
 

 1 

Clonal hematopoiesis is associated with risk of severe Covid-19  
 

Kelly L. Bolton1,*, Youngil Koh2,3,4*, Michael B. Foote5,*, Hogune Im3*, Justin Jee5,*, Choong 

Hyun Sun3*, Anton Safonov5,*, Ryan Ptashkin6, Joon Ho Moon7, Ji Yeon Lee8, Jongtak Jung9, 

Chang Kyung Kang2, Kyoung-Ho Song9, Pyeong Gyun Choe2, Wan Beom Park2, Hong Bin 

Kim9, Myoung-don Oh2, Han Song3, Sugyeong Kim3, Minal Patel10, Andriy Derkach11, Erika 

Gedvilaite6, Kaitlyn A. Tkachuk5, Lior Z. Braunstein12, Teng Gao13, Elli Papaemmanuil13, N. 

Esther Babady5,14, Melissa S. Pessin14, Mini Kamboj5, Luis A. Diaz Jr.5, Marc Ladanyi6, Michael 

J. Rauh15, Pradeep Natarajan16,17, Mitchell J. Machiela18, Philip Awadalla19, Vijai Joseph20, 

Kenneth Offit20, Larry Norton5, Michael F Berger6,13, Ross L Levine5, Eu Suk Kim9*, Nam Joong 

Kim2*, Ahmet Zehir6,* 

 

1. Department of Medicine, Washington University, St Louis, MO 
2. Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea 
3. Genome Opinion Inc., Seoul, Korea 
4. Center for Precision Medicine, Seoul National University Hospital, Seoul, Korea 
5. Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA 
6. Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA 
7. Department of Internal Medicine, Kyungpook National University Hospital, School of 
Medicine, Kyungpook National University, Daegu, Korea 
8. Department of Internal Medicine, National Medical Center, Seoul, Korea 
9. Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, 
Korea 
10. Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, 
NY, USA 
11. Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New 
York, NY, USA  
12. Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 
USA 
13. Computational Oncology Service, Department of Epidemiology & Biostatistics, Center for 
Computational Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA  
14. Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, 
NY, USA  
15. Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, 
Canada. 
16. Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 
17. Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, 
MA 
18.  Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, 
USA 
19. Ontario Institute for Cancer Research, Toronto, Ontario, Canada. 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted November 27, 2020. ; https://doi.org/10.1101/2020.11.25.20233163doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2020.11.25.20233163


 

 2 

20. Clinical Genetics Research Lab, Department of Medicine, Memorial Sloan Kettering Cancer 
Center, New York, NY, USA 
 
*Denotes equal contribution.  
 

Correspondence should be addressed to: Kelly Bolton, bolton@wustl.edu, Eu Suk Im, 
eskim@snubh.org, Nam Joong Kim, molder@unitel.co.kr,  and Ahmet Zehir, zehira@mskcc.org  
 

  

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted November 27, 2020. ; https://doi.org/10.1101/2020.11.25.20233163doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.25.20233163


 

 3 

ABSTRACT 
Acquired somatic mutations in hematopoietic stem and progenitor cells (clonal 

hematopoiesis or CH) are associated with advanced age, increased risk of 

cardiovascular and malignant diseases, and decreased overall survival.1–4 These 

adverse sequelae may be mediated by altered inflammatory profiles observed in 

patients with CH.2,5,6 A pro-inflammatory immunologic profile is also associated with 

worse outcomes of certain infections, including SARS-CoV-2 and its associated disease 

Covid-19.7,8 Whether CH predisposes to severe Covid-19 or other infections is 

unknown. Among 515 individuals with Covid-19 from Memorial Sloan Kettering (MSK) 

and the Korean Clonal Hematopoiesis (KoCH) consortia, we found that CH was 

associated with severe Covid-19 outcomes (OR=1.9, 95%=1.2-2.9, p=0.01). We further 

explored the relationship between CH and risk of other infections in 14,211 solid tumor 

patients at MSK. CH was significantly associated with risk of Clostridium Difficile 

