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Abstract

The effective reproductive number Re is a key indicator of the growth of an epidemic. Since
the SARS-CoV-2 pandemic started, many methods and online dashboards have sprung up to
monitor this number. However, these methods are not always thoroughly tested or are applied
only to a limited geographic range. Here, we present a method for near real time monitoring of
Re, applied to epidemic data from 170 countries. We thoroughly validate the method on simu-
lated data, and present an intuitive web interface for interactive data exploration. We show that
in the majority of countries the estimated Re dropped below 1 only after the introduction of major
non-pharmaceutical interventions. For Europe, Asia, and North America we found that the im-
plementation of non-pharmaceutical interventions was associated with reductions in the effective
reproductive number. Globally, we found that relaxing non-pharmaceutical interventions did not
fully revert Re values to their original levels. Generally, our framework is useful both to inform
governments and the general public on the status of the epidemic in their country, as well as a
source for detailed comparison between countries and in relation to local public health policies
and external covariates such as mobility, behavioural, or weather data.

Significance statement

During the SARS-CoV-2 pandemic, governments need a way to monitor the epidemiological situation
in their country. A key indicator is the effective reproductive number Re. It describes the average
number of secondary infections caused by a primary infected individual. Here, we present a method
to estimate Re from case report data. We thoroughly validate the method on simulated data, and
present Re estimates for 170 countries on an interactive web interface. We then use this method
to investigate the impact of non-pharmaceutical interventions on reducing Re worldwide. We find
that the estimated Re was significantly above 1 prior to the introduction of major non-pharmaceutical
interventions, and that relaxing these interventions does not fully revert Re estimates to their prior
levels.
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1 Introduction1

During an infectious-disease outbreak, such as the ongoing SARS-CoV-2 pandemic, accurate moni-2

toring of the epidemic situation is critical to the decision-making process of governments and public3

health authorities. The magnitude of an epidemic, as well as its spatial and temporal infection dy-4

namics determine the exposure risk posed to citizens in the near and long-term future, the pressure5

on critical infrastructure like hospitals, and the overall burden of disease to society.6

The effective reproductive number Re is a key indicator variable to describe how a pathogen spreads7

in a particular population [1, 2, 3]. It quantifies the average number of secondary infections caused8

by a primary infected individual. It also has a natural threshold value of 1, below which the epidemic9

reduces in size [1, 4]. Re typically changes during the course of an epidemic as a result of the10

depletion of susceptible individuals, changed contact behaviour, seasonality of the pathogen, or the11

effect of pharmaceutical and non-pharmaceutical interventions (NPIs) [1, 5, 6, 7, 8].12

Different methods have been developed to estimate the effective reproductive number. They broadly13

fall into two categories: those based on compartmental models, e.g. [5, 9, 10], and those that count14

the number of secondary infections per infected individual directly, based on a time series of infection15

incidence, e.g. [11, 12]. We focus on the latter methods, in particular the EpiEstim method of Cori16

et al. [12], as they rely on only few, simple assumptions, are less prone to model misspecifications,17

and well-suited for near real-time monitoring of the epidemic [13].18

The infection incidence based methods face the difficulty that infection events cannot be observed19

directly [13]. These events can only be surmised with a certain time lag, e.g. when individuals show20

symptoms and are tested, via contact tracing, or via periodic testing of a cohort of individuals [4].21

To use these methods, one must thus employ a proxy for infection events (e.g. the observed inci-22

dence of confirmed cases, hospitalisations, deaths). This proxy is either used directly in lieu of the23

infection incidence, or it is used as an indirect observation to infer past infections [13]. A benefit24

of the infection incidence based methods is that they can be applied to multiple proxies of infection25

events independently, allowing for direct comparison of the inferred results for the same epidemic [6].26

However, depending on the method used to infer infections from the observed incidence time series,27

one can also introduce biases such as smoothing sudden changes in Re [13, 14, 15].28

Several methods, software packages, and online dashboards have been developed to monitor Re29

during the SARS-CoV-2 pandemic (e.g. [16, 17, 18]). A pipeline for the continuous monitoring of30

Re using infection incidence based methods should include four critical steps: (i) gathering and31

curation of observable proxy data of infection incidence, (ii) reconstruction of the unobserved infection32

events, (iii) Re estimation, and (iv) communication of the results, including uncertainty and potential33

biases. These are four axes that also define the differences between existing methods. During the34

SARS-CoV-2 epidemic, many local public health authorities have made case data publicly available.35

Depending on the data sources used, Re reports span different geographical scopes, from the scale36

of a city, region, country, or the entire globe [17, 19, 20]. The second step, i.e. going from a noisy37

time series of indirect observations to an infection incidence time series, is technically the most38

challenging. Biases can be introduced easily, and accurately assessing the uncertainty around the39

inferred infection incidence is a challenge in itself [13]. For the third step, i.e. to estimate Re from40

a timeline of infection events, there are ready-to-use software packages [12, 21], which produce41

unbiased Re estimates along with an estimate of the uncertainty resulting from this step. Finally,42

the communication of results to the general public and decision makers is essential, but is often43

overlooked.44

We present a pipeline, together with an online dashboard, for near real-time monitoring ofRe. We use45

publicly available data gathered by different public health authorities. Wherever possible, we show46

results obtained from different types of case reports (confirmed cases, hospitalisations or death).47

This allows comparison across observation types and hence a better assessment of the validity48

of the estimates. Results are updated daily, and can be found on https://ibz-shiny.ethz.ch/49

covid-19-re/.50
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Because Re estimates reflect changes in virus transmission dynamics, they can be used to as-51

sess the impact of public health interventions. Prior work on the relative impact of specific non-52

pharmaceutical interventions on Re has shown conflicting results [8, 22, 23, 24, 25, 26]. These53

differences can be attributed mostly to different model formulations [24, 27], including differing as-54

sumptions on the independence of NPIs [27], differing timescales over which the effect of the NPI55

was analysed [8, 25], whether the time point of the NPI was assumed fixed or allowed to vary [26],56

and differing geographical scope.57

There is a need to address whether the strength of measures and the speed of their implementation58

resulted in a larger and faster decrease in the Re, and specifically whether highly restrictive lock-59

downs were necessary to reduce Re < 1. Further, it remains unclear how the impact of interventions60

differed across time and geographical regions. We add to this debate by using our global Re esti-61

mates across timescales that include the lifting of many NPIs. While we cannot determine causal62

relationships, we use our method to assess likely associations.63

2 Results64

A new pipeline to estimate the effective reproductive number of SARS-CoV-2. We have de-65

veloped a pipeline to estimate the time-varying effective reproductive number of SARS-CoV-2 from66

observed COVID-19 incidence time series (see Materials and Methods). We build upon the existing67

EpiEstim method [12] to estimate Re(t) from a time series of infection incidence. To infer the infec-68

tion incidence from a time series of (noisy) observations, we extended the deconvolution method by69

Goldstein et al. to deal with partially observed data and time-varying delay distributions [13, 14].70

To reduce numerical artefacts resulting from the noisy nature of these observations, we smooth the71

data prior to deconvolution. We take into account uncertainty in the observation process using a72

bootstrap procedure, and in the Re estimation using the 95% highest posterior density intervals from73

EpiEstim. As observed incidence data we use COVID-19 confirmed case data, hospital admissions,74

and deaths (with type specific delay distributions, see Materials and Methods).75

Validation on simulated data. The method was validated with simulations of several epidemic76

scenarios (Materials and Methods section 4.5). For each scenario, we specified an Re time-series,77

from which we simulated infection and observation incidence. Then, we used our method to infer78

the infection incidence and Re from the observation incidence, and compared to the true underlying79

Re values (Fig. 1A). The specified Re trajectories were parametrised in a piecewise linear fashion,80

where we fixed the plateau values for Re and the time-points at which the trajectory changed slope.81

To mimic the course of the epidemic observed in many European countries in spring and summer82

2020 [28], we started withRe values around 3, then dropped to a value below 1 (the ‘initial decrease’),83

to subsequently rise slightly above 1 for some time (Fig. 1).84

The results show that our method allows accurate monitoring of the effective reproductive number85

across the entire length of the time series (Fig. 1B; metrics described in Materials and Methods86

section 4.5). The low root mean square error (RMSE) indicates that our estimates closely track the87

true Re value. In the simulated trajectories, the slope of the initial decrease can be correctly inferred,88

although the relative error is greater for steeper slopes (Slope error). More importantly, we correctly89

infer whether Re is significantly above or below 1 for 95% of the time series (Correct R > 1/R < 1),90

and across all simulations we miss the date of theR = 1 crossing by at most 3 days (R = 1 difference;91

calculated between the Re point estimate and the true Re).92

The minor misestimation of the slope is primarily due to the smoothing step included in our deconvo-93

lution algorithm. However, the inclusion of smoothing greatly improves our performance across more94

realistic scenarios with daily or weekly observation noise (Supplemental Fig. S1). With smoothing,95

the performance of our method is mostly independent of the amount of observation noise (Supple-96

mental Fig. S2). When the mean of the delay distribution between infection and case observation97

is misspecified, we can still determine the shape of the Re curve, but do misestimate when Re = 198
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Figure 1: (A) Example simulation (coloured lines) and estimation (black lines). The left panel
shows the specified Re trajectory (yellow line) with five plateaus Re = (3.5, 0.5, 1.2, 0.95, 1.1) and
the estimated Re trajectory. The right panel shows the simulated infections (in green; initial infection
incidence I0 = 10), and the case observations (in blue) simulated from those infections. The infection
incidence inferred from the case observations is shown in black. The trajectory shape mimics the
course of the epidemic observed in many European countries, which started with an Re ∼ 3, then
dropped to a low value below 1 (the ‘initial decrease’), to subsequently oscillate around 1 for some
time. (B) Performance of our method on simulated scenarios. From top to bottom, left to right,
we show: (i) the normalised root mean squared error (RMSE), (ii) the error of the slope of the first
decrease, (iii) the delay of the mean crossing Re = 1, (iv) the fraction of time points for which we
correctly infer that Re is significantly above or below one, (v) the coverage of the true Re value. These
metrics are further described in Materials and Methods section 4.5. In the scenarios we varied the
initial Re level (R1; point shape), the time of the first descent (t3; point colour), and the number of
initial infections (I0 ∈ {10, 100, 1000}; not indicated separately as it determines the peak infection
incidence directly). In these simulations a shorter Re time series was used than in panel (A), with
three plateaus: R2 = 0.5, R3 = 1.2.

(Supplemental Fig. S3). Further model misspecifications, such as a wrong generation time interval,99

have been investigated by Gostic et al. [13].100

The fraction of the Re time-series where the true value of Re falls within our estimated confidence101

intervals (the ‘coverage’), decreases strongly for larger overall infection incidence. This indicates102

that the confidence intervals are too narrow for large case numbers. This result is consistent across103
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all scenarios, independent of the slope of the initial decrease (Fig. 1B) or the delay distribution104

used (data not shown). We are improving the bootstrapping method further to account for this vari-105

ance.106

Our method clearly outperforms the common approach of using a fixed delay to infer the infection107

incidence time series (Supplemental Fig. S5). Our ability to allow for empirical, time-varying dis-108

tributions in the estimation also slightly improves the estimated Re (Supplemental Figs. S4a, S4b),109

especially when strong time variation is present.110

MonitoringRe during the COVID-19 pandemic. We apply thisRe estimation method to COVID-19111

case data from 170 countries (Fig. 2). All estimates are updated daily and made publicly available on112

an online dashboard https://ibz-shiny.ethz.ch/covid-19-re/ (results available for download).113

For most countries, we include multiple observation sources, such as daily incidence of COVID-19114

cases and deaths, and, when available, hospitalisation incidence.115

The online app allows for comparison through time within a single country, between multiple obser-116

vation traces, or between multiple countries. The data download further allows users to put these117

estimates in relation to external covariates such as mobility, weather, or behavioural data. The map118

view enables comparison across larger geographical areas and additionally reports the cases per119

100’000 inhabitants per 14 days.120

Fine-scale data allows fine-scale analysis: the example of Switzerland When detailed epi-121

demiological data about individual cases (i.e. line lists) is available, we can increase the precision of122

our method by relaxing two assumptions: (i) distributions of delays between infection and observa-123

tion do not change through time and (ii) outbreaks occur in a well-mixed homogeneous population124

at the country-level. In particular, we collaborated with the Federal Office of Public Health (FOPH) in125

Switzerland to further refine the monitoring of the Swiss SARS-CoV-2 epidemic.126

The FOPH line list data contains information on the delays between onset of symptoms and report-127

ing (of a positive test, hospitalisation or death) for a significant fraction of the reported cases. We128

estimate the time-varying empirical delay distribution from this data and use it as input to the de-129

convolution step, instead of estimates of these delays from the literature (for details see Materials130

and Methods section 4.2). The delay distribution is thus tailored to the specifics of the Swiss popu-131

lation and health system. Moreover, each distribution varies through time and thus reflects changes132

caused by e.g. improved contact tracing or overburdened health offices (see Fig S6; Supplementary133

Discussion). Whenever available in the FOPH line list, we use the symptom onset date of patients134

as the date of observation and thus only deconvolve the incubation period to obtain a time series of135

infection dates. The effect of these modifications is relatively minor in most parts of the estimated Re136

curve (see Fig. S7), yet the difference between Re point estimates for a particular day can be as big137

as 20%.138

Using FOPH data on the fraction of cases infected abroad, we can correct our Re estimate for im-139

ports to reflect only local transmission. This is especially important in phases during which the local140

epidemic is seeded from abroad, and local transmission occurs at a low rate relative to case impor-141

tation (Fig. S8). Since we do not have data on the number of cases infected in Switzerland and then142

”exported” to other countries, we cannot correct for exports. Thus, the estimated Re value corrected143

for imports is a lower bound for the Re estimate which would be obtained if we could account for the144

location of infection of all cases detected in Switzerland or exported out of the country.145

In the majority of countries the critical threshold R=1 was crossed only after the implemen-146

tation of nationwide lockdowns. With our method, we can now assess the association between147

non-pharmaceutical interventions (NPIs) and the effective reproductive number Re. We selected148

20 European countries for which the reported data was free of major gaps or spikes (as these are149
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Figure 2: Example panels from the online dashboard. (A) Swiss cases, Re estimates, timeline
of non-pharmaceutical interventions (NPIs), and stringency index. (B) World map of incidence per
100’000 inhabitants over the last 14 days. (C) Comparison of Re estimates across a handful of coun-
tries, with timelines of stringency indices. All panels were extracted on Nov. 13 2020. Dashboard url:
https://ibz-shiny.ethz.ch/covid-19-re.

indicative of low-quality reporting), and for which we could estimate Re prior to the nationwide im-150

plementation of a lockdown. The dates of interventions were extracted from news reports (sources151

listed in Supplementary Table S2), and ‘lockdown’ taken to refer to stay-at-home orders of differing152

intensity. Of the countries investigated, all except Sweden implemented a lockdown (19/20). We153

estimated that Re was significantly above one prior to the lockdown measures in nearly all countries154

with a lockdown (17/19; Table 1). Only Denmark, which had a complex outbreak consisting of two155

initial waves, had an estimated Re significantly below one prior to this date. We showed on simu-156

lated data that our method estimates the date of the Re = 1 threshold crossing with up to 3 days157

delay. Accounting for these 3 days does not change our results (Table 1). The results are also re-158

markably consistent across the different observation types (Supplementary Table S1). However, the159

confidence intervals tend to be wider for the estimations based on the death incidence because the160

number of deaths is much smaller than the number of cases, and the relative noise in observations161

tends to be higher.162

To consider this question for countries outside of Europe, we used the stringency index (SI) of the163

Blavatnik School of Government [29] to describe the public health response in different countries164

(Fig. 3a). This is a compound measure describing e.g. whether a state has closed borders, schools,165

or workplaces. For example, a country with widespread information campaigns, partially closed bor-166

ders, closed schools, and a ban on public events and gatherings with more than 10 people would167
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Country Lockdown Date that R < 1 Time until R < 1

Austria 16-03 21-03 [21-03, 22-03] 5 days
Belgium 18-03 31-03 [30-03, 02-04] 13 days
Denmark 18-03 ≤10-03 [<10-03, 11-03] -8 days
Finland 16-03 03-04 [01-04, 06-04] 18 days
France 17-03 27-03 [27-03, 28-03] 10 days
Germany 22-03 26-03 [26-03, 27-03] 4 days
Ireland 27-03 09-04 [08-04, 10-04] 13 days
Italy 10-03 18-03 [18-03, 19-03] 8 days
Netherlands 23-03 01-04 [26-03, 04-04] 9 days
Norway 14-03 23-03 [22-03, 24-03] 9 days
Poland 25-03 03-04 [02-04, 17-04] 9 days
Portugal 16-03 29-03 [28-03, 30-03] 13 days
Romania 16-03 06-04 [02-04, 30-04] 13 days
Russian Federation 30-03 05-05 [04-05, 05-05] 36 days
Slovenia 20-03 24-03 [≤14-03, 28-03] 4 days
Spain 14-03 18-03 [02-02, 18-03] 4 days
Sweden 19-04 [01-04, 21-04]
Switzerland 17-03 22-03 [21-03, 22-03] 5 days
Turkey 21-03 09-04 [08-04, 09-04] 19 days
United Kingdom 24-03 31-03 [30-03, 31-03] 7 days

Table 1: The date that Re < 1 for the first time. Based on news reports, we report when a
country implemented stay-at-home orders (a ‘lockdown’). We determined when the Re estimate
and its confidence intervals first dropped below 1. Of the investigated countries that implemented a
nationwide lockdown, only two (Denmark, Slovenia) had Re estimates that included or were below
one before a nationwide lockdown was implemented. ‘Time until R < 1’ indicates the number of days
between the lockdown and the date that the mean Re < 1.

have an SI slightly above 50. As reference date, we determined when a country first exceeded a168

stringency index of 50 (tSI50). Then, we asked whether the estimated Re was significantly above 1169

prior to the reference date, where we again excluded countries without Re estimates before the refer-170

ence date. Out of 39 countries world-wide which fulfilled the criteria for inclusion (list in Supplement171

8.3), 28/39 countries were significantly above 1 prior to tSI50. As an additional analysis, for each day,172

we calculated the change of SI within the past 7 days. We used the day with the maximal change as173

the new reference date (tmax). This analysis yielded very similar results with 36/50 countries signif-174

icantly above one before tmax (Supplement 8.3). Accounting for the 3 days of possible delay, 31/39175

countries were still above 1 before tSI50 (significantly above for 25/39 countries), and 40/50 countries176

before tmax (significantly above for 33/50).177

A strong government response is associated with a faster decrease in Re. Next, we asked178

whether the slope of Re on the reference date tSI50 (one-day change) is associated with the deci-179

siveness of the government response, as measured by the change in the stringency index the week180

prior. In Europe, larger changes in the SI prior to tSI50 were significantly associated with stronger181

decreases in the estimated Re on the reference date (p = 0.04, adjusted R2 = 0.18, Fig. 3(b); 19182

countries). The same trend was found at a global scale, though no longer significant (Fig. S9; 40183

countries). However, this does not mean that the SI at lockdown is a predictor for the time until Re184

is below 1 (p = 0.9, Fig. S10(a)). This time instead was better predicted by the estimated Re on the185

day of lockdown (p = 0.03, adjusted R2 = 0.2, Fig. S10(b)). Finally, there is no significant association186

between higher maximum SI during lockdown and a lower minimum Re attained during that time187

(p = 0.14, Fig. S11).188
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Figure 3: The association between non-pharmaceutical interventions and Re during the first
phase of the epidemic. (a) Estimated Re (top) and government stringency index (bottom) for India,
South Africa, Switzerland, and the United States of America. (b) Relation between the slope of the
Re estimates on tSI50 and the increase in the stringency index over the 7 days prior to tSI50 for 19
European countries. The countries are indicated by their ISO3 country code.

Insights into continent-specific responses to NPIs. To investigate the association between changes189

in government stringency and changes in Re in more depth, we extended our analysis until Novem-190

ber 10th and included both the implementation and lifting of NPIs (increases and decreases in strin-191

gency). For each week and country, we determined whether the stringency index changed, and if192

so, what the effect was on Re after 7 days. If NPIs are working as expected, increases in stringency193

should be associated with a decrease in Re and vice versa. We do find this for increases in strin-194

gency e.g in Europe (blue bars, Fig. 4a), but decreases in stringency have a more varied effect on195

Re estimates on all continents (red bars, Fig. 4a). This may be modulated by temporal differences in196

when NPIs were implemented or lifted (Fig. 4b).197

For North America, Asia, and Europe, an increase in stringency was significantly more associated198

with a subsequent reduction in the estimated effective reproductive number Re than a reduction in199

stringency was (permutation test randomising SI increase/decrease associated with the estimated200

change in Re, α = 0.05, 6-way Bonferroni correction). For these continents, increases in stringency201

also resulted in a stronger absolute change than decreases in stringency (permutation test randomis-202

ing SI increase/decrease associated with the estimated change in Re, α = 0.05, 6-way Bonferroni203

correction). This suggests that reversing non-pharmaceutical interventions had a very different effect204

than introducing them. For the continents Africa, South America, and Oceania no significant differ-205

ence could be detected between the distributions of estimated Re changes after implementation or206

lifting of NPIs.207

We further repeated this analysis for 8 individual indices that make up the SI compound index sep-208

arately. Continents differ substantially in which indices showed signal that an increase in stringency209

was significantly more associated with a subsequent reduction in Re than a reduction in stringency.210

Four index-continent pairs showed a significant effect: school closing and closing public transport in211

Europe, cancelling public events in South America, and stay at home requirements in North America212

(as determined by permutation test randomising SI increase/decrease associated with the estimated213

change in Re, α = 0.05, 6*8-way Bonferroni correction; Supplementary Table S3). Similar, yet non-214

significant, trends were observed for some of the other index-continent pairs. We further tested215

whether there was a linear relationship between the change in stringency of the individual indices216

and the resulting estimated change inRe (Supplementary Fig. S12, Table S4). The highestR2 values217

were found for the index-continent pairs also identified in the previous analysis.218
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Figure 4: The association between non-pharmaceutical interventions and changes in Re. (a)
Histogram of the estimated 7-day change in Re following the implementation (blue, above x-axis) or
lifting (red, below x-axis) of NPIs in a given week. The height of the bars is given by the number of
countries with this observation, coloured by the change in stringency index that week. If NPIs are
working as expected, we would expect an increase in stringency (i.e. bars above the x-axis) to be
more associated with a decrease in Re (shifted to the left) and bars below the x-axis to be shifted
more to the right. Note, scales differ between the continents. (b) Strength of NPI changes through
time, coloured by their effect on Re (increase is blue, a decrease red). Here, the height of bars is
given by the summed change in the stringency index over all countries that week. If NPIs are working
as expected, we would expect bars above the x-axis (i.e. an increase in stringency) to be more red
(i.e. associated with a decrease in estimated Re) and bars below the x-axis to be more blue.

3 Discussion219

We have developed a pipeline to monitor the effective reproductive number Re of SARS-CoV-2 in220

near real-time, and validated our estimates with simulations. We showed that the inferred Re curve221

can be slightly over-smoothed on simulated data, but that this is a necessary compromise given the222

inherent noisiness and sometimes low quality of real data. Overall, we show that the relative error in223

the Re estimates is small. In particular, we can detect when Re crosses the critical threshold of 1,224

which is important to an informed public health response.225

During the ongoing SARS-CoV-2 pandemic, Re estimates are of interest to health authorities, politi-226

cians, decision makers, the media and the general public. Because of this broad interest and the criti-227

cal importance of Re estimates, it is crucial to communicate both the results as well as the associated228

uncertainty and caveats in an open, transparent and accessible way. This is why we display daily up-229
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dated results on an online dashboard, accessible at https://ibz-shiny.ethz.ch/covid-19-re/.230

The dashboard shows Re estimates in the form of time series for each included country or region,231

and a global map containing the latest Re estimates and normalised incidence. For a number of Eu-232

ropean countries, we also display a timeline of the implementation and lifting of non-pharmaceutical233

interventions (NPIs). For all countries, we display a timeline of the stringency index of the Blavatnik234

School of Government.235

A unique advantage of the monitoring method we have developed is the parallel use of different types236

of observation data, all reflecting the same underlying infection process [6]. Wherever we have data237

of sufficient quality, we estimate Re separately based on confirmed cases, hospitalisations and death238

reports. The advantages and disadvantages of the different observation types are discussed in the239

Supplementary discussion 6.1. Comparing estimates from several types of data is a powerful way240

to evaluate the sensitivity of the results to the type of observations they were derived from. More241

generally, the method would be applicable to any other type of incidence data, such as admissions242

to intensive care units or excess death data. The potential limitations of our Re estimation method243

are discussed in detail in the Supplementary Discussion 6.2.244

The decision to implement, remove or otherwise adjust measures aimed at infection control will be245

informed by epidemiological, social and economic factors [30]. We can aid this decision making246

process by investigating the association between adjustments of public-health measures and the247

estimated Re.248

The merits of nation-wide lockdowns have been heavily discussed, both in the scientific literature as249

well as in the public sphere [8, 25, 23, 24, 31]. In particular, analyses showing that Re estimates had250

dropped below 1 before the strictest measures were enforced were frequently used to claim that a251

lockdown was not necessary [31]. We showed that this argumentation is flawed: for 17 out of 20252

European countries, we found that the estimated Re was significantly above 1 prior to the lockdown253

in spring.254

For this first epidemic wave, we further investigated the link between the strength of NPIs imple-255

mented and the concurrent decrease of Re. There was a trend that countries with a strong increase256

in stringency prior to the reference date tSI50 saw a faster decrease in pathogen transmission on that257

day. However, this analysis focused only on the estimated one-day change in Re around the onset of258

the lockdown. We did not find that the strength of the government response significantly determined259

the time it takes to bring Re < 1, nor the value of Re during a lockdown. To investigate these points260

conclusively, further analyses are needed that are beyond the scope of this manuscript.261

Extending our analysis to data up until Nov. 10, we find differences between continents in the ef-262

fect of NPIs on Re. This could reflect differences in the speed with which lockdowns were put into263

practice [26], the de-facto lockdown stringency, or socio-cultural aspects [30, 32]. It is often argued264

that, especially in countries with a large informal business sector, there may be a difference between265

the official containment measures and those adhered to or implemented de-facto [32]. However, for266

continents where we find no significant effect of NPI implementation, this could also be because the267

majority of NPIs were implemented at a time for which we could not estimate changes in Re. Many268

African countries implemented early and strict government responses, often prior to the first detected269

cases. These are thought to have delayed the virus in establishing a foothold on the continent [32].270

Since we cannot estimate Re without cases, such early response would not be seen to reduce Re in271

our analyses.272

Importantly, our analysis suggests that reversing non-pharmaceutical interventions had a very dif-273

ferent effect than introducing them. This could be because the situation is not fully reverted: due274

to increased public awareness, testing, contact tracing, and quarantine measures still in place. In275

addition, the epidemic situation - in terms of number of infected individuals - is likely different when276

measures are implemented or lifted.277

Our analysis could be confounded by other economic, social, and psychological factors motivating278

the implementation or release of measures. With the current stringency measures we can not ac-279
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count for diversity in adherence to NPIs across geographic regions and through time. Cultural norms,280

defiance towards public authorities, ”lockdown fatigue”, and economic pressures are all among the281

factors that may determine whether NPIs are in fact adhered to. In addition, there is increasing ev-282

idence that weather may be a factor influencing Re through its effect on people’s behaviour as well283

as properties of the virus [33]. In the future, our tools to quantify Re could be used to explore asso-284

ciations of these many factors with Re, with the aim of identifying minimal sets of factors ensuring an285

Re < 1 for particular locations.286
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4 Materials and Methods298

4.1 EpiEstim299

The method presented here builds upon the Re estimation method developed by Cori et al. [12],300

implemented in the EpiEstim R package. This method estimates Re(t) from a time series of infection301

incidence, we summarise its details below.302

Disease transmission is modelled with a Poisson process. At time t, an individual infected at time
t − s causes new infections at a rate Re(t) · ws, where ws is the value of the infectivity profile s
days after infection. The infectivity profile sums to 1, and can be approximated by the serial interval
distribution [12]. The expected infection incidence It at time t is thus:

E(It) = Re(t)
t∑

s=1

It−sws (1)

and the likelihood of the incidence It is given by:

P (It|I0, . . . , It−1, wt, Re(t)) =
(Re(t)Λt)

It e−Re(t)Λt

It!
, (2)

where Λt =

t∑
s=1

It−sws . (3)

The Re(t) inference is performed in a Bayesian framework, and an analytical solution can be derived303

for the posterior distribution of Re(t) (see [12]; Web Appendix 1). We choose a gamma distributed304

prior on Re(t) with mean 1, and standard deviation 5.305
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4.2 Deconvolution306

To recover the non-observed time series of infection incidence, we deconvolve the observed time307

series of COVID-19 case incidence with a delay distribution specific to the type of case detection308

(case confirmation, hospital admission, death).309

We extended the deconvolution method of Goldstein et al. [14], which is itself an adaptation of the
Richardson-Lucy algorithm. Formally, the deconvolution infers an infection incidence time series
(λ1, . . . , λN ) from a time series of observed cases (DK , . . . , DN ), with K ≥ 1. Di indicates the
number of observed cases on day i. Let mj

l be the probability that an infection on day j takes l

days to be detected. For any k < 0 and any l, mk
l = 0. If no line list data is available mj

l = ml,
and no time-variation of the delay distribution is assumed. Let qj be the probability that an infection
that occurred on day j is observed during the time-window of observations, between days K and N .
Then:

qj =

N−j∑
l=K−j+1

mj
l . (4)

Let Ei be the expected number of observed cases on day i, for a given infection incidence (λk):

Ei =

{∑i
j=1 λj m

j
i−j for i ≥ K

0 for 0 < i < K .
(5)

The Richardson-Lucy algorithm uses expectation maximisation to find a final infection incidence
estimate, which has the highest likelihood of explaining the observed case time series. To do so, it
starts from an initial guess of the infection incidence time series Λ0 = (λ0

1, . . . , λ
0
N ), and updates the

estimate in each iteration n according to the following formula:

λn+1
j =

λnj
qj
·

N∑
i=K

mj
i−jDi

En
i

. (6)

The iteration proceeds until a termination criterion is reached. Here, we follow Goldstein et al. and
iterate until the χ2 statistic drops below 1 [14], or 100 iterations have been reached:

χ2 =
1

N −K + 1

N∑
i=K

(En
i −Di)

2

En
i

. (7)

Convergence is typically fast and the stopping criterion based on the χ2 statistic is reached in a few310

iterations. Due to the smoothing prior to deconvolution, this was the case for nearly all empirical data311

we analyzed. In some cases, e.g. when the observed incidence is very noisy, convergence can be312

slower and the threshold of 100 iterations can be reached. For 4/170 countries, convergence was313

not reached in 100 iterations: China, Ecuador, Equatorial Guinea and Peru all showed strong spikes314

in reporting which obstructed the deconvolution.315

For the initial estimate of the incidence time series Λ0, we shift the observation time series backwards316

in time by the mode of the delay distribution µ [14]. However, this leaves a gap of unspecified317

values at the start and end of the time series Λ0. Contrary to Goldstein et al., we augment the318

shifted time series with the first observed value (DK) on the left, and with the last observed value319

(DN ) on the right, to avoid initialising with a zero-value anywhere. If a day is initialised with zero320

incidence, it will also have zero incidence in the final estimate (compare equation 6), which would321

be a potential source of bias. We have compared several ways to pad the shifted observed time322

series for the initialisation step, and determined that augmentation with non-zero integers equal to the323

edge values is enough for the deconvolution to converge to the true distribution (see Supplementary324

Fig. S13).325
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We note that this Richardson-Lucy deconvolution algorithm accounts for ‘right truncation’, i.e. not all326

infections that have occurred are observed within the given observation time window (due to delay327

until symptoms/reporting), through the qj indices.328

Use of line list data When a line list is available, the time variation of delays between symptom329

onset and observation can be taken into account directly during the deconvolution step. This leads330

us to perform the deconvolution in two separate steps: first with the time-varying empirical onset-to-331

observation distributions, and then with the constant-through-time incubation period distribution. For332

those cases where symptom onset data is available, we only deconvolve with the incubation period333

distribution.334

The (mj
0, . . . ,m

j
K) time-varying delay distributions from onset of symptoms to observation are deter-335

mined as follows: for each date j, at least 300 of the most recent recorded delays between symptom336

onset and observation, with onset date before j, are taken into account. To avoid biases caused by337

the intensity of testing and reporting varying throughout the week, recorded delays are included in338

full weeks going in the past, until at least 300 delays are included.339

As the incidence data is right-truncated, we have to fix the reporting delay distributions mj
i at some340

point, or they would be downward biased for infection dates close to the present. Let (m0
0, . . . ,m

0
K)341

be the overall empirical delay distribution (aggregated over the entire window of observations) and342

n the 99th percentile of this distribution (n is the smallest integer for which
∑n

i=1m
0
i ≥ 0.99). For343

all infection dates z such that M − z < n, M being the index of the last available data point, we fix344

(mz
0, . . . ,m

z
K) to be equal to (mM−n

0 , . . . ,mM−n
K ).345

4.3 Noise and uncertainty in the case observations346

To reduce the influence of weekly patterns in case reporting data, as well as reporting irregularities,347

we smooth the observed incidence data prior to deconvolution. To smooth the incidence data, we348

use local polynomial regression fitting (LOESS) with 1st order polynomials and tricubic weights.349

The smoothing parameter alpha is set such that we always include 21 days of data in the local350

neighbourhood of each point. At the edges, the weights drop to 0 and less points are taken into351

account in total [34]. After smoothing, we normalise to the original total number of cases.352

To reflect uncertainty in the observation process, we bootstrap the observed incidence data 50 times,353

prior to smoothing, deconvolution, and Re estimation. The bootstrapping process here consists of354

sampling reported cases with replacement from the original case data (with equal probability per355

case), until a resampled time series with the same number of cases as the original one is obtained.356

This likely underestimates the total uncertainty because it does not take into account that some cases357

may be correlated, e.g. by belonging to the same transmission chain. A common way to circumvent358

this problem would be to use a (moving) block bootstrap method. We are working to implement this359

into our pipeline.360

TheRe estimate reported for day T summarises the average estimatedRe over a 3-day period ending361

on day T . We report the median of the 50 Re posterior distributions obtained, as well as the median362

of the 95% uncertainty interval boundaries. In addition, we provide step-wise estimates of Re. In363

this step-wise analysis, Re is assumed to be constant on a number of intervals spanning the entire364

epidemic time window. These intervals are bounded by dates at which public health interventions365

were implemented, altered, or lifted.366

4.4 Data367

We gathered case incidence data directly from public health authorities. Whenever accessible, we368

rely on data from local authorities. Otherwise, we default to the data of the European Centre for369

Disease Control (ECDC) [35]. A table summarising the incidence data sources is available in Sup-370

plementary File S1. Information on the start and end of interventions, or major changes in testing371
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policy, were obtained from media reports and the websites of public health authorities. The strin-372

gency index of the Blavatnik School of Government was accessed from their publicly available github373

repository [29].374

We parametrised the discretised infectivity profile ws using COVID-19 serial interval estimates from375

the literature [36], i.e. a gamma distribution with a mean of 4.8 days, and a standard deviation (SD) of376

2.3 days. For a review of serial interval estimates published in the literature, see Griffin et al. [37]. The377

incubation period is parametrised by a gamma distribution with mean 5.3 days and SD 3.2 days-[38].378

For countries for which we do not have access to line list data, i.e. all except Switzerland, Germany379

and Hong Kong at the time of writing, we assume delays from symptom onset to observation to be380

gamma-distributed, see table 2 for parameters.381

Delay Mean (days) SD (days) Reference
Onset of symptoms to case confirmation 5.5 3.8 [39]
Onset of symptoms to hospital admission 5.1 4.2 [40]
Onset of symptoms to death 15.0 6.9 [38]

Table 2: Delay distribution assumed for each observation type.

For Switzerland, Germany and Hong Kong, we use line lists to build time-varying empirical distribu-382

tions on delays between symptom onset and case confirmation, hospitalisation or death. During the383

deconvolution step we use the empirical delay distribution of the last 300 recorded cases prior to the384

infection date. Moreover, for the fraction of cases for which the date of onset of symptoms is known,385

we use the onset date directly instead of deconvolving a delay from onset to reporting, allowing for386

more precise estimation of the infection date. For Switzerland, line lists contain information on which387

cases were infected abroad. By considering imported cases and locally-transmitted cases separately388

in the deconvolution step, we obtain two separate time series, one for local infections and one for389

imported infections.390

4.5 Simulations391

In the simulations, we first simulate a time series of infections and corresponding case observations392

from a specified piecewise linear Re trajectory. Then, we estimate Re from these observations us-393

ing our method: deconvolution to infer the infection time series, followed by EpiEstim to estimate394

Re.395

To assess a range of scenarios, we parametrise Re as a piecewise linear trajectory, where we fix396

the plateau values for Re and the time-points at which the trajectory changes slope. Assuming I0397

infected individuals on the first day, the infection incidence is simulated forward in time, using the398

Re time series and the discretised serial interval for SARS-CoV-2 [36] (see [12]; Web Appendix 11).399

These simulated infections are convolved with the observation type-specific delay distribution [38] to400

obtain the raw observation time series. In the case of time-varying delay distributions, we assume401

the mean of the delay distribution decreases by a fixed amount (1/20) each day, to a minimum of 2402

days (e.g. for the confirmed cases this results in a range from 4.5 to 2). When estimating with a403

time-varying delay distribution, we draw observations from the true distributions, similar to line list404

information recorded by public health authorities. To assess the added value of the deconvolution405

method, we compare against a method where we estimate the infection time series by shifting the406

observations back by the mean of the delay distribution (termed ‘fixed shift method’).407

To obtain the final observation time series we can add either weekly or daily sources of noise. In the408

case of weekly noise, we reduce the number of cases on the weekend to a fraction f of the simulated409

number, and add the subtracted cases to the following Monday and Tuesday instead. In the case of410

daily noise, we add multiplicative Gaussian noise with mean 1 and a set standard deviation on every411

day of the time series. If both sources of noise are chosen, the weekly noise is applied first.412
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Performance metrics To quantify the performance of our method on the simulated scenarios, we
employ 5 metrics. The normalised root mean square error (RMSE) is given by:

1/R̄

√√√√ 1

N

N∑
j=1

(R̂j −Rj)2 , (8)

where R̄ indicates the mean true Re, N the length of the time series, R̂j the estimated Re and Rj the413

true Re at time j. The relative error of the slope of the initial decrease (Slope error) is determined by414

comparing the slope of the true and estimated Re between the time of the end of the first Re plateau415

(t1e) and the start of the second plateau (t2s). The date of the R = 1 crossing (R = 1 difference)416

is determined by the number of days difference between when the true Re crosses the threshold417

of R = 1 and our Re point estimate does so. The fraction of correct above or below 1 estimation418

(Correct R > 1/R < 1) is determined as the fraction of the time series where we correctly infer that419

Re is significantly above or below 1. Time points where the confidence interval includes values both420

above and below 1 are excluded from the calculation. The empirical coverage (Coverage) indicates421

the fraction of the time series for which our confidence interval includes the true Re value.422

4.6 Implementation and method availability423

Daily updated results of our method on global COVID-19 data are available online on https://424

ibz-shiny.ethz.ch/covid-19-re/. The source code of this pipeline is openly accessible (see425

https://github.com/covid-19-Re/dailyR). We are also continuously updating our data sources,426

and welcome anyone who wishes to share quality data for a particular region or country (please427

contact the authors, or raise an issue on the Github repository of this project at https://github.428

com/covid-19-Re/shiny-dailyRe).429
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6 Supplementary Discussion

6.1 Observation types and the influence of testing430

Here, we briefly discuss the benefits and potential biases of the three types of observations we used.431

The most commonly used proxy for infection incidence is the incidence of confirmed cases. It is the432

least indirect way of observing infection events. However, it generally assumes that (i) the proportion433

of infected individuals that is tested, and (ii) the distribution of the delay between infection and testing434

are constant through time. Unfortunately, these assumptions do not generally hold.435

As long as the sampling proportion is constant throughout the considered time period, the Re esti-436

mates of EpiEstim are not affected by under-sampling [12]. During the SARS-CoV-2 epidemic, many437

countries initially restricted testing to only severe cases, before switching to a more extensive testing438

effort after curbing the first epidemic wave and ramping up testing capacity [41]. Changes in testing439

strategy as well as bottlenecks in testing capacity result in a varying fraction of infected individuals440

that are confirmed positive, but also in the delay between infection and test confirmation. This can441

bias the Re estimate, as it will attribute an increase/decrease in case numbers between consecutive442

time points to a change in infection incidence, rather than a change in testing.443

However, it is important to note that the ‘memory’ inherent in the Re estimate is dictated by the serial444

interval ws. An event at time t which changes the proportion of true infection incidence observed445

per day, e.g. a change in testing policy, will bias the Re estimate for the number of days needed to446

reach the 95% of ws (compare Materials and Methods, equation 1). We do not observe the infection447

incidence directly, but if the deconvolution is assumed to be perfect, the intuition for the number of448

days of biased Re estimates still holds.449

It is further possible to investigate the influence of testing intensity, by applying the Re estimation450

method separately to a case incidence time series which is adjusted for the intensity of the testing451

effort. We have added this analysis to our online dashboard (where we show the number of confirmed452

cases / number of tests, normalised by the mean number of tests). However, one should note that453

such a normalisation does not take into account that the probability of test positivity might also454

change with the number of tests (e.g. by prioritising likely cases at low numbers of tests).455

In contrast, the incidence of hospital admittance and deaths are likely based primarily on the severity456

of the symptoms, and mostly unaffected by changes in testing strategies, or the magnitude of the457

epidemic. This makes them valuable complementary observations of infection events [14]. However,458

also here biases can occur. First, only a small fraction of all infections results in hospitalisation or459

death (a recent meta-analysis found an average infection fatality ratio for SARS-CoV-2 of 0.68% [42]).460

This fraction varies with the risk group of the infected population [42, 43, 44, 45], introducing potential461

biases in Re estimations when outbreaks occur in particularly age-stratified settings. Second, if a462

country’s health infrastructure becomes overburdened and hospitals are forced to triage or delay463

admission, we expect the fraction of hospital admissions to decrease, and deaths to increase. Third,464

the likelihood to die from an infection may change through time as new treatment strategies are465

developed. Additionally, guidelines used to record COVID-19 as the cause of death have changed466

through time for some countries [46]. Lastly, the delay between infection and hospitalisation or death467

is expected to be longer than the delay until case confirmation, with the result that these Re estimates468

are less timely. One should note that these observation type specific biases could also be seen as469

a source of information. The types simply describe a different epidemic if very structured population470

with highly different mortality rates are captured (e.g. elderly homes).471
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6.2 Method Limitations472

The Re estimation method we present in the main text relies on several assumptions. Here we473

highlight the limitations that occur when these assumptions are violated.474

First, the geographical scale of the Re estimates is determined by the incidence data itself. The475

Re calculated for a country represents an average, summarised across multiple local epidemics476

unfolding in different regions. Re values need not be identical in different local epidemics across a477

country or administrative region. In particular, in times of very low pathogen transmission, single478

super-spreading events can significantly increase the estimated Re of the entire country [47].479

Second, in our deconvolution step we account for an incubation period and a delay from symptom480

onset to case observation. Implicitly, we thus assume that all reported cases come from symptomatic481

individuals. This is certainly true for hospitalised and deceased patients, but does not have to hold for482

all confirmed cases. Similar to the testing intensity (discussed in Section 6.1), this would not bias our483

estimates as long as the fraction of asymptomatic or presymptomatic individuals is constant through484

time. However, the fraction of asymptomatic individuals could vary with the population structure485

and age-stratification. The fraction of tested presymptomatic individuals could vary with the testing486

strategy and the intensity of the testing effort.487

Third, in our current analysis we assume a single serial interval distribution for all geographic lo-488

cations and all times. However, behaviour, population contact structure, and cultural differences in489

dealing with infection symptoms, will cause geographic and temporal variations in the serial interval.490

In particular, the implementation of non-pharmaceutical interventions can significantly shorten the491

serial interval [7]. Misspecification of the generation interval will be most pronounced for Re values492

further away from one [13].493

Lastly, our estimates of the effective reproductive numberRe are subject to changes in data reporting.494

There are frequent changes in the way in which public health offices update their observed incidence495

data: the amount of variables shared (e.g. Brasil, the UK excluded testing information), their fre-496

quency (e.g. Swiss cantons moved to weekly data updates when daily numbers became low), the497

amount of consolidation (i.e. how much values reported for a given day change in subsequent days),498

and what constitutes a COVID-19 case [46]. These variables have all changed during the epidemic,499

frequently in response to political pressure or the magnitude of the local epidemic and the resulting500

workload at the public health offices [46]. This affects the timeliness of our estimates, and can cause501

the estimated Re to change a bit between days.502

7 Supplementary Methods503

Discretisation of delay distributions When approximating delay distributions by gamma distribu-504

tions, we discretise these in the following fashion:505

ml =

{∫ 0.5
0 f(x) dx l = 0∫ l+0.5
l−0.5 f(x) dx l ∈ N∗ ,

(9)

where f is either the probability density function (p.d.f) of the gamma-distributed delay distribution,506

or the p.d.f of the sum of two independent gamma-distributed delay distributions. The former applies507

when line list data is available, and the observed data is deconvolved with the gamma-distributed508

incubation period separately from the empirical delay distribution of symptom onset to observation.509

The latter applies whenever the observed case data is jointly deconvolved with the incubation period510

and delay between symptom onset and observation.511

Because the probability density function of a sum of two independent gamma distributions does not512

admit a simple form in the general case, in practice we approximate the p.d.f by drawing a million513

independent pairs of samples, one from each gamma distribution, summing the pairs, and computing514

the empirical cumulative distribution function of the sampled distribution.515
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8 Supplementary Materials516

8.1 Supplementary Simulations517

Figure S1: Performance of our method on simulated scenarios with noise and without
smoothing. The R1 (point shape), t3 (point colour), and I0 were varied, all other parameters kept
constant (see Materials and Methods 4.5). Three plateaus were used, with R2 = 0.5, R3 = 1.2. The
columns indicate different combinations noise: weekly noise (‘week’) reduces the number of cases
on the weekend to a fraction f and redistributes these to Monday and Tuesday (f = 1 is the weakest
noise), and daily noise (‘norm’) which refers to multiplicative Gaussian noise with mean 1 and a set
standard deviation sd on every day of the time series (sd = 0 is weakest).
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Figure S2: Performance of our method on simulated scenarios with noise and with smooth-
ing. The R1 (point shape), t3 (point colour), and I0 were varied, all other parameters kept constant
(see Methods 4.5). Three plateaus were used, with R2 = 0.5, R3 = 1.2. The columns indicate dif-
ferent combinations noise: weekly noise (‘week’) reduces the number of cases on the weekend to
a fraction f and redistributes these to Monday and Tuesday (f = 1 is the weakest noise), and daily
noise (‘norm’) which refers to multiplicative Gaussian noise with mean 1 and a set standard deviation
sd on every day of the time series (sd = 0 is weakest).
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(a) Confirmed cases
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(b) Deaths

Figure S3: Performance of our method on simulated scenarios with misspecified delay distri-
butions. We changed the mean of the delay distribution (5.5 for symptom-onset to case confirma-
tion, 15.0 for symptom-onset to death) by the numbers above the columns. The R1 (point shape),
t3 (point colour), and I0 were varied, all other parameters kept constant (see Materials and Methods
4.5). The observations were smoothed and no noise was added. Three plateaus were used, with
R2 = 0.5, R3 = 1.2. No noise was added to the observations.
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(a) Confirmed cases
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(b) Deaths

Figure S4: Performance of our method on simulated scenarios with time-varying delay distri-
butions. The observations were simulated with time-varying delay distributions (see Materials and
Methods, section on simulations), and then estimated with (right column) or without (left column)
taking the time-varying distributions into account. The R1 (point shape), t3 (point colour), and I0

were varied, all other parameters kept constant. The observations were smoothed and no noise was
added. Three plateaus were used, with R2 = 0.5, R3 = 1.2.
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Figure S5: Performance of our method on simulated scenarios using the fixed shift (TRUE)
instead of the deconvolution (FALSE) to infer infection incidence. In case of the fixed shift
method the observations are shifted back by the mean of the delay distribution. For both methods the
observations are bootstrapped in the same way, leading to similar width of the confidence intervals.
The R1 (point shape), t3 (point colour), and I0 were varied, all other parameters kept constant (see
Materials and Methods 4.5). The observations were smoothed and no noise was added. Three
plateaus were used, with R2 = 0.5, R3 = 1.2.
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8.2 Switzerland specific results518

Figure S6: Mean delay in Switzerland between onset of symptoms and reporting. For each
date, the mean is taken over the last 300 reports with known symptom onset date, based on line list
data from the FOPH. For early dates, before 300 reports are available, the mean is taken over the
first 300 reports.

Figure S7: Comparison of effective reproductive number estimates with or without account-
ing for known symptom onset dates and for time-variability on reporting delays. The com-
parison is based on time series of confirmed cases in Switzerland, from line list data provided by
the FOPH. Both the inclusion of known symptom onset dates and of the time-variability of reporting
delay distributions have an effect on the Re estimates, in particular for early estimates in this case.

8.3 R = 1 crossings519
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Figure S8: Effective reproductive number estimates with or without accounting for known
imports. The comparison is based on time series of confirmed cases in Switzerland, from line list
data provided by the FOPH. The analysis without imports is unbiased if the number of imports equals
the number of exports. Since the analysis accounting for imports is not accounting for exports, the
results are a lower limit for the effective reproductive number.

Country Lockdown R=1 based on
Confirmed cases

R=1 based on
Deaths

R=1 based on
Hospitalisations

Austria 16-03 21-03 [21-03, 22-03]
Belgium 18-03 31-03 [30-03, 02-04] 26-03 [25-03, 28-03] 25-03 [24-03, 26-03]
Denmark 18-03 ≤10-03 [≤10-03, 11-03] 23-03 [20-03, ≥19-09]
Finland 16-03 03-04 [01-04, 06-04] 08-04 [26-03, 13-04]
France 17-03 27-03 [27-03, 28-03] 24-03 [23-03, 24-03] 26-03 [26-03, 27-03]
Germany 22-03 26-03 [26-03, 27-03] 02-04 [29-03, 04-04]
Ireland 27-03 09-04 [08-04, 10-04] 09-04 [07-04, 12-04]
Italy 10-03 18-03 [18-03, 19-03] 14-03 [13-03, 15-03]
Netherlands 23-03 01-04 [26-03, 04-04] 20-03 [18-03, 23-03]
Norway 14-03 23-03 [22-03, 24-03] 28-03 [17-03, 11-04]
Poland 25-03 03-04 [02-04, 17-04] 10-04 [25-03, ≥19-09]
Portugal 16-03 29-03 [28-03, 30-03] 29-03 [23-03, 11-04]
Romania 24-03 06-04 [02-04, 30-04] 30-03 [26-03, 01-05]
Russian
Federation

30-03 05-05 [04-05, 05-05] 19-05 [17-04, 04-06]

Slovenia 20-03 24-03 [≤14-03, 28-03] 26-03 [22-03, ≥19-09]
Spain 14-03 18-03 [02-02, 18-03]
Sweden - 19-04 [01-04, 21-04] 29-03 [26-03, 06-04]
Switzerland 17-03 22-03 [21-03, 22-03] 21-03 [19-03, 24-03] 17-03 [16-03, 19-03]
Turkey 21-03 09-04 [08-04, 09-04] 05-04 [01-04, 08-04]
United King-
dom

24-03 31-03 [30-03, 31-03] 25-03 [25-03, 26-03] 29-03 [28-03, 29-03]

Table S1: The date that Re < 1 for the first time. Based on news reports, we determined when
a country implemented stay-at-home orders (a ‘lockdown’). Using our method we determined when
the Re estimate and its confidence intervals first dropped below 1. Based on our Re estimates for
confirmed cases, only two countries that implemented a nationwide lockdown (Denmark, Slovenia)
had confidence intervals that included or were below one before a nationwide lockdown was imple-
mented. For Re estimates based on COVID-19 deaths, there are also two, but different ones (the
Netherlands, Poland).
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SI 50 analysis Reference date: first day the stringency index exceeded 50 (SI > 50).520

The 39 included countries: Algeria, Andorra(*), Australia, Austria, Bahrain, Belgium, Brazil, Canada,521

Chile, China, Denmark, Egypt, Estonia, Finland, France, Germany, Greece, Iceland, India, Indonesia,522

Iran, Ireland(*), South Korea(*), Malaysia, Mexico, Netherlands, Norway, Portugal, Qatar, Singapore,523

Slovenia, Spain, Switzerland, Tajikistan, Thailand, United Arab Emirates, United Kingdom, United524

States of America, Vietnam.525

The star indicates the country was not included in the ∆SI analysis.526

For 34/39 countries the Re estimate was above one prior to the reference date, and significantly so527

for 28/39. The countries that reached Re < 1 prior to the reference date were Andorra (15 days528

prior), Australia (1 day prior), Denmark (3 days prior), Qatar (5 days prior), and Vietnam (2 days529

prior).530

∆SI analysis Reference date: date of the biggest 7-day increase in the SI.531

The 50 included countries: Algeria, Australia, Austria, Bahrain, Belarus(*), Belgium, Brazil, Canada,532

Chile, China, Colombia(*), Croatia(*), Czech Republic(*), Denmark, Egypt, Estonia, Finland, France,533

Germany, Greece, Iceland, India, Indonesia, Iran, Israel(*), Japan(*), Lebanon(*), Malaysia, Mexico,534

Netherlands, New Zealand(*), Norway, Pakistan(*), Philippines(*), Portugal, Qatar, Russia(*), Ser-535

bia(*), Singapore, Slovenia, Spain, Sweden(*), Switzerland, Tajikistan, Thailand, Turkey(*), United536

Arab Emirates, United Kingdom, United States of America, Vietnam.537

The star indicates the country was not included in the SI50 analysis.538

For 44/50 countries the Re estimate was above one prior to the reference date, and significantly so539

for 36/50. The countries that reached Re < 1 prior to the reference date were Australia (2 days prior),540

Denmark (4 days prior), New Zealand (2 days prior), Qatar (6 days prior), Tajikistan (17 days prior),541

and Vietnam (9 days prior).542
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Figure S9: The association between non-pharmaceutical interventions and Re. Relation be-
tween the slope of the Re estimates on tSI50 and the increase in the stringency index in the 7 days
prior to tSI50. Countries are indicated by their ISO3 country code, colours represent continents.

8.4 Implementation/Lifting of individual NPIs543

8.5 Sensitivity of the deconvolution to initial conditions544
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Figure S10: The time between the start of lockdown and R < 1. (a) The stringency index on
the day of lockdown is not a good predictor for the number of days it will take for Re < 1 (p = 0.9).
(b) The Re estimate on the day of lockdown is significantly associated with the number of days it will
take for Re < 1 (p = 0.03, adjusted R2 = 0.2). The regression analysis used the Re point estimate for
each country. The uncertainties shown in the plot were not used for this analysis. Countries are the
same as in table 1, and indicated by their ISO3 country code.
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Figure S11: The relation between the stringency and minimum Re attained during lockdown
in Europe. This trend is not significant (p = 0.14). Lockdown here refers to the period of constant,
maximum stringency during the first wave in Europe (April 2020). There is substantial variation in the
duration of the lockdown, and the number of days after the start of the lockdown that the minimum Re

was reached. The regression analysis used the Re point estimate for each country. The uncertainties
shown in the plot were not used for this analysis. Countries are the same as in table 1, and indicated
by their ISO3 country code.
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Intervention index P-value
< 0.05/48

P-value 0.05/48 < p < 0.05

C1: School closing Europe Africa, Asia, Oceania
C2: Workplace closing Asia, Europe
C3: Cancel public events South

America
Asia

C4: Restriction on gatherings Asia, Europe
C5: Close public transport Europe North America
C6: Stay at home requirements North

America
Europe, Oceania

C7: Restrictions on internal movement North America, Asia, Europe
C8: International travel controls Europe

Table S3: Continents for which an increase in stringency was significantly more associated
with a subsequent reduction in Re than a reduction in stringency. Significance was determined
by permutation test for each index separately, with significance threshold α = 0.05, and corrected for
48-way hypothesis testing.

Intervention index P-value < 0.05/48 P-value 0.05/48 < p < 0.05

C1: School closing Europe (R2 = 0.13) Asia (R2 < 0.1)
C2: Workplace closing Europe (R2 < 0.1) Asia (R2 < 0.1)
C3: Cancel public events South America

(R2 = 0.77)
Asia (R2 < 0.1)

C4: Restriction on gatherings Europe (R2 < 0.1)
C5: Close public transport Europe (R2 = 0.17)
C6: Stay at home requirements Europe (R2 < 0.1) North America (R2 = 0.15)
C7: Restrictions on internal movement Europe (R2 < 0.1) North America (R2 = 0.13), Asia

(R2 < 0.1)
C8: International travel controls Europe (R2 < 0.1)

Table S4: Continents where the estimated one-week change in Re is significantly determined
by changes in individual stringency indices. Significance was determined with significance
threshold α = 0.05, and corrected for 48-way hypothesis testing.
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Figure S12: The one-week change in Re following changes in government stringency. The
rows C1-C8 refer to different stringency indices (see table S4).
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(a) Whole timeseries
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(b) Last Fortnight

Figure S13: Assessing the sensitivity of the deconvolution to different initial estimates. Panel (b)
shows the last fortnight of panel (a). Confidence intervals are computed on 20 bootstraps of the
original time series. The columns represent a shift by 10 days, 8 days, or the mode of the delay
distribution (7 days). The rows show ten countries in our dataset. It is clear that augmenting both
ends with zeros can lead to spurious increases in incidence towards the present (blue curves). Aug-
menting with a constant non-zero integer (purple), forecasting with an ARIMA model (green), and
forecasting with an exponential model (yellow), all perform similarly.
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