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Data-driven classifications are improving statistical power and refining prognoses for a range of respiratory, infectious, autoim-
mune, and neurological diseases. Studies have used molecular information, age of disease incidence, and sequences of disease
onset (“disease trajectories”). Here we consider whether easily measured risk factors such as height and BMI can usefully char-
acterise diseases in UK Biobank data, combining established statistical methods in new but rigorous ways to provide clinically
relevant comparisons and clusters of disease. Over 400 common diseases were selected for study on the basis of clinical and epi-
demiological criteria, and a conventional proportional hazards model was used to estimate associations with 12 established risk
factors. Comparing men and women, several diseases had strongly sex-dependent associations of disease risk with BMI. Despite
this, a large proportion of diseases affecting both sexes could be identified by their risk factors, and equivalent diseases tended
to cluster adjacently. This included 10 diseases presently classified as ‘“Symptoms, signs, and abnormal clinical and laboratory
findings, not elsewhere classified”. Many clusters are associated with a shared, known pathogenesis, others suggest likely but
presently unconfirmed causes. The specificity of associations and shared pathogenesis of many clustered diseases, provide a new

perspective on the interactions between biological pathways, risk factors, and patterns of disease such as multimorbidity.

John Graunt’s pioneering epidemiological studies in the 1600s
required the identification and clustering of symptoms into disease
types with similar aetiologies'. Clusters needed to be fine enough
to distinguish different underlying causes, but coarse enough to al-
low meaningful statistical study. The modern International Clas-
sification of Diseases (ICD)?? assigns each disease a hierarchical
code in which successive digits provide increasing detail about the
cause, pathology, or anatomical site of the disease, and it continues
to evolve®.

Data-driven classification of disease is a recent idea, made pos-
sible by access to large population studies, such as UK Biobank?.
Examples include using molecular or imaging data to identify
and classify subtypes of disease such as metabolic syndrome®,
amyotrophic lateral sclerosis (ALS)”, cancer®?, arthritis'®!!, and
dengue fever severity '2. The subtypes allow more accurate prog-
noses for disease severity 2, co-morbidities '®, outcomes’'*, and
response to treatment!®>. More general studies intend to better
characterise the phenotype *13192 ysing either molecular or ge-
nomic data®>1317-19 or the times and sequences of disease inci-
dence (“disease trajectories”)?*2°. Aims include improved aeti-
ological understanding '>!%1927  quicker and more accurate diag-
noses '>~!7, more detailed prognoses '3-1720:21:23:24 "improved statis-
tical power?®, improved care '%2?2, and facilitating drug develop-
ment '>2°, Improved classification schemes are widely expected to
improve our understanding of disease’"'3!%?7 and the precision of
drug targets and clinical trial design'>?%%°, accelerating advances
such as personalised medicine?® and improving our ability to un-
derstand, and prevent, both individual and multiple diseases includ-
ing multi-morbidity 3.

Previous data-driven classifications have considered molecular
data, the time of disease onset, or the sequences of diagnosed dis-
eases (“disease trajectories”). Here we explore whether easily mea-
sured, well-known risk factors such as height and body mass index
can be used to usefully characterise, identify, and cluster diseases.

NOTE: This preprint reports new research that has not been certifiedl%)égeer revi

Results

Data are from the UK Biobank cohort of over 500,000 men and
women aged between 40 and 69 years, recruited during 2006-
2010. For inclusion, diseases were the primary clinical diagno-
sis recorded in hospital records with an ICD-10 code between 31
March 1996 and 31 March 2017, that refer to a clear diagnosis of a
health-related disease. Diseases were selected by a statistician and
two clinical epidemiologists, on the basis of statistical and clinical
criteria, as detailed in the Methods and summarised in table 1.

All results describe diagnoses that were an individual’s first pri-
mary diagnosis in an ICD-10 chapter. This compromise between
reducing the risk of confounding by prior disease and retaining suf-
ficient cases was later tested by a sensitivity analysis. We consid-
ered the well-known risk factors of: diabetes, height, body mass in-
dex (BMI), smoking status, systolic blood pressure (SBP), alcohol
consumption, and walking pace, and adjusted for the established
confounders and female-specific risk factors of: deprivation tertile,
education, hormone replacement therapy (HRT) (women only), and
having one or more children (women only). As detailed in the
Methods, risk-factor associations were estimated using a propor-
tional hazards model using age as the time variable, left-truncated
at the study start and right-censored at the study end or any cancer
other than non-melanoma skin cancer. To reduce confounding by
age we stratified by year of birth (YOB), and adjusted by the age
at which participants joined the study. To maximise the number of
cases in each category we assumed a linear response to the contin-
uous measures of BMI, height, and SBP. Non-linear associations
would reduce the accuracy of fits, and leads us to argue against
inferring causal associations between risk factors. We used well-
known and biologically meaningful variables to aid interpretation
of disease clusters, but as measurable recognised physical charac-
teristics, it would be acceptable if “risk factors” were symptoms.

Figure 1 shows the number of diseases with statistically sig-

nificant risk factors, that increase with the number of cases due to

and showuld not be used to guide clinical practice,
mum fiﬁ’(efﬂqood’ estimates eco?nmg 1ncrea§1ng1y accurate and
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Clinical inclusion criteria

Eligible hospital episodes

Prior disease Diseases were the first primary hospital diagnosis in each ICD-10 chapter 425383 male
502771 female

+ Clinical considerations Clinically distinct, age-related disease, or R-coded diseases of unknown aetiology 400006 male
468398 female

Statistical inclusion criteria

Eligible diseases

Successful fit At least 50 cases, and a covariance matrix with no unusually large or small eigen- 343 male
values that exceed the mean by 2.5 standard deviations when outliers were included 346 female

+ Statistically significant Statistically significant risk factors at the 0.05 level, after a multiple-testing 150 male
Bonferroni adjusted multivariate x2 test 140 female

+ Proportional hazards Test of proportional hazards assumption - no statistically significant deviation at the 138 male
0.05 level, after a multiple-testing FDR adjustment 127 female

+ Unisex

The set must include the same disease in both men and women

86 male and female

Table 1: Selection criteria for clustering of diseases

identifying smaller effect sizes. Overall there were smaller propor-
tions of statistically significant associations with injuries or symp-
toms of unknown origin. There were similar numbers of chronic
and acute diseases with 230 or more cases, but rarer diseases with
49-230 cases were almost twice as likely to be acute than chronic
disease. Despite infectious diseases needing exposure to an infec-
tious agent to trigger an infection, there were clear associations
of infectious diseases with risk factors, possibly because we have
selected infectious diseases that are likely to reflect an underly-
ing susceptibility. The proportion of diseases failing a proportional
hazards test increased with the number of cases, presumably be-
cause the test became more sensitive. With larger datasets, it is
possible that fewer diseases will satisfy the proportional hazards
model, although the failure might be correctable with a different
combination or increased number of risk factors.

To compare diseases, we were interested in strong biologically
meaningful comparisons, for example between current smokers
and a baseline of never smokers, as opposed to a baseline of previ-
ous smokers. Such substantial differences are more likely to be as-
sociated with changes to biological pathways that can modify dis-
ease risk. Because the maximum likelihood estimates (MLESs) for
parameters are normally distributed, the distribution for a subset of
parameters is easily obtained by marginalisation®'. The mean and
covariance matrices of a subset are simply the rows and columns of
the mean and covariance matrices that correspond to the parameters
of interest®'. These values are generally quite different than those
obtained by fitting the subset of parameters directly. This allowed
us to adjust for parameters that are known to influence disease risk,
but for clustering and comparison we used marginalisation to solely
consider: BMI, height, SBP, slow walking pace (versus fast walk-
ing pace), regular drinker (versus rarely drink), and current smoker
(versus never smokers). The procedure also ensures that each risk
factor is represented by a single variable when clustering, reducing
the potential for clustering to be dominated by a single risk fac-
tor (e.g. a categorical variable with d levels would otherwise be
represented by d parameters when clustering).

Identification of disease Each disease present in both men and
women were assigned to the one with minimum Battacharyya dis-
tance between their estimated associations with potential risk fac-

tors. The proportion of diseases matched to their equivalent disease
in the opposite sex are plotted in figure 2, grouped as acute, chronic,
infectious diseases, and symptoms of unknown origin (R-codes).
For 38% of the 172 diseases considered, the nearest disease mea-
sured by Battacharyya distance was the equivalent disease in the
opposite sex, and for 80% of diseases the equivalent disease was
among the nearest 8 diseases (the nearest 5%).

Differences between men and women The proportions of diseases
with statistically significant differences in their associations with
risk factors are shown in figure 2. Approximately 5% of diseases
had statistically significant differences between men and women at
the 0.05 level after an FDR multiple-testing adjustment?2, and this
dropped to ~1% when BMI was excluded as a risk factor.

The risk factors responsible for statistically significant differ-
ences between men and women are considered in figure 3. The
heat map indicates whether a risk-factor is associated with a higher
risk for women (red), or lower risk (white), with orange neutral.
Because BMI appeared to have different risk associations in men
and women, it was removed and the analysis rerun. Removing BMI
reduced the number of diseases with statistically significant risk
factors (after a Bonferroni adjustment), from 172 to 156. Figure 2
shows that the proportion of diseases with statistically significant
differences between men and women reduced from ~ 5% to ~1%,
and figure 3 shows that those diseases are arthrosis of the knee and
kidney stones. The differences do not appear to be solely due to any
particular risk factor. A sensitivity analysis with sex-dependent ter-
tiles replacing continuous measurements, found similar results (see
Supporting Information, figure 3). Overall we found strong evi-
dence for sex-specific associations in some diseases affecting men
and women, especially for BMI.

Clustering of disease Figure 2 shows that many diseases could
be identified by their associations with well-known risk factors.
Presuming the associations reflect common aetiological pathways,
then clustering by them may yield clusters of diseases with similar
aetiologies. Hierarchical clustering was used to capture and visu-
alise similarities between the risk factors for disease, and generated
a hierarchical structure of increasingly similar clusters. The den-
drogram is coloured to indicate 24 groups. The clustering is shown
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Figure 1: 689 diseases of men or women were categorised as acute, chronic, infectious, injuries, or symptoms of unknown cause
(separate plots), and grouped by the number of cases (horizontal axes). We considered: Are associations statistically significant at the
0.05 level after a Bonferroni multiple-testing adjustment? - no (orange) , yes: Are tests consistent with a proportional hazards model? -
no (yellow), yes (green). The median number of cases was 214. The vertical axis for acute diseases has a different scale.

in figure 4, along with a heat map for the risk factors associated
with each disease. This allows us to simultaneously visualise how
diseases cluster, and the associations responsible for the cluster-
ings.

When considering figure 4 it is useful to note that: (1) Disease
descriptions with the same first-digit of ICD-10 code are coloured
the same, e.g. 150 and I70 are both coloured black. (2) If the same
disease in men and women cluster together, then it is likely to have
a distinctive combination and magnitude of associations with risk
factors. (3) Any diseases connected by a tree with small depth
will have a quantitatively similar combination of associations. (4)
The heatmap indicates a cluster’s association with risk factors, with
red associated with higher risk, white with lower risk, and orange
neutral. For example, considering figure 4, chronic obstructive pul-
monary disease, lung cancer, arterial embolism, and atherosclerosis
are clustered closely together (groups 1 and 2), and are being iden-
tified primarily by the increased risk associated with smoking and
walking slowly, with the magnitude of associations producing the
finer subgrouping.

Symptoms, signs, and abnormal clinical and laboratory find-
ings, not elsewhere classified Chapter XVIII of ICD-10 is de-
voted to “Symptoms, signs, and abnormal clinical and laboratory
findings, not elsewhere classified”’23, and accounted for 11% of
primary hospital episodes in the UK Biobank data. Despite their

uncertain aetiology, 60 of the 98 diseases in men or women had
statistically significant risk factors at the 0.05 level after an FDR
multiple-testing adjustment, and 36 were statistically significant at
the 0.05 level after a Bonferroni adjustment. Ten diseases that sat-
isfied the FDR-adjusted proportional hazards test and were also
present in both men and women were included in the clustering
studies, and for most of these their risk associations were similar in
men and women (figure 4, R-coded disease descriptions).

Confounding by prior disease Because the same individual’s data
can appear every time a hospital episode has a primary disease from
a different ICD-10 chapter, there is potential for confounding by
prior disease. To test whether this influenced the clustering results,
we took the 24 clusters in figure 4 and refit the proportional haz-
ards model for each disease, but now excluded data with any prior
diseases from the same cluster as the disease being studied. This
prevented the clustering of diseases from different chapters being
influenced by repeat hospital episodes from the same individuals.

Despite having fewer cases, the resulting cluster is almost iden-
tical to figure 4 (see Supporting Information, figure 2), with all
pairs of clustered diseases continuing to cluster with each other.
This strongly suggests that the clusters were driven by similarities
in risk factors as intended, not by sequences of prior diseases.

Tertiles versus a continuous linear model By assuming a pro-
portional hazards model with a simple linear relationship between
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Figure 2: The proportion of diseases whose equivalent disease in
the opposite sex has the smallest Battacharyya distance is plotted
in green. The proportion of diseases with statistically significant
differences between men and women are plotted in red. The differ-
ences are mainly due to different associations with BMI (inset).

continuous measurements for height, BMI, and SBP, it was possi-
ble to consider diseases with fewer cases than needed by a more
complex model. To test the sensitivity of clusterings to this linear
approximation, we refit a proportional hazards model to the same
set of diseases but with sex-specific tertiles for height, BMI, SBP,
and year of birth. Before clustering we again used marginalisation
to compare a baseline of non-smokers, non-diabetic, rarely drink,
and minimum tertiles for height, BMI, and SBP, to parameters for
regularly smoking, diabetes, regularly drinking, and maximum ter-
tiles for height, BMI, and SBP. We did not require fits to satisfy any
statistical tests because the fewer numbers of cases in each tertile
were expected to make the fits poor for some diseases.

As shown in the Supporting Information figure 3, the result-
ing clusters are similar, with 54% of all pairs of clustered diseases
remaining together after reanalysing with tertiles. The disease of
arterial embolism and thrombosis (I74) was missing from the anal-
ysis because there were too few cases in women when the analysis
used tertiles. Ten diseases were most sensitive to the model being
fit, having no other disease clustered with them in both clusterings.
These were: H25.8 - Other senile cataract (men), K42 - Umbili-
cal hernia (men), K59 - Constipation (men), K61 - Abscess of anal
and rectal regions (men), L97 - Ulcer of lower limb (women), M15
- Polyarthrosis (men), M51 - Other intervertebral disk disorders
(women), R11 - Nausea and vomiting (men), R29.6 - Tendency to
fall (men), R69 - Undetermined causes of morbidity (men).

Diseases with statistically significant differences between men
and women were also similar (see Supporting Information, figure
4). The differing analyses found 4 diseases common to both stud-
ies with statistically significant differences at the 0.05 level after
an FDR multiple-testing adjustment3?. Without BMI as a risk fac-

tor, both studies found that kidney stones (N20) continued to have
different risk associations for men and women.

Discussion

The broad systematic study of sex-specific diseases, specificity of
observed associations, and shared pathogenesis of many clustered
diseases offers potential new insights into the clinical presentation
and aetiopathology of disease, some of which are explored below.

Sex differences and epidemiological practice There is a grow-
ing awareness of differences between men and women for the in-
cidence, diagnosis, prognosis, and treatment of disease?>33. Sex-
dependent risk factors have also been found in association with
cardiovascular disease**. Here we find a substantial proportion of
diseases with different risk associations between men and women,
for BMI in particular (figures 2 and 3). Further work is needed
to understand the causes and implications of different risk associa-
tions, but the sex-dependent differences for BMI in particular, are
sufficiently clear that they should be accounted for in future studies.

The proportional hazards model failed more frequently as the
number of cases increased (figure 1). For larger data sets in partic-
ular, the model should be tested, and modified as required. With
sufficient data, alternative methods may need to be considered.

Specificity of associations Despite 5% of diseases having sub-
stantially different associations between risk factors in men and
women, 38% of diseases were correctly identified with their equiv-
alent disease in the opposite sex, and 80% had their equivalent dis-
ease among the nearest 8 (of 172) diseases. This would only be
possible if men and women had similar quantitative associations
with risk factors for a given disease, and if these are sufficiently
distinct from those for other diseases. The influence of risk factors
on disease onset seems surprisingly specific in many cases, and
with more risk factors this specificity may increase. For example,
if the 7 risk factors had a trinary value of e.g. tertiles, there would
be 37 = 2187 possible combinations, but if the number of risk fac-
tors were doubled from 7 to 14 the combinations would exceed 4
million. In principle, it may be possible to define diseases by their
response to a specific set of risk factors.

Pathways for disease An underlying reason for this work was
to explore whether clustering by common risk factors can help
identify pathways for disease. For example, renal failure, hyper-
kalaemia, and ulcers of lower limbs in men are clustered in group
6, along with other septicaemia in women. Renal failure can in-
crease the risk of ulcers of the lower limb3>%, and hyperkalemia
can be caused by kidney disease. However, a sensitivity analy-
sis excluded prior diseases from the same cluster prior to fitting the
proportional hazards model, and produced an almost identical clus-
tering of diseases, consistent with clusters being driven by associ-
ations with risk factors (as intended), not prior disease. One inter-
pretation is that the disease cluster is driven by a common pathway
such as atherosclerosis, with some associations being risk factors
for it, others symptoms of it, and the diseases a consequence of it.
This could produce (non-causal) associations between subsequent
hospital admissions for different diseases. In contrast, cardiovascu-
lar diseases such as arterial embolism, pulmonary embolism, and
atrial fibrillation are from the same ICD-10 chapter, but have dif-
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Figure 3: Disease pairs with statistically significant differences in their associations with risk factors at the 0.05 level after an FDR
multiple-testing adjustment. With all associations (left), and without BMI (right). Red indicates an association with higher risk for
women than men, white a lower risk, and orange neutral. Without BMI as a risk factor, only two diseases continue to have statistically

significant differences.

ferent underlying causes, and are found in different clusters with
quantitatively different risk associations.

Cardiovascular diseases appear in several different clusters,
suggesting they are influenced by a range of different pathways
for disease onset or severity. Arterial embolism and atheroscle-
rosis are clustered with lung cancer in group 1, and adjacent to
chronic obstructive pulmonary disease (COPD) in group 2, sug-
gesting a similar and possibly smoking-related cause. Pulmonary
embolism is in a group of 9 diseases (group 4) that includes gall-
stones, pain in limb, and polyarthrosis in women. Gallstones have
previously been associated with an higher risk of pulmonary em-
bolism?7, that was attenuated after cholecystectomy?>’. Heart fail-
ure and unspecified stroke in women appear in a large group of 18
diseases, in which 11 of the remaining 15 diseases involve infec-
tions. Atrial fibrillation has sufficiently specific associations to be
clustered on its own in group 16. Non-rheumatic aortic valve dis-
orders, angina pectoris, and cerebral infarction, appear in group 21,
along with spondylosis, other spondylopathies, and senile cataracts
in men. Cervical spondylosis (CS) have previously been associated
with a higher risk of posterior circulation infarcts3®, and with acute
coronary syndrome3®. Unspecified stroke, hypotension, and oe-
sophageal varices, all in men, are in the adjacent group 20, along
with hypo-osmolarity and hyponatraemia, and ulcer of lower limbs
in women.

The majority of diseases involving infections are in a large clus-
ter (group 6), described above in the context of cardiovascular dis-
eases. The clustering suggests that susceptibility or severity could
be mediated by a common underlying pathway. There is nothing
unusual about the associations with walking slowly, diabetes, high
BMI, and smoking, suggesting that the specific strengths of those
associations are producing the cluster. Four other types of infec-

tions affecting both men and women (eight diseases), are in groups
9 and 10, and appear to have weaker associations with smoking and
BMI than those in group 6.

Identification and re-classification of disease Many diseases of
uncertain aetiology (R-coded diseases in ICD-10), had statistically
significant risk factors, often sufficiently specific for equivalent dis-
eases in men and women to cluster adjacently (figure 4). This
could be explained by hospital referrals being influenced by spe-
cific risk factors and symptoms, as specified by medical training
or guidelines. Alternatively, the quantitative disease-specific pat-
terns of associations between risk factors and R-coded diseases
could reflect an underlying pathophysiological cause. From the
perspective of the Bradford Hill criteria*®*!: Strength of associa-
tion, Consistency, Specificity, and Temporality - there were strong,
dose-related, statistically significant, disease-specific, subsequent
responses to risk factors in both men and women. Analogy, Plau-
sibility, and Coherence - like all diseases, evidence of disease is
sufficiently strong and specific for hospital admission and identifi-
cation with one of nearly 100 R-coded diseases.

R-coded diseases are rarely discussed or studied, so it is worth
examining the diseases with which they cluster in detail: (1) Nau-
sea and vomiting is clustered with specified intestinal infections,
suggesting a possible infectious origin. The cluster also contains
anaemia, and diseases in women-only of tendency to fall, other in-
terstitial pulmonary diseases, hypotension, and viral infections of
unspecified site. (2) Change in bowel habit is clustered with con-
stipation in group 12. (3) Abnormal weight loss is clustered with
fractures of the femur, bronchiectasis, and coeliac disease in group
15. Weight loss is a potential cause of fractures that are mediated
by osteoporosis, but similar risk associations for weight loss and
femoral fractures would suggest that weight loss could be a symp-
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Figure 4: The estimated fitting parameters and their covariance matrices were used to calculate the Battacharyya distances between
diseases, and clustered hierarchically using the Ward.D2 algorithm. Diseases in men and women tend to cluster adjacently. Labels are
coloured by their first ICD-10 digit, and the dendrogram is coloured with the top 24 groups in the cluster (see figure 5). Associations
with potential risk factors are indicated by the heat map, with red an association with higher risk, white with lower risk, and orange
neutral.
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tom of an unidentified underlying process. (4) Abnormal findings
or imaging of lung, and haemoptysis, are clustered with pancreatic
and bladder cancers, and rectal polyp, in group 19. (5) Other and
unspecified abdominal pain is clustered with gastritis and duodeni-
tis in group 15. We are unaware of any indirect reasons why the
risk factors for diseases with such similar symptoms would coin-
cide, but the group also contains four cataract diseases, that seem
most likely due to coincidental similarities between the risk associ-
ations. (6) Other chest pain and undetermined causes of morbidity
are in group 24, a group that also includes back pain, intervertebral
disc disorders, other joint disorders not classified elsewhere, frac-
tures of the lower leg, and benign neoplasms of the colon, rectum,
and anus. The links between these undiagnosed causes of pain and
morbidity, and diagnoses of back and intestinal problems may be
relevant for improving the accuracy of diagnoses. (8) A few other
R-coded diseases are included, but these diseases appear in differ-
ent clusters for men and women, and are not discussed further.

Limitations Many of the limitations here are inherent to any co-
hort study, but some are accentuated by the need to simultaneously
study multiple diseases. Disease selection: Uncertainty about the
history of treatment decisions made it impractical to identify and
exclude diseases whose hospital episode rates have geographical
or temporal variations due to changes in diagnosis or treatment
practices, such as a change in reported incidence of sepsis due to
changes in coding*?. Instead we relied on statistical tests to detect
when large variations in episode rates were causing statistical mod-
els to fail or lose power. Cohort: Due to the minimum age of partic-
ipants in UK Biobank, we can only study diseases of old age, and
the UK Biobank cohort is not representative of the UK or global
population. Hospital referrals, diagnoses, and recordings of diag-
noses are all biased by clinical procedures and training. Model: Al-
though a sensitivity analysis suggested the clustering results were
insensitive to the model, a larger cohort with more cases would al-
low a more complex statistical model, or the inclusion of more risk
factors. Although the application of clustering methodologies to
epidemiological data is becoming popular, methods to objectively
determine the optimum number of clusters for a particular applica-
tion have yet to be established. Most importantly, we found that
disease identification and clustering was sensitive to the number of
diseases, that in turn was surprisingly sensitive to the fitted model
through the multiple-testing adjustments used to determine which
diseases to include. Causal associations: We aimed to explore asso-
ciations between diseases, but further work is needed to determine
if the observed associations are causal.

Strengths of methodology Diseases were assessed and selected
prior to the study, on the basis of clinical and epidemiological cri-
teria. Established and interpretable statistical methodologies were
used in new but statistically rigorous ways. Risk associations were
calculated before clustering, providing advantages in terms of mod-
elling and interpretation of results. Proportional hazards methods
provided access to several decades of epidemiological experience,
and are familiar to the medical community. Analyses were sex-
specific, used (left-truncated) age as a time variable and multiple-
adjustment to reduce the influence of correlations between risk
factors, age in particular, and were censored by the first occur-
rence of cancer (other than non-melanoma skin cancers). Esti-
mates were adjusted for likely confounders, and multiple adjust-
ment will reduce the influence of correlations between risk factors

on subsequent clustering. The resulting estimates are normally dis-
tributed, allowing rigorous (multivariate) statistical tests to com-
pare the equivalence of risk factors for different diseases, and their
marginal distributions are easy to calculate. This allowed adjust-
ment for many known risk factors but to subsequently focus on a
subset of the most biologically relevant factors by using marginal-
isation3? to remove parameters of lesser interest. The procedure
also ensured that each risk factor was represented by a single vari-
able when clustering, avoiding clustering being dominated by e.g.
a categorical variable with many different categories. Rigorous sta-
tistical tests were used to compare different diseases’ risk factors,
clustering results were consistent with statistical tests, were rela-
tively insensitive to changes in the proportional hazards model, and
sensitivity analyses found no evidence that clustering was driven
by prior disease. Distances between fits used estimated parameters
and their covariance matrices, retaining as much information from
the data as possible. Hierarchical clustering is easily visualised,
and may help inform hierarchical disease classifications. Diseases
were confirmed to cluster into clinically meaningful groups.

Summary The associations of common risk factors with disease
incidence were used to characterise over 400 diseases in men and
women, and to identify clusters of 78 diseases that were present
in both sexes with statistically significant risk factors after a Bon-
ferroni multiple-testing adjustment. We aimed to incorporate as
much clinical and epidemiological knowledge as possible, and to
adopt analyses that are easily interpretable, familiar to the medical
community, and underpinned by a rigorous statistical methodol-
ogy. The broad perspective gained from the simultaneous study of
several hundred diseases emphasises that BMI can have a quantita-
tively different influence on disease risk for men and women, and
that proportional hazards models are more likely to fail with more
cases. Both of these important points should be considered in rel-
evant epidemiological studies. We found that the associations of
common risk factors with disease incidence was sufficiently spe-
cific to identify the equivalent disease in the opposite sex for 38%
of 172 diseases studied here, and 80% have their opposite-sex pair
among the nearest 8 diseases, suggesting that quantitatively simi-
lar risk factors may indicate similar underlying disease. This hy-
pothesis was supported by hierarchical clustering, that tended to
produce clinically similar clusters of diseases, and suggested sev-
eral plausible but presently unconfirmed associations between dis-
ease. Some patterns of multimorbidity, such as a cluster of diseases
linked to renal failure, are likely to be driven by common disease
pathways and risk factors. All the diseases studied here are com-
mon causes of hospital admission, representing a substantial bur-
den of ill health. We highlighted several symptoms of unknown
causes (ICD-10 R-coded diseases), that appear to be linked with
more clearly diagnosed disease, and emphasised the potential for
hospital admissions to be biased by known risk factors for disease.

Overall, we have developed a methodology and demonstrated
a proof of principle for clustering diseases in terms of their asso-
ciations with established and easily measured risk factors. Future
work is intended to optimise the approach, benchmark it in dif-
ferent datasets, and explore applications in diagnosis, prognosis,
aetiological understanding, and drug development.
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Methods

Data sources UK Biobank data can be accessed by application
through www.ukbiobank.ac.uk, along with relevant code and the
disease selection dataset.

Coding and diagnosis of disease The National Clinical Coding
Standards*® define the primary diagnosis as the main symptom or
disease treated, and arguably this primary cause of hospital admis-
sion provides the most reliable diagnosis. Additional diagnoses
made after admission to hospital can correspond to less severe com-
plaints diagnosed by chance, or occurring in association with ei-
ther the primary or a different disease. Coding standards require
that only diseases that affect the patient’s management should be
recorded**, which will not necessarily include all existing diseases.
They are also biased by medical practice, with diagnoses limited to
those that are investigated. Therefore the present study is restricted
to the smaller number of primary diagnoses that were expected to
have passed a threshold of severity, and were more likely to be un-
related to undiagnosed or co-occurring disease.

Clinical considerations Not all diagnosed and coded diseases are
suitable for study. For example, a disease may have an uncertain
diagnosis, or be unrelated to age or environmental exposures. Pri-
marily we required that 3-digit ICD codes refer to a clear diagnosis
of an age-related disease. Random events including accidents or
infections due to a chance exposure were excluded unless modified
by an underlying, possibly age-related, condition or predisposition.
For example, some infectious diseases are more strongly influenced
by chance lifestyle exposures than by age-related risks, but uri-
nary tract and chest infections are influenced more by a weakened
immune system than from a chance exposure alone, and were in-
cluded. Diseases common before the start of the UK Biobank study
such as pregnancy-related diseases were excluded due to insuffi-
cient cases. Any of the above, or related issues, can cause statisti-
cal models to fail or lose power, and we also excluded any diseases
that failed any statistical test described later.

The above considerations led us to firstly exclude ICD-10
coded diseases beginning with: Z (factors influencing health sta-
tus) - because not disease specific, Q (congenital) and O, P (Dis-
eases related to pregnancy and perinatal period), U (new and antibi-
otic resistant diseases), V, X, Y (external causes of morbidity and
mortality), and T (multiple injuries, burns, and poisoning) - usually
reflecting a chance exposure. An epidemiology-trained pathologist
(KG) selected and categorised diseases as excluded, acute-onset,
chronic, due to infection, due to injury, or unknown aetiology (R-
coded diseases in ICD-10, retained to allow follow-up studies).

Selection at the 4-digit ICD-10 code level Incidence data may
be more informative if a 3-digit ICD-10 coded disease, is split
into 4-digit coded disease subtypes. If these more accurately re-
flect the underlying aetiology, then associations with risk factors
are expected to be clearer (with for an equivalent number of cases,
smaller confidence intervals and bigger effect sizes). Therefore the
3-digit selections were examined and revised by a physician with
training in epidemiology (IT). Where substantial aetiopathological
differences existed, 3-digit codings were split into smaller groups.
Often one or more 4-digit codes were excluded from a 3-digit group
for a reason listed previously. Occasionally, diseases were split into
a combination of one or more 4-digit codes and a grouping of 4-

digit codes (see Supporting Information). The 4-digit selection was
reviewed and tested for self-consistency to prevent typographical
input errors. The selection is listed in the Supporting Information,
table 1.

Survival analysis The survival analysis used a proportional haz-
ards model **° with age as the time variable, and the data were left-
truncated at the age when participants attended the UK Biobank
assessment centre. The data were right-censored if the end of the
study period occurred before the disease of interest, or if there was
any cancer other than non-melanoma skin cancer, because many
cancers and cancer treatments are known to influence subsequent
disease risk. Using age as the time variable allows strong age-
dependencies to be accurately modelled through the baseline haz-
ard. All calculations used R version 4.0.0.

The numerical measures of height, BMI, and SBP were stan-
dardised using their joint mean and standard deviation across men
and women, smoking status was: never, previous, or current, alco-
hol consumption was: rarely (less than 3 times per month), some-
times (less than 3 times a week, but more than 3 per month), reg-
ularly (3 or more times each week), walking pace was: slow, av-
erage, brisk, and education was: degree level, post-16 (but below
degree), to age 16 or unspecified. Baseline was taken as: no dia-
betes, never smoker, rarely drink, brisk walking pace, degree-level
education, minimum deprivation tertile, and women with no chil-
dren or HRT use. Analyses were multiply adjusted to minimise
the influence of correlations between risk factors and capture as
much causal information in the fitted parameters as possible. The
measured risk factors had less than 1% missing values, allowing
a complete case analysis. Because the risk factors are commonly
measured, equivalent analyses in other datasets are possible. Sen-
sitivity analyses with sex-dependent tertiles found similar results to
those of the main text; see Supporting Information, figures 2 and 4.

Statistical inclusion criteria There is no general rule to determine
how many cases are sufficient to ensure meaningful estimates for
parameters and their covariances*®. We excluded diseases if their
parameters or covariance matrices were undefined, or their covari-
ance matrices’ eigenvalues were unusually large, indicating exces-
sively large confidence intervals for one or more parameter (see
Supporting Information, figure 1). This was typically due to insuf-
ficient data in one or more category, and were usually diseases that
occur at the older (or younger) extremes of age range (e.g. delirium
or excessive menstruation respectively), with too few cases in the
younger (or older) YOB tertiles. To select a smaller set of diseases
that have the most statistically significant risk factors and are eas-
ier to study and discuss, we excluded diseases whose risk factors
were not statistically significant after a Bonferroni multiple-testing
adjustment of a multivariate x? test for statistical significance of
the fitted parameters. Finally the proportional hazards assumption
was tested using a global x? test of the Schoenfeld residuals*, and
diseases failing the test after an FDR multiple-testing adjustment 3>
were excluded. When testing for failure (and exclusion), an FDR
adjustment is stricter than a Bonferroni adjustment and will exclude
more diseases.

Multivariate statistical tests and clustering metrics Because
maximum likelihood estimates for parameters e.g. i1 and fiy are
approximately normally distributed, statistical tests are easy to con-
struct. For i1 ~ N(u1,%1) and fiz ~ N (p2, X2), if they have the
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Figure 5: The “elbow” in the weighted sum of squares of differ-
ences in the fitted parameters in each cluster (Eq. 1), at ~24 clus-
ters, qualitatively indicates how many clusters to keep. With 63 or
more clusters there are no statistically significant differences at the
0.05 level between fitted parameters in each cluster (inset).

same mean with pq = po, then (fip — fiz) ~ N(0,%; + 33) and
(i1 = fi2)" (21 + 32) " (fn — f12) ~ x*(p) where p is the num-
ber of parameters*. This was used to test the null hypothesis that
the fitted parameters of diseases in men and women are the same,
using the MLE estimates for the covariance matrices (figures 2 and
3). We also tested the null hypothesis that diseases in the same
cluster have the same mean, by noting that,

% Zf;vzl Eiec_q Zjec_q (ﬂgi - ﬂgj)T(Egi + Egj)_l(ﬂgi - ﬂgj)
~ X2 <p ZéV:l ng(”éqfl))
)
where n is the number of diseases in cluster g with members C,
N is the number of groups, and p is the number of fitting param-
eters. After removing the 8 diseases in figure 3 with statistically
significant differences between men and women at the 0.05 level
after an FDR multiple-testing adjustment®, we plotted the left-
hand side of Eq. 1 versus N to determine a minimum value of
N = 63 where there is no longer a statistically significant differ-
ence at the 0.05 level (figure 5). However our main interest is in
the similarity between risk factors for diseases, not whether they
are statistically different. The left hand side of Eq. 1 falls rapidly
until N ~ 24, suggesting that most of the variation is captured in
the first 24 clusters. This “elbow criterion”*’, was used in figures
4 and 5. Presently there is no rigorous and established method to
determine how many clusters there should be*S.

A distance between fitted parameters must reflect both their
value and their covariances, so that distances between poorly fitted
parameters should be smaller than the distances between the same
estimates with smaller covariances. This is true of the Battacharyya
distance D g, that measures the similarity between probability dis-
tributions, and gives the difference between two multivariate nor-

mal distributions as,

1 1 det X

Dp = 3 (1 — p2)" 271 (1 — p2) + 3 log (het S ot 22>

2
with ¥ = (3 + X2)/2. The first term is proportional to the x?(p)
that was used to test the null hypothesis of equal means (1 = p2)
in figures 2 and 3. As a consequence the largest p-values will tend
to coincide with the smallest Battacharyya distances, but D also
incorporates extra information from the estimated covariance ma-
trices to compare the shape of the probability distributions. The
minimum Dp can be used to assign a partner to each disease (fig-
ure 2). We hierarchically clustered the 156 diseases using Dp and
the ward.D2 algorithm in the R software package. Diseases were
assigned to 24 clusters, as suggested by the elbow criteria*’ and
figure 5. The clustering is shown in figure 4, along with a heat map
for the coefficients of each risk factor associated with each disease

mapped onto a 0-1 scale using an inverse logit function.

Sensitivity analysis Meaningful disease clusterings must be insen-
sitive to small changes in the data or to the model used to analyse
it. In addition to visual comparisons, we quantified the differences
between two clusterings of disease by considering the pairs of dis-
eases that remain in the same cluster, independent of the clustering
algorithm. Specifically, consider clustering the same set of diseases
into e.g. 24 groups by two different algorithms A and B, such as
using coefficients estimated from two different proportional haz-
ards models. Take the observed number of all possible disease
pairs within clusters in A as n 4, the equivalent number in B as
npg, and the number common to both as n 4 5. The maximum pro-
portion of disease pairs that are clustered together by both A and
Bispap = nap/min(na,np). In practice, the sensitivity analy-
ses produced clusterings with more disease pairs, and in this paper
pAp is the proportion of all clustered disease pairs that remain clus-
tered together in the sensitivity analysis. Similar clusterings have
pap =~ 1, and unrelated clusterings have pap =~ 0. Individual
diseases that are particularly sensitive to the clustering procedures
can be identified as those with no other diseases that are common
to both their clusters (in A and B).
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