(HR=2.0, 95% CI: 1.2-3.3, p=6x10-3) and Streptococcus/Enterococcus infections 

(HR=1.5, 95% CI=1.1-2.1, p=5x10-3). These findings suggest a relationship between CH 

and risk of severe infections that warrants further investigation. 
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MAIN 
Acquired mutations that lead to clonal expansion are common in the normal aging 

hematopoietic system (clonal hematopoiesis, or CH), yet are known to alter 

stem/progenitor and lymphoid function and response to environmental stressors, 

including systemic infections5,6,9,10. The mutational events that drive CH overlap with 

known drivers of hematologic malignancies. However, the majority of mutations in CH 

appear to occur outside of canonical cancer driver genes11,12.  The impact of individual 

mutational events on hematopoietic stem and progenitor cells differs by the nature of 

the genomic aberration. For example, chromosomal aneuploidies result in a 

predisposition for lymphoid fate specification and transformation13,14 while point 

mutations in DNMT3A result in increased myeloid differentiation6,15. Heterogeneity also 

exists across CH phenotypes by driver gene in regards to its impact on inflammatory 

signaling6. For example, mutations in TET2 result in heightened secretion of several 

cytokines including IL-1β/IL-6 signaling that may partially explain the increased risk of 

cardiovascular disease5,9,16.  Moreover, systemic infections and the resultant 

inflammatory signals can lead to increased clonal fitness of TET2 mutant cells and 

clonal expansion10,17,18.   

 

Despite these important insights, the relationship between different CH events, 

infectious risk and infectious disease severity has not been studied.  The severity of 

Covid-19 is also associated with advanced age, cardiovascular and malignant 

comorbidities, and elevated circulating IL-6 levels; features which are seen with age-

associated CH19–23.  Given the common inflammatory profile of CH and Covid-19 

infection, we investigated the relationship between CH and Covid-19 including the 

potential for an association of CH with increased Covid-19 disease severity. 

 

Our study included patients from two separate cohorts. The first cohort was composed 

of patients with solid tumors treated at Memorial Sloan Kettering Cancer Center (MSK) 

with blood previously sequenced using MSK-IMPACT, a previously validated targeted 

gene panel capturing all commonly mutated CH-associated genes (Supplementary 

Table 1)24. Of these patients, 1,626 were tested for SARS-CoV-2 (the virus that causes 
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Covid-19) RNA between March 1st 2020 and July 1st 2020; 403 (24.8%) individuals 

tested positive for SARS-CoV-2 (Methods and Table 1). The second cohort included 

112 previously healthy individuals without cancer who were hospitalized for Covid-19 

between January and April 2020 at four tertiary hospitals in South Korea (KoCH cohort). 

The KoCH cohort was sequenced using a custom targeted NGS panel from Agilent (89 

genes) which was designed to include commonly occurring CH genes (Supplementary 

Table 2). 

 

For both cohorts, the primary outcome was severe Covid-19 infection, defined as the 

presence of hypoxia requiring supplemental oxygen (oxygen device >1 L or hypoxia 

<94%). We used multivariable logistic regression adjusting for covariates including age, 

smoking, prior Covid-19 related comorbidities, and prior cancer treatment to determine 

the association between severe Covid-19 and CH in each population. We then 

performed a fixed-effects meta-analysis to estimate the association in the overall 

population. The full statistical rationale is further described in the Methods section.  

