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Early vaccination of the general population is a very crucial aspect
in the successful mitigation of highly infectious diseases, as it is the
case of the SARS-CoV-2 pandemic. The perception of possible side-
effects from early batches of vaccines, presumably under-tested, is
often a hindering factor for people not in high-risk categories to opt-
in for early vaccination. In this work, early vaccination is formulated
under a game-theoretic view with preference ranking and expecta-
tion maximization, in order to explore the constraints and conditions
under which individuals are keen to opt-in for getting vaccinated. Al-
though simple preference ranking leads to purely non-cooperative
/ non-altruistic Nash equilibrium, stable cooperative strategies can
emerge under simple constraints on the payoffs, specifically the in-
dividual cost from possible side-effects versus the collective gain for
the community (‘herd’) when endorsing vaccination by default.
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1. Introduction

One of the most crucial factors in the successful mitiga-
tion of the SAR-CoV-2 pandemic is the fast, world-wide

adoption of the vaccination plans for the general population.
In highly infectious diseases it is imperative that, as soon
as a safe vaccine is available, the susceptible portion of the
population gets reduced quickly and systematically.

When an adequate proportion of the susceptible popula-
tion is immunized, the spread of the disease becomes much
harder or impossible due to the lack of more carriers. This
natural barrier for the infection is often referred to as herd
immunity and it depends mostly on the infection rate of the
disease, more specifically the basic reproduction number R0, a
characteristic property of every infectious disease. Although
R0 varies significantly during an outbreak, simple calculations
show that if R0 is the long-term mean for a specific disease,
then herd immunity can be achieved when less than 1/R0 of the
population is susceptible, i.e., approximately 1− 1/R0 becomes
immune either naturally after recovering or via vaccination.

Recent studies on the SARS-CoV-2 have placed its re-
production contagiousness characteristics somewhere between
SARS and Ebola viruses. At the early stages of the outbreak
its reproduction rate is estimated as 2.5 ≤ R0 ≤ 3, while
at later stages and after the implementation of country-wide
lockdown measures it seems to drop to R0 ≤ 1.7 or even
R0 ≤ 1.4. Thus, a safe threshold of achieving herd immunity
for SARS-CoV-2 at its highest rate seems to be somewhere
between 0.6-0.7, i.e., 60-70% being naturally (recovered) or
artificially (vaccinated) immunized (1).

Perhaps the biggest problem in achieving such a level of
long-term protection is the wide adoption of the vaccination
plans implemented by each country. On top of the relatively
very small fraction of ‘deniers’ of the severity of the pandemic
or the disease itself, a valid argument is whether the vaccines

that are currently being developed in fast-track processes, with
extreme urgency and world-wide demand, will meet all the
safety standards and safeguards against possible side-effects,
as well as the possibility of lower-than-expected effectiveness.
Hence, it is crucial that the overall approach and strategies of
the decision-makers on vaccination is examined in a systematic
way, so that the proper formulation will highlight the truly
important incentives for the societies to adopt such planning.

In this brief report, vaccination is modelled under the game-
theoretic and probabilistic view in terms of gain-versus-cost
for individuals and the ‘herd’ (society), taking into account
all the basic factors around disease severity, effectiveness of
the vaccine and the possibility of side-effects. The goal is to
discover what is the optimal strategy for an individual on the
decision to agree or deny vaccination and on what conditions
this decision is optimal.

2. Vaccination as non-zero sum game

Assuming that all individuals are considered rational play-
ers, the decision of participating or not in a voluntary early-
vaccination plan can be modelled as a mathematical game
(2), more specifically a non-zero sum, since the size of the
‘herd’ at the scale of a whole society (city, region, country)
justifies the separation of payoffs. Each person estimates its
gains and losses against its own and against the herd, rather
than on direct confrontation against other individuals upon
the same game value, as it would be the case in the zero-sum
case. In other words, every individual must decide the its
own gain/loss, as well as the gain/loss for the society, from
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than-lethal possible side-effects from the vaccine, for any-
one that is susceptible plus one more in his/her own close
environment, vaccination is the optimal strategy for all.

1Data Science Lab – http://datastories.org

2University of Piraeus, Greece – http://www.unipi.gr

3Corresponding author E-mail: hgeorgiou@unipi.gr

Technical Report | November 25, 2020 | Ref: HG-TR2020A3-COV19GR1 | 1

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 29, 2020. ; https://doi.org/10.1101/2020.11.25.20238725doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2020.11.25.20238725
http://creativecommons.org/licenses/by/4.0/


Table 1. Six possible outcomes based on vaccination, side-effects
and infection.

1: vaccinated 2: side-effects 3: infected case rank

Yes
Yes

Yes c111 1
No c110 4

No
Yes c101 2
No c100 5

No No
Yes c01 3
No c00 6

Note: c0x refer to no-vaccination and c1xx to vaccination.

participating in the early-vaccination plan. The gains are asso-
ciated with personal immunization and achieving (collectively)
herd immunity, while the losses are associated with possible
side-effects or ineffectiveness of the vaccine.

There are three main factors to consider for each individual
under this formulation:

1. Vaccination (Yes/No): Decision to vaccinate or not.

2. Side-effects (Yes/No): Resulting side-effects from the
vaccine.

3. Infected (Yes/No): Infected or not, regardless of vacci-
nation.

From the previous list, an individual is affected by the sec-
ond and third factor, but can only control the first, i.e., decide
whether getting the vaccine or not. It should be noted that no
vaccination offers 100% protection against the targeted infec-
tion, thus the third factor is valid regardless of this decision,
although the probability of infection changes significantly.

Based on these three factors, a mathematical game setup
can be described as a sequence of steps and possible outcomes.
Table 1 follows the previous enumeration of factors and illus-
trates the possible combination of outcomes, starting from the
decision to vaccinate or not, the possibility of side-effects from
the vaccine and finally the infection outcome. It should be
noted that getting infected or not is not strictly bounded to
either decision of vaccination, thus all possibilities are valid.
Evidently, if the no-vaccination route is taken, there is no
possibility of side-effects. In total there are six valid outcomes,
marked as c0x for no-vaccination and c1xx for vaccination.

The rightmost column in Table 1 illustrates a typical rank-
ing preference of each outcome, with higher number assigned
to more preferable result. For example, 1 is assigned to the
case of getting the vaccine, getting side-effects from it and nev-
ertheless getting infected (ineffective). Similarly, 6 is assigned
to the case of not getting the vaccine, thus no side-effects,
and not getting infected anyway. Intermediate cases may be
arranged in different rankings, but the general concept is: (a)
not getting infected is always better; (b) not getting the vac-
cine is preferred if it can be avoided; and (c) if side-effects
occur, they are less severe than the infection itself.

From a game-theoretic perspective, Table 1 provides the
necessary definition for a N-by-M non-zero sum game setup,
where preference ranking is used as individual payoffs. In the
simplest case of 2-by-2, the corresponding analytical game is
described in Table 2. As expected, the preference ranking
of c00 is the optimal strategy for both players due to the
symmetric nature of the game and this outcome is also the
Nash equilibrium. In other words, all individuals prefer not
to get vaccinated and not getting infected, as expected.

Table 2. Vaccination 2-by-2 non-zero sum game, using preference
ranking as payoffs.

c111 c110 c101 c100 c01 c00*

c111 (1,1) (1,4) (1,2) (1,5) (1,3) (1,6)
c110 (4,1) (4,4) (4,2) (4,5) (4,3) (4,6)
c101 (2,1) (2,4) (2,2) (2,5) (2,3) (2,6)
c100 (5,1) (5,4) (5,2) (5,5) (5,3) (5,6)
c01 (3,1) (3,4) (3,2) (3,5) (3,3) (3,6)
c00* (6,1) (6,4) (6,2) (6,5) (6,3) (6,6)*

Note: Bold numbers indicate row/column player Nash preference,
asterisk indicates the Nash equilibrium of the game.

Table 3. Vaccination 2-by-2 non-zero sum game, using grouped pref-
erence ranking as payoffs.

c1xx c0x

c1xx (1,1) (1,3)
c0x (3,1) (3,3)*

Note: Bold numbers indicate row/column player Nash preference,
asterisk indicates the Nash equilibrium of the game.

The actual value of this description is to examine how the
decision to vaccinate or not groups together the c0x and c1xx

outcomes. Employing decision c0x, i.e., not getting the vaccine,
each player will secure a minimum payoff of min{3, 6} = 3,
while eploying decision c1xx, i.e., getting the vaccine, each
player will secure a minimum payoff of min{1, 4, 2, 5} = 1.
Using these grouped payoffs, Table 3 illustrates this compact
formulation of the game, focusing entirely on the one factor
that each player can really control, which is getting the vaccine
or not. Still, in this new game the Nash equilibrium is again
at the option c0x, i.e., not getting the vaccine. However, the
game matrix is now very similar to two very important game
setups in Game Theory, namely the Chicken game (CK) and
the Prisoners’ Dilemma (PD) (2). In both cases, the ‘winning’
condition in the asymmetric pairs needs to exhibit payoff larger
than any other case, while the difference between CK and PD
becomes evident when the corresponding ‘loss’ is better (CK)
or worse (PD) than when both players loose.

The vaccination game of Table 3 is transformed into CK
if getting the vaccine while the others do not is a loss, but
not as much as if no one gets the vaccine, assuming that
any side-effects from it is much less severe than everyone
getting infected as a result of no-vaccination. Similarly, the
vaccination game Table 3 is transformed into PD if getting
the vaccine while the others do not is the most severe loss,
even when compared to everyone getting infected as a result
of no-vaccination. More details in the four most important
non-zero sum games can be found in (3).

In order to examine the conditions under which the vac-
cination game becomes CK or PD or any other setup with
non-trivial solution, the preference ranking must be re-defined
in a more analytical formulation via probabilistic expectancies
with regard to gain/loss from each outcome. This alternative
approach is examined next in section 3.

3. Vaccination as expectation maximization

The preference ranking in Table 1 is a valid approach in Game
Theory in order to get a general perspective of a game setup
and outcomes, assuming that all players have fixed strategy
preferences (mixed-strategy probabilities) and associated pay-
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Table 4. Probabilities for each outcome from choices cxxx.

not vaccinated (c0x) vaccinated (c1x)
cx00 p00 (1 − ps) · p10

cx01 (1 − p00) (1 − ps) · (1 − p10)
cx10 0 ps · p10

cx11 0 ps · (1 − p10)
Note: cxxx are as defined in Table 1; 0 ≤ {p00, p10, ps} ≤ 1.

Table 5. Payoffs for each outcome from choices cxxx.

not vaccinated (c0x) vaccinated (c1x)
cx00 α0 α0 + γ1

cx01 0 γ1

cx10 α0 − βs α0 − βs + γ1

cx11 −βs −βs + γ1
Note: cxxx are as defined in Table 1; {α0, βs, γ1} ≥ 0.

offs. In reality, what a player typically wishes to do is to
estimate an optimal mixture of strategies for equal expected
payoffs regardless of the opponents’ choices, rather than select
a single strategy. Thus, a player may actually allocate its
choices probabilistically between e.g. preference 5 and 6, so
that both strategies are valid for selection in an optimal way.

Based on the three main factors of the vaccination game
as presented in section 2, there are a few parameters that can
clearly define the setup in terms of probabilistic expectancy
and associated payoffs.

Regarding the probabilities of outcomes, these are:

• 0 ≤ p00 ≤ 1 : Probability of no infection, without vacci-
nation.

• 0 ≤ p10 ≤ 1: Probability of no infection, with vaccination.

• 0 ≤ ps ≤ 1 : Probability of side-effects from vaccination.

Regarding the associated payoffs, these are:

• α0 ≥ 0 : Individual gain when not infected.

• γ1 ≥ 0 : Group gain when vaccinated.

• βs ≥ 0 : Cost(-) of vaccination side-effects for the individ-
ual.

Given these definitions and using the complementary prob-
abilities (1 − p) for the opposite outcomes, Tables 4 and 5
provide an analytical definition of probabilities and payoffs for
all cases cxxx, i.e., with and without vaccination.

Using the definitions in Tables 4 and 5, the expected payoffs
for an individual player can be analytically defined for both
choices, i.e., getting vaccinated or not. Specifically, for each
choice there are four outcomes for which the specific payoff
is combined with the associated probability. For not getting
vaccinated these are ξi, i = {1, . . . , 4}, and for getting vacci-
nated these are φi, i = {1, . . . , 4}, as defined in the Eq.1-4 and
Eq.5-8, respectively.

ξ1 = p00 · α0 ≥ 0 [1]
ξ2 = (1− p00) · 0 = 0 [2]
ξ3 = 0 · (α0 − βs) = 0 [3]
ξ4 = 0 · (−βs) = 0 [4]

φ1 = (1− ps) · p10 · (α0 + γ1) ≥ 0 [5]
φ2 = (1− ps) · (1− p10) · γ1 ≥ 0 [6]

φ3 = ps · p10 · (α0 − βs+ γ1) [7]
φ4 = ps · (1− p10) · (−βs+ γ1) [8]

In the sense of minimax optimality from Game Theory, the
player wishes to select the maximum of the minimum expected
payoffs from each strategy, i.e., select the choice that leads to
the largest guarantee regarding the payoff. This means that
the minimum is selected for each of the ξi and φi sets and then
the maximum of the two resulting payoffs dictate the largest-
expected-payoff strategy regarding whether to vaccinate of
not. Hence, for the first step (minimums) these are:

v0 = min
i
ξi = 0 [9]

v1 = min
i
φi [10]

and for the second step (maximum) its is:

vmax = max
j
vj ≥ 0 [11]

It is worth noting that for v0 the minimum can be easily
defined as zero, since it is evident from Eq.2-4. This translates
to the ‘threshold’ of minimum expected payoff from not getting
vaccinated, which is what the choice of getting vaccinated
should surpass in order to be dictated as optimal, i.e.:

vmax = v1 ⇒ min
i
φi ≥ min

i
ξi = 0 [12]

From the definitions of payoffs in Table 5 it is clear that φ1 ≥ 0
and φ2 ≥ 0. Hence, the only two options for less-than-zero
payoffs that may lead to smaller minimum are the ones that
involve the cost −βs of possible vaccination side-effects, i.e.,
φ3 and φ4. Subsequently, for getting an expected payoff from
{φ3, φ4} (with side-effects) no worse than from {φ1, φ2} (no
side-effects) the corresponding constraints are:

φ3 ≥ 0⇒ ps · p10 · (α0 − βs+ γ1) ≥ 0⇒ α0 + γ1 ≥ βs [13]
φ4 ≥ 0⇒ ps · (1− p10) · (−βs+ γ1) ≥ 0⇒ γ1 ≥ βs [14]

and according to the definitions in Table 5 the constraints of
Eq.13-14 can be combined as:

{α0, βs, γ1} ≥ 0⇒ α0 + γ1 ≥ γ1 ≥ βs [15]

4. Discussion

The rightmost inequality in Eq.15 is the crucial factor for
defining the optimal strategy between φi and ξi, i.e., getting
vaccinated or not, respectively:

If the collective gain γ1 from vaccination is deemed even
marginally greater than the individual cost βs of possible side-
effects, then the best choice of every individual is to get vacci-
nated.

Intuitively, this outcome is what is expected in every vacci-
nation plan for any infectious disease. That is, if the possible
side-effects are deemed less severe than the community-scale
damage from the disease, then the ‘herd’ is better off endorsing
the vaccination for the entire community or at least at the
‘herd immunity’ threshold of 1− 1/R0, as described earlier in
section 1. Although there is always the risk of ‘free-riders’ as
in every collaborative gaming, strategies that include both
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‘kindness’ and reciprocity like ‘tit-for-tat’ have been proven as
sufficient for the emergence of Evolutionary Stable Strategies
(ESS) that are cooperative (4). Practically, in any lethal infec-
tious disease like SARS-CoV-2 and less-than-lethal possible
side-effects from the vaccine, for anyone that is susceptible
plus one more in his/her own close environment, vaccination
is the optimal strategy.

Furthermore, it is very interesting to see that this constraint
is independent from the probabilities of getting infected with
(1− p10) or without (1− p00) vaccination. This is because the
probability ps and cost βs of side-effects are taken into account
for both cases of getting infected or not after vaccination.
In other words, the only thing that defines the minimum
from φi in Eq.5-8 is comparing the expected payoffs with and
without side-effects from vaccination. This is perhaps the most
important result from the expectation maximization analysis
presented here.

5. Conclusion

In this work, early vaccination is formulated under a game-
theoretic view, first with preference ranking and subsequently
with expectation maximization, in order to explore the con-
straints and conditions under which individuals are keen to
opt-in for getting vaccinated. Preference ranking leads to
purely non-cooperative / non-altruistic Nash equilibrium, not
much differently than in Chicken or Prisoners’ Dilemma games.
Nevertheless, as in these games too, cooperative strategies can
emerge as stable Nash equilibria under simple constraints on
the payoffs, specifically the individual cost from possible side-
effects versus the collective gain for the community (‘herd’)
when endorsing vaccination by default. It is very important for
policy-makers to understand and communicate these aspects
promptly and effectively, in order to implement successful
early vaccination plans as in the case of SARS-CoV-2.
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