplementary File S1. Information on the379

start and end of interventions, or major changes in testing policy, are obtained from media reports and380

the websites of public health authorities. The stringency index of the Blavatnik School of Government381

is accessed from their publicly available github repository [31]. The vaccination coverage is taken382

from ‘Our World in Data’ [30].383

We parametrise the discretised infectivity profile ws using COVID-19 serial interval estimates from384

the literature [40]. For a review of published serial interval estimates, see Griffin et al. [41]. The385

incubation period is parametrised by a gamma distribution with mean 5.3 days and SD 3.2 days [42].386

For countries for which we do not have access to line list data, i.e. all except Switzerland, Germany387

and Hong Kong at the time of writing, we assume delays from symptom onset to observation to be388

gamma-distributed, with parameters taken from the literature. Table 2 summarises the distributions389

used in our pipeline.390

Table 2: Gamma distributions used in the pipeline: serial interval, incubation period, and the
delay distributions assumed for each observation type.

Distribution Mean (days) SD (days) Reference
Serial interval 4.8 2.3 [40]
Infection to onset of symptoms 5.3 3.2 [42]
Onset of symptoms to case confirmation 5.5 3.8 [43]
Onset of symptoms to hospital admission 5.1 4.2 [44]
Onset of symptoms to death 15.0 6.9 [42]

For Switzerland, Germany and Hong Kong, we use line lists to build time-varying empirical distribu-391

tions on delays between symptom onset and case confirmation, hospitalisation or death. During the392

deconvolution step we use the empirical delay distribution of the last 300 recorded cases prior to the393

infection date. Moreover, for the fraction of cases for which the date of onset of symptoms is known,394

we use the onset date directly instead of deconvolving a delay from onset to reporting, allowing for395

more precise estimation of the infection date. For Switzerland, line lists contain information on which396

cases were infected abroad. By considering imported cases and locally-transmitted cases separately397

in the deconvolution step, we obtain two separate time series, one for local infections and one for398

imported infections.399
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4.7 Simulations400

In the simulations, we first specify a piecewise linear Re trajectory, and simulate 100 time series of401

infections and corresponding case observations from it. Then, we estimate Re from these observa-402

tions using our pipeline. To assess a range of scenarios, we parametrise Re as a piecewise linear403

trajectory, where we fix the plateau values for Re and the time-points at which the trajectory changes404

slope. Assuming I0 infected individuals on the first day, the infection incidence is simulated forward in405

time. The infection incidence on day t is drawn from a Poisson distribution, corresponding to equation406

(6), using the specified Re time series and the discretised serial interval for SARS-CoV-2 [40] as the407

infectivity profile (see [12]; Web Appendix 11).408

These simulated infections are convolved with the observation type-specific delay distribution [42]409

to obtain the raw observation time series D̃t. The final observation time series is generated based410

on these raw observations and a noise model. To obtain a realistic noise model, we apply the411

LOESS smoother with smoothing parameter 21 days on the log-transformed confirmed case data412

from some country (e.g. Switzerland) to obtain additive residuals, and then fit an ARIMA model on413

these residuals. The final observation time series Dt = D̃t · exp(et), where et is simulated from the414

fitted ARIMA model.415

In the case of time-varying delay distributions, we assume that the mean of the delay distribution416

decreases by a fixed amount (1/20) each day, to a minimum of 2 days (e.g. for the confirmed cases417

this results in a range from 5.5 to 2). When estimating with a time-varying delay distribution, we418

draw observations from the true distributions, similar to line list information recorded by public health419

authorities. To assess the added value of the deconvolution method, we further compare against a420

method where we estimate the infection time series by shifting the observations back by the mean of421

the delay distribution (termed ‘fixed shift method’).422

To quantify the performance of our method on the simulated scenarios, we compute the root mean
squared error (RMSE) at time point j:

RMSE(j) =

√√√√ 1

M

M∑
m=1

(
R̂e(j,m)−Re(j)

)2
, (9)

where M is the total number of simulations, R̂e(j,m) the estimated Re and Re(j) the true Re at time423

j, for simulation m.424

For each simulation we also compute the 95% confidence interval (CI) of our estimates across 100425

bootstrap replicates. The empirical coverage indicates the fraction of simulations for which our CI426

includes the true Re value.427

4.8 Implementation and method availability428

Daily updated results of our method on global COVID-19 data are available online on https://429

ibz-shiny.ethz.ch/covid-19-re-international/. The source code of this pipeline is openly ac-430

cessible at https://github.com/covid-19-Re/shiny-dailyRe, and the code necessary to repro-431

duce the figures in this paper is at https://github.com/covid-19-Re/paper-code. We are also432

continuously updating our data sources, and welcome anyone who wishes to share quality data for433

a particular region or country (please contact the authors, or raise an issue on the Github repository434

of this project).435
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effect of interventions on COVID-19. Nature, 588(7839):E26–E28, 2020.

[15] Edward Goldstein, Jonathan Dushoff, Ma Junling, Joshua B. Plotkin, David J.D. Earn, and Marc
Lipsitch. Reconstructing influenza incidence by deconvolution of daily mortality time series. Pro-
ceedings of the National Academy of Sciences of the United States of America, 106(51):21825–
21829, 2009.

[16] Daniel Wyler and Markus Petermann. A pitfall in estimating the effective reproductive number
Rt for COVID-19. Swiss Medical Weekly, 150(2930), 2020.

[17] S Abbott, J Hellewell, RN Thompson, K Sherratt, HP Gibbs, NI Bosse, JD Munday, S Meakin,
EL Doughty, JY Chun, YWD Chan, F Finger, P Campbell, A Endo, CAB Pearson, A Gimma,
T Russell, null null, S Flasche, AJ Kucharski, RM Eggo, and S Funk. Estimating the time-varying
reproduction number of SARS-CoV-2 using national and subnational case counts. Wellcome
Open Research, 5(112), 2020.

[18] Kevin Systrom, Thomas Vladek, and Mike Krieger. Rt covid live. https://github.com/

rtcovidlive/covid-model, 2020.
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6 Supplementary Discussion

6.1 Observation types and the influence of testing436

Here, we briefly discuss the benefits and potential biases of the three types of observations we used.437

The most commonly used proxy for infection incidence is the incidence of confirmed cases. It is the438

least indirect way of observing infection events. However, it generally assumes that (i) the proportion439

of infected individuals that is tested, and (ii) the distribution of the delay between infection and testing440

are constant through time. Unfortunately, these assumptions do not generally hold.441

As long as the sampling proportion is constant throughout the considered time period, the Re esti-442

mates of EpiEstim are not affected by under-sampling [12]. During the COVID-19 epidemic, many443

countries initially restricted testing to only severe cases, before switching to a more extensive testing444

effort after curbing the first epidemic wave and ramping up testing capacity [30]. Changes in testing445

strategy as well as bottlenecks in testing capacity result in a varying fraction of infected individuals446

that are confirmed positive, and also variation in the delay between infection and test confirmation.447

This can bias the Re estimate, as it will attribute an increase/decrease in case numbers between448

consecutive time points to a change in infection incidence, rather than a change in testing.449

However, it is important to note that the ‘memory’ inherent in the Re estimate is dictated by the450

infectivity profile ws. An event at time t which changes the proportion of true infection incidence451

observed per day, e.g. a change in testing policy, will bias the Re estimate for a number of days452

given by ws (compare Materials and Methods, equation 6). For SARS-CoV-2 the time needed to453

reach the 95% quantile of ws is 9 days. We do not observe the infection incidence directly, but if the454

deconvolution is assumed to be perfect, the intuition for the number of days of biased Re estimates455

still holds.456

It is further possible to investigate the influence of testing intensity, by applying the Re estimation457

method separately to a case incidence time series which is adjusted for the intensity of the testing458

effort. We have added this analysis to our online dashboard (where we show the number of confirmed459

cases / number of tests, normalised by the mean number of tests). However, one should note that460

such a normalisation does not take into account that the probability of test positivity might also461

change with the number of tests (e.g. by prioritising likely cases at low numbers of tests).462

In contrast, the incidence of hospital admittance and deaths are likely based primarily on the severity463

of the symptoms, and mostly unaffected by changes in testing strategies, or the magnitude of the464

epidemic. This makes them valuable complementary observations of infection events [15]. How-465

ever, also here biases can occur. First, only a small fraction of all infections results in hospitalisation466

or death (a meta-analysis found an average infection fatality ratio for SARS-CoV-2 of 0.68% [45]).467

This fraction varies with the risk group of the infected population [45, 46, 47, 48], introducing poten-468

tial biases in Re estimations when outbreaks occur in particularly age-stratified settings. Also, new469

variants may result in different hospitalisation or fatality rates. Second, if a country’s health infras-470

tructure becomes overburdened and hospitals are forced to triage or delay admission, we expect471

the fraction of hospital admissions to decrease, and deaths to increase. Third, the likelihood to die472

from an infection may change through time as new treatment strategies are developed or if hospitals473

are overburdened. Additionally, guidelines used to record COVID-19 as the cause of death have474

changed through time for some countries [49]. Lastly, the delay between infection and hospitalisation475

or death is expected to be longer than the delay until case confirmation, with the result that these Re476

estimates are less timely. One should note that these observation type specific biases could also be477

seen as a source of information. The types simply describe a different epidemic if very structured478

populations with highly different mortality rates are captured (e.g. elderly homes).479

It is important to note that all analyses here are focused on the period before vaccination mediated480

immunity became widespread. Since vaccinations change the fraction of infections that eventually481

become hospitalised or die, they may introduce temporary biases for the Re estimated from hos-482

pitalisation and death incidence. We have added the metric of vaccination coverage to the online483
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dashboard, so one can estimate when these effects start to become important.484

6.2 Method Limitations485

The Re estimation method we present in the main text relies on several assumptions. Here we486

highlight the limitations that occur when these assumptions are violated.487

First, the geographical scale of the Re estimates is determined by the incidence data itself. The488

Re calculated for a country represents an average, summarised across multiple local epidemics489

unfolding in different regions. Re values need not be identical in different local epidemics across a490

country or administrative region. In particular, in times of very low pathogen transmission, single491

super-spreading events can significantly increase the estimated Re of the entire country [50].492

Second, in our deconvolution step we account for an incubation period and a delay from symptom493

onset to case observation. Implicitly, we thus assume that all reported cases come from symptomatic494

individuals. This is certainly true for hospitalised and deceased patients, but does not have to hold for495

all confirmed cases. Similar to the testing intensity (discussed in Section 6.1), this would not bias our496

estimates as long as the fraction of asymptomatic or presymptomatic individuals is constant through497

time. However, the fraction of asymptomatic individuals could vary with the population structure498

and age-stratification. The fraction of tested presymptomatic individuals could vary with the testing499

strategy and the intensity of the testing effort.500

Third, in our current analysis we assume a single serial interval distribution for all geographic lo-501

cations and all times. However, behaviour, population contact structure, and cultural differences in502

dealing with infection symptoms, will cause geographic and temporal variations in the serial inter-503

val. In particular, the implementation of non-pharmaceutical interventions can significantly shorten504

the serial interval [7]. Misspecification of the serial interval will lead to larger errors in Re estimates505

further away from one [13].506

Lastly, our estimates of the effective reproductive number Re are subject to changes in data report-507

ing. There are frequent changes in the way in which public health offices update their observed508

incidence data: the number of variables shared (e.g. Brasil, the UK excluded testing information),509

their frequency (e.g. Swiss cantons moved to weekly data updates when daily numbers became510

low), the amount of data consolidation (i.e. to which extent values reported for a given day change in511

subsequent days), and what constitutes a COVID-19 case [49, 51]. These variables have all changed512

during the epidemic, frequently in response to political pressure or the magnitude of the local epi-513

demic and the resulting workload at the public health offices [49]. This affects the timeliness of our514

estimates, and can cause the estimated Re to change a bit between days.515
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7 Supplementary Methods516

7.1 Discretisation of delay distributions517

When approximating delay distributions by gamma distributions, we discretise these in the following518

fashion:519

ml =

{∫ 0.5
0 f(x) dx l = 0∫ l+0.5
l−0.5 f(x) dx l ∈ {1, 2, . . . } ,

(10)

where f is either the probability density function (p.d.f) of the gamma-distributed delay distribution,520

or the p.d.f of the sum of two independent gamma-distributed delay distributions. The former applies521

when line list data is available, and the observed data is deconvolved with the gamma-distributed522

incubation period separately from the empirical delay distribution of symptom onset to observation.523

The latter applies whenever the observed case data is jointly deconvolved with the incubation period524

and the delay between symptom onset and observation.525

Because the probability density function of a sum of two independent gamma distributions does not526

admit a simple form in the general case, we approximate the p.d.f by drawing a million independent527

pairs of samples, one from each gamma distribution, summing the pairs, and computing the empirical528

cumulative distribution function of the sampled distribution.529

7.2 The effect of smoothing on our ability to infer when Re = 1530

Our LOESS smoothing roughly spreads sudden changes in Re over 20 days in the estimated Re.531

Whether this is a substantial problem depends on the smoothness of the true Re that we are trying532

to estimate. Direct observations of behavioural changes, specifically changes in mobility, suggest533

the true Re is quite smooth: for instance it took 2-3 weeks for mobility to drop to its lowest level in534

response to government interventions in Switzerland [52, 53].535

However, to get a rough feeling for the impact smoothing would have on our estimates and down-
stream analysis in case the true Re does change abruptly, we can use a simple analysis using a
linear approximation. In the case of a step-wise change from R0 to R1 (with R0 > R1) at time t0,
the estimated smooth Re will start decreasing about 10 days prior to t0, and take another 10 days
after to reach the terminal value (Fig. S1). When inferring the day that a certain threshold value was
reached (e.g. Re = 1) we will be off by a number of days s, dictated by R0 and R1. Specifically, the
delay s is greater if the turning point Rtp = R1+R0

2 is further above 1, or the slope atp = R1−R0
20 is

closer to 0:

s = (Rtp − 1)
20

R0 −R1
. (11)

In Table S1 we have listed some possible delay values, using R0 values spanning the range of values536

reported for SARS-CoV-2 [54]. The delay is positive if R0 > R1 and Rtp > 1, which was the case for537

most countries around the 1st lockdown. In general, these numbers can be considered a ‘worst-case’538

scenario: when the true underlying Re changes more gradually than considered here, the smoothing539

introduced by our pipeline will have a smaller effect.540

Note that these calculations specifically refer to the point estimate. The estimates may stop being541

significantly above the threshold already earlier, especially when the confidence interval is wide and542

the slope is close to 0.543
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Figure S1: Schematic of the effect of smoothing on the ability to estimate when Re = 1. The
true Re is indicated by the black solid line, the black dashed line shows a linear approximation of the
smoothed Re. Instead of crossing 1 at t0, this line crosses 1 at t0 + s.

Table S1: The effect of smoothing on the ability to estimate when Re = 1. These values were
calculated using equation 11.

R0 R1 Rtp atp (per day) Delay s (days)
6.0 0.0 3.0 -0.30 6.7
3.0 0.0 1.5 -0.15 3.3
3.5 0.5 2.0 -0.15 6.7
2.5 0.5 1.5 -0.10 5.0
3.3 0.9 2.1 -0.12 9.2
1.8 0.8 1.3 -0.05 6.0

8 Supplementary Materials544

8.1 Supplementary Simulations545
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Figure S2: Performance of our method on simulated scenarios with differing slopes. A The
specified Re trajectory (black line; see Methods) was used to simulate a trajectory of reported cases
(with Swiss case observation noise) 100 times. From each trajectory we estimated Re (yellow box-
plots), and constructed a 95% confidence interval (purple boxplots of the lower/upper endpoint). We
varied the time it took to change from one Re value to the next, t ∈ {7, 14, 28} (columns). Larger
values of t correspond to less abrupt changes. B The fraction of simulations where the true Re value
was within the 95% confidence interval. The dashed red line indicates the nominal 95% coverage.
C The root mean squared relative error for every time point. D The fraction of simulations where we
estimate Re is significantly above or below one, depending on the true value of Re. We see that the
method closely tracks the true Re in all scenarios, although the error is greater for steeper slopes. In
the case of steeper changes in Re the overall size of the epidemic is also smaller, which explains the
larger confidence intervals.
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Figure S3: Performance of our method, modified to skip the smoothing step in the pipeline, on
simulated scenarios with observation noise. The specified Re trajectory (black line; see Methods)
was used to simulate a trajectory of reported cases (with varying country-specific noise profiles;
rows) 100 times. From each trajectory we estimated Re (yellow boxplots), and constructed a 95%
confidence interval (purple boxplots of the lower/upper endpoint). Contrary to our normal pipeline,
the observations were not smoothed prior to the deconvolution and Re estimation. We see that the
estimates are highly variable.
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Figure S4: Performance of our method on simulated scenarios with observation noise. The
specified Re trajectory (black line; see Methods) was used to simulate a trajectory of reported cases
(with varying country-specific noise profiles; rows) 100 times. From each trajectory we estimated
Re (yellow boxplots), and constructed a 95% confidence interval (purple boxplots of the lower/upper
endpoint). Compared to Fig. S3, we see that the estimates are much more stable.
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(a) EpiEstim uncertainty intervals: Re estimate

(b) EpiEstim uncertainty intervals: Coverage
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(c) Union of EpiEstim and Block bootstrap 95% confidence intervals: Re estimate

(d) Union of EpiEstim and Block bootstrap 95% confidence intervals: Coverage

Figure S5: Performance of our method on simulated scenarios with varying population size.
(a), (c) We specified a constant Re ∈ {0.8, 1, 1.5} value (black line; rows) to simulate a trajectory of
reported cases (with Swiss case observation noise) 100 times. From each trajectory we estimated
Re (yellow boxplots), and constructed a 95% confidence interval (purple boxplots of the lower/upper
endpoint). The simulated scenarios had differing initial incidence of I0 ∈ {10, 100, 1000, 5000, 10000}
infections per day (columns). In the top row, Re < 1 so the epidemic is decreasing. In the middle
row, Re = 1, the epidemic is constant, and in the bottom row, Re > 1, the epidemic is increasing. The
bias at the start is due to the initialisation of the simulation. (b), (d) The fraction of simulations where
the true Re value was within the 95% confidence interval. The dashed red line indicates the nominal
95% coverage. We see that for a wide range of infection incidences, our 95% confidence interval is
informative and covers the true value of Re, whereas the EpiEstim coverage strongly declines with
increased epidemic size.
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Figure S6: Performance of our method on simulated scenarios using a fixed shift versus
the deconvolution to infer infection incidence. The fixed shift method shifts the observations
back by the mean of the delay distribution (here assumed to correspond to confirmed cases). A
The specified Re trajectory (black line; see Methods) was used to simulate a trajectory of reported
cases (with Swiss case observation noise) 100 times. From each trajectory we estimated Re (yellow
boxplots), and constructed a 95% confidence interval (purple boxplots of the lower/upper endpoint).
B The fraction of simulations where the true Re value was within the 95% confidence interval. The
dashed red line indicates the nominal 95% coverage. C The root mean squared relative error for
every time point. We see that our method (left) outperforms the fixed-shift method.
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Figure S7: Performance of our method on simulated scenarios with misspecified delay distri-
butions. When estimating Re, we misspecified the mean of the delay distribution (5.5 for symptom-
onset to case confirmation) by the numbers above the columns. A The specified Re trajectory (black
line; see Methods) was used to simulate a trajectory of reported cases (with Swiss case observation
noise) 100 times. From each trajectory we estimated Re (yellow boxplots), and a 95% confidence
interval (purple boxplots of the lower/upper endpoint). B The fraction of simulations where the true
Re value was within the 95% confidence interval. The dashed red line indicates the nominal 95%
coverage. C The root mean squared relative error for every time point.
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(a) Confirmed cases: mean from 5.5 to 2
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(b) Deaths: mean from 15 to 2

Figure S8: Performance of our method on simulated scenarios with time-varying delay dis-
tributions. The observations were simulated with a time-varying delay distribution for (a) confirmed
cases, or (b) deaths (see Methods), and then estimated with (right column) or without (left column)
taking the time-varying distributions into account. A The specified Re trajectory (black line; see Meth-
ods) was used to simulate a trajectory of reported cases (with Swiss case observation noise) 100
times. From each trajectory we estimated Re (yellow boxplots), and a 95% confidence interval (pur-
ple boxplots of the lower/upper endpoint). B The fraction of simulations where the true Re value was
within the 95% confidence interval. The dashed red line indicates the nominal 95% coverage. C The
root mean squared relative error for every time point.
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8.2 Switzerland specific results546

Figure S9: Mean delay in Switzerland between onset of symptoms and reporting. For each
date, the mean is taken over the last 300 reports with known symptom onset date, based on line list
data from the FOPH. For early dates, before 300 reports are available, the mean is taken over the
first 300 reports.

Figure S10: Comparison of the Re estimates with or without accounting for known symptom
onset dates and for time-variability on reporting delays. The comparison is based on time series
of confirmed cases in Switzerland, from line list data provided by the FOPH. Both the inclusion of
known symptom onset dates and of the time-variability of reporting delay distributions have an effect
on the Re estimates, in particular for early estimates in this case. The fraction of cases with known
symptom onset date has drastically reduced since November 2020, hence the overlap in curves with
and without symptom onset data for later dates.
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Figure S11: Effective reproductive number estimates with or without accounting for known
imports. The comparison is based on time series of confirmed cases in Switzerland, from line
list data provided by the FOPH. The analysis ignoring imports is unbiased if the number of imports
equals the number of exports. Since the analysis accounting for imports is not accounting for exports,
the results are a lower limit for the effective reproductive number. Very few imported cases were
reported since November 2020, hence the complete overlap in the curves after that date.

8.3 R = 1 crossings547

SI 50 analysis Reference date: first day the stringency index exceeded 50 (SI > 50).548

The 42 included countries: Algeria, Andorra(*), Australia, Austria, Belgium, Canada, Chile, Croatia,549

Czech Republic, Denmark, Egypt, Estonia, Finland, France, Germany, Greece, Iceland, Indone-550

sia, Iran, Ireland, Israel, Japan, South Korea(*), Lebanon, Malaysia, Mexico, Netherlands, Norway,551

Philippines, Poland, Portugal, Saudi Arabia, Singapore, Slovenia, Spain, Switzerland, Tajikistan(*),552

Thailand, United Arab Emirates, United Kingdom, United States, Vietnam.553

A star indicates the country was not included in the ∆SI analysis (e.g. because the biggest jump in554

SI took place prior to the first possible Re estimate).555

For 37/42 countries the Re estimate was above one prior to the reference date, and significantly so556

for 35/42. The countries that reached Re < 1 prior to the reference date were Andorra (17 days557

prior), Australia (2 day prior), Denmark (3 days prior), Japan (359 days prior), and Vietnam (3 days558

prior).559

∆SI analysis Reference date: date of the biggest 7-day increase in the SI.560

The 45 included countries: Algeria, Australia, Austria, Belarus(*), Belgium, Canada, Chile, Colom-561

bia(*), Croatia, Czech Republic, Denmark, Egypt, Estonia, Finland, France, Germany, Greece, Ice-562

land, Indonesia, Iran, Ireland, Israel, Japan, Lebanon, Malaysia, Mexico, Netherlands, New Zealand(*),563

Norway, Philippines, Poland, Portugal, Russia(*), Saudi Arabia, Serbia(*), Singapore, Slovenia, Spain,564

Switzerland, Thailand, Turkey(*), United Arab Emirates, United Kingdom, United States, Vietnam.565

A star indicates the country was not included in the SI50 analysis (e.g. because SI = 50 was never566

reached).567

For 41/45 countries the Re estimate was above one prior to the reference date, and significantly so568

for 38/45. The countries that reached Re < 1 prior to the reference date were Australia (3 days prior),569

Denmark (4 days prior), Germany (4 days prior), and Vietnam (10 days prior).570
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Table S2: Investigating the relation between the date of ‘lockdown’ and the date that the es-
timated Re dropped below 1. The first three columns contain the same information as the first
four columns of the main text table 1. The last two columns are analogous to the third (‘R̂e < 1
based on confirmed cases’) but are based on Re estimates for hospitalisations and deaths respec-
tively. For each of these observation types, we used our method to determine when the Re estimate
first dropped below 1, and for which dates the corresponding 95% confidence interval contained 1.
Further, we used news reports to determine when a country implemented stay-at-home orders (a
‘lockdown’). Based on our Re estimates for confirmed cases, Denmark, Germany, the Netherlands,
and Slovenia had 95% confidence intervals that included or were below one before a nationwide
lockdown was implemented. For Re estimates based on COVID-19 deaths, there are also four: Den-
mark, the Netherlands, Poland, and the United Kingdom. See Supplementary Discussion 7.2 for
smoothing related caveats.

Country Lockdown R̂e < 1 based on
Confirmed cases

R̂e < 1 based on
Deaths

R̂e < 1 based on
Hospitalisations

Austria 16-03 20-03 [20-03, 20-03]
Belgium 18-03 30-03 [25-03, 03-04] 26-03 [24-03, 26-03] 25-03 [24-03, 25-03]
Denmark 18-03 10-03 [10-03, 20-06] 22-03 [18-03, 07-01]
Finland 16-03 02-04 [29-03, 30-04] 07-04 [25-03, 11-04]
France 17-03 27-03 [23-03, 07-04] 24-03 [22-03, 26-03] 27-03 [25-03, 26-03]
Germany 22-03 18-03 [17-03, 19-03] 31-03 [23-03, 04-04]
Ireland 27-03 08-04 [04-04, 15-04] 05-04 [31-03, 09-04] 06-04 [06-04, 26-04]
Italy 10-03 18-03 [17-03, 19-03] 14-03 [01-03, 29-05]
Netherlands 23-03 05-04 [22-03, 10-04] 22-03 [19-03, 02-04] 26-03 [24-03, 26-03]
Norway 14-03 21-03 [17-03, 24-03] 25-03 [18-03, 08-04]
Poland 25-03 02-04 [31-03, 17-04] 09-04 [24-03, 01-12]
Portugal 16-03 28-03 [23-03, 15-04] 28-03 [21-03, 12-04]
Romania 24-03 06-04 [31-03, 29-04] 17-04 [25-03, 28-04]
Russian Federation 30-03 04-05 [01-05, 08-05] 18-05 [14-05, 12-12]
Slovenia 20-03 23-03 [13-03, 26-03] 26-03 [20-03, ≥03-

05-2021]
Spain 14-03 26-03 [25-03, 26-03]
Sweden 01-04 [06-03, ≥03-

05-2021]
05-04 [13-03, ≥03-
05-2021]

Switzerland 17-03 22-03 [20-03, 22-03] 21-03 [18-03, 23-03] 18-03 [16-03, 18-03]
Turkey 21-03 08-04 [01-04, 13-04] 04-04 [31-03, 06-04]
United Kingdom 24-03 30-03 [28-03, 20-04] 25-03 [24-03, 25-03] 29-03 [27-03, 29-03]
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Figure S12: The one-week change in Re following changes in government stringency. The
rows C1-C8 refer to different stringency indices: C1 School closing; C2 Workplace closing; C3 Can-
celling public events; C4 Restrictions on gatherings; C5 Closing public transport; C6 Stay at home
requirements; C7 Restrictions on internal movement; C8 International travel controls.
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