 

Among Covid-19 positive individuals, 23% (N=94) and 61% (N=68) had severe disease 

in the MSK and KoCH cohorts, respectively (Table 1). Overall, CH was observed in 35% 

of Covid-19 positive cases at MSK and 21% in KoCH. Of note, when restricting the 

MSK-IMPACT panel to the 89 genes included in the KoCH panel, 20% of Covid-19 

positive cases at MSK had CH. In the MSK cohort, CH was observed in 51% and 30% 

of patients with severe versus non-severe Covid-19, respectively (adjusted OR: 1.85, 

95% CI 1.10-3.12, Figure 1). In the KoCH cohort, CH was observed in 25% and 15.9% 

of patients with severe versus non-severe Covid-19, respectively (adjusted OR 1.85, 

95% CI 0.53-6.43, Figure 1).  In a fixed effects meta-analysis of odds-ratio estimates 

from the multivariable logistic regression models employed in each separate cohort 

analysis, the presence of CH was associated with an increased risk of severe Covid-19 

(OR=1.85, 95%=1.15-2.99, p=0.01) (Figure 1).  

 

Using previously described methods24, CH mutations were classified as known or 

hypothesized cancer putative drivers (PD-CH) or non putative drivers (non-PD CH). The 
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majority of CH mutations were classified as PD-CH (52% in the MSK cohort and 67% in 

the KoCH dataset). In order to explore the association between particular mutation 

types and Covid-19 severity, we performed a stratified analysis of Covid-19 severity by 

PD-CH versus non-PD CH status.  A significant association was observed between 

non-PD CH and severe Covid-19 (OR=2.01, 95% CI=1.15-3.50, p=0.02), as well as 

between silent (synonymous) CH and severe Covid-19 (OR=2.58, 95% CI 1.01-6.61, 

p=0.05). There was not a statistically-significant association between PD-CH and 

severe Covid-19 infection (OR=1.15, 95% CI=0.61-2.02, p=0.77: Extend 

ed Data Figure 1). Most non-PD mutations in Covid-19 positive cases occurred in non-

recurrently mutated genes (65% at MSK and 76.9% in KoCH, Supplementary Figure 1).  

 

The strength of the association between CH and severe Covid-19 was similar among 

patients with one CH mutation (OR=1.78, 95% CI=1.0-3.1, p=0.04) and multiple CH 

mutations (OR=2.0, 95% CI=1.0-3.8, p=0.04). Patients with a maximum CH variant 

allele frequency (VAF) of >5% showed a significant association with severe Covid-19 

(OR=1.9, 95% CI=1.0-3.4, p=0.04). This association trended towards statistical 

significance in patients with any CH mutation and a maximum VAF<5% (OR=1.75, 95% 

CI=0.97-3.17, p=0.06: Extended Data Figures 2-4).  These data suggest that the 

presence of CH and resultant alterations in hematopoietic differentiation, and not 

specific mutant alleles, is predictive of Covid-19 disease severity. 

 

Given the evidence of an association between CH and Covid-19 severity, we sought to 

explore the relationship between CH and other types of infections. We analyzed billing 

codes from 14,211 solid tumor patients treated at MSK who underwent blood 

sequencing by MSK-IMPACT. Using a previously established phenome-wide-

association study (Phe-WAS) methodology25, we mapped patient ICD-9 and ICD-10 

billing codes to categories of infectious disease. Multivariable Cox proportional hazards 

regression was used to estimate the hazard ratio (HR) for risk of infection among CH 

positive compared to CH negative individuals. Given the number of model covariates, 

we limited the analysis to 32 infection subclasses that affected at least 80 individuals 

(see Methods). Multiple infection types were associated with CH, although many 
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associations were not statistically-significant after multiplicity adjustment (Figure 2A, 

Supplementary Table 3). CH was significantly (FDR-corrected p-value<0.10) associated 

with the onset of two infection subclasses: Clostridium difficile infection (HR=2.0, 95% 

CI: 1.2-3.3, p=6x10-3) and Streptococcus/Enterococcus infection (HR=1.5, 95% CI=1.1-

2.1, p=5x10-3). When stratified by CH-mutation characteristics, patients with two or more 

CH-mutations had a stronger association with Clostridium difficile infection (OR=3.4, 

95% CI=1.8-6.3, p=2x10-4) compared to patients with one CH-mutation (OR=1.4, 95% 

CI=0.8-2.7, p=0.28). The association between CH and Clostridium difficile infection was 

significant for mutations with a VAF of >5% (OR=2.5, 95% CI=1.4-4.6, p=0.002) but not 

mutations with a VAF of 2-5% (OR=1.6, 95% CI=0.8-3.1, p=0.17). Similar to Covid-19 

severity, the association between CH and Clostridium difficile infection was significant 

for non-PD CH (OR=2.0, 95% CI=1.2-3.3, p=0.01) and silent mutations (OR=2.6, 95% 

CI=1.2-5.8, p=0.02) but not CH-PD (OR=1.4, 95% CI=0.7-2.8, p=0.39) (Figure 2B).  

 

In summary, we show in cancer and non-cancer patients that CH is associated with 

increased Covid-19 severity. In a large cancer patient cohort, CH is also associated with 

other severe infections, namely Streptococcus/Enterococccus and Clostridium difficile 

infections. Our exploratory analysis suggests that the relationship between CH and 

Covid-19 and CH and Clostridium difficile infection may be partly driven by non-driver 

CH. Clonal expansions characterized by non-driver mutational events could be 

facilitated by multiple mechanisms. Many classes of genetic alterations, such as copy 

number events (CNVs), structural variants, non-coding, and epigenetic changes, are not 

detectable using the targeted panels included in this study.  As such, the observed 

events that are highly enriched in CH could be ‘passenger’ mutations that co-occur with 

a positively selected, undetected ‘driver’ mutation such as recurrent CNVs.12,13 

Alternatively, driver mutations may have been incompletely classified as “non-driver” 

events using our methodology. However, cancer driver genes tend to recur in multiple 

patients, and the majority of witnessed non-driver mutated genes in our cohort were 

non-recurrent suggesting that clonal expansion, and not the specific event driving clonal 

expansion, may be associated with Covid-19 disease severity. This will need to be 

further studied in larger cohorts. 
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The hematopoietic system is a key regulator of inflammation and immunity. A 

substantial body of evidence now links somatic alterations in hematopoietic stem and 

progenitor cells to a variety of health outcomes, with inflammation emerging as a key 

mediator.2–5,10–13 Our data, along with results in the accompanying manuscript by 

Zekavat et al., demonstrate a similar association between CH and increased infection 

severity. This association may be due to residual confounding by variables that are 

unknown and unaccounted for in our models. Alternatively, this could represent a novel 

pathophysiology that links CH-induced changes in hematopoietic stem, progenitor, and 

lymphoid cell function with immune regulation and infection response. Future 

investigation including functional studies will be important to clarify the mechanisms 

underlying the association between CH and infection risk and to develop potential 

interventional strategies to attenuate inflammation, clonal expansion, and infectious 

sequelae in patients with and without cancer. 

 

 

  

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted November 27, 2020. ; https://doi.org/10.1101/2020.11.25.20233163doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.25.20233163


 

 9 

METHODS 

Sample ascertainment and clinical data extraction 

MSK Cohort 

The study population included 9,307 patients with non-hematologic cancers at MSKCC 

who were alive on May 1st 2020 and underwent matched tumor and blood sequencing 

before this date using the MSK-IMPACT panel on an institutional prospective tumor 

sequencing protocol (ClinicalTrials.gov number, NCT01775072). Subjects who had a 

hematologic malignancy diagnosed after MSK-IMPACT testing or who had an active 

hematologic malignancy at the time of blood draw were excluded. Demographics, 

smoking history, exposure to oncologic therapy and primary tumor site were extracted 

from the electronic health record. Accuracy of populated information was manually 

checked in the EMR by three independent physicians (K.B, M.F, A.S). The presence of 

co-existing medical comorbidities known to correlate with Covid-19 severity including 

diabetes, COPD, asthma, hypertension and cardiovascular disease, were ascertained 

from ICD-9 and ICD-10 billing codes. SARS-CoV-2 status was determined using RT-

PCR. We defined severe Covid-19 as the presence of hypoxia requiring supplemental 

oxygen (supplemental oxygen device >1 L or hypoxia <94%) resulting from Covid-19 

infection. There were seven subjects with Covid-19 for whom there was minimal 

documentation of clinical course following Covid-19 infection and these individuals were 

excluded. There were three individuals with metastatic cancer and progression of 

disease at the time of Covid-19 where it was unclear whether documented hypoxia 

could be attributed to Covid-19 or disease progression. These subjects were also 

excluded. 

KoCH Cohort 

Laboratory-confirmed patients with Covid-19 between January and April 2020 in four 

tertiary hospitals in Republic of Korea were approached for consent to this study. Blood 

was drawn following confirmation of Covid-19 positivity. All of four hospitals have been 

running national-designated isolation units, which are located in Seoul, Gyeonggi, or 
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Daegu. These provinces had the highest numbers of Covid-19 cases during the 

period14. Clinical and laboratory characteristics were retrospectively reviewed using the 

electronic medical record systems of each institution. Hypoxia requiring supplemental 

oxygen was defined as supplemental oxygen device >1 L with O2 <94% resulting from 

Covid-19 infection. Institutional Review Boards (IRBs) of four respective hospitals 

approved the study (IRB No. 2003-141-1110, B-2006/616-409), and written informed 

consents of the patients were obtained per IRB recommendations. Subjects who had an 

active malignancy at the time of blood draw were excluded. 

Sequencing and Variant Calling 

MSK Cohort  

Subjects had a tumor and blood sample (as a matched normal control) sequenced 

using MSK-IMPACT, an FDA-authorized hybridization capture-based next-generation 

sequencing assay encompassing all protein-coding exons from the canonical transcript 

of 341, 410, or 468 cancer-associated genes (Supplementary Table 4). MSK-IMPACT is 

validated and approved for clinical use by New York State Department of Health Clinical 

Laboratory Evaluation Program . The sequencing test utilizes genomic DNA extracted 

from formalin fixed paraffin embedded (FFPE) tumor tissue as well as matched patient 

blood samples. DNA is sheared and DNA fragments are captured using custom 

probes47. MSK-IMPACT contains most of the commonly reported CH genes with the 

exception that earlier versions of the panel did not contain PPM1D or SRSF2.   

 
Pooled libraries were sequenced on an Illumina HiSeq 2500 with 2x100bp paired-end 

reads. Sequencing reads were aligned to the human genome (hg19) using BWA 

(0.7.5a). Reads were re-aligned around indels using ABRA (0.92), followed by base 

quality score recalibration with Genome Analysis Toolkit (GATK) (3.3-0). Median 

coverage in the blood samples was 497x, and median coverage in the tumors was 

790x. Variant calling for each blood sample was performed unmatched, using a pooled 

control sample of DNA from 10 unrelated individuals as a comparator. Single nucleotide 

variants (SNVs) were called using Mutect and VarDict. Insertions and deletions were 

called using Somatic Indel Detector (SID) and VarDict. Variants that were called by two 
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callers were retained. Dinucleotide substitution variants (DNVs) were detected by 

VarDict and retained if any base overlapped a SNV called by Mutect. All called 

mutations were genotyped in the patient-matched tumor sample. Mutations were 

annotated with VEP(version 86) and OncoKb. We applied a series of post-processing 

filters to further remove false positive variants caused by sequencing artifacts and 

putative germline polymorphisms as previously described24.  

 

KoCH Cohort 

 

Blood-derived DNA was sequenced using a custom panel of 89 genes frequently 

mutated in CH. All NGS libraries were prepared using the Agilent SureSelect XT HS 

and XT Low input enzymatic fragmentation kit. Pooled Libraries were sequenced on an 

Illumina NovaSeq6000 with 2x150bp paired-end reads. Sequencing reads were 

trimmed with SeqPrep (v0.3) and Sickle (v1.33) and aligned to the human genome 

(hg19) using BWA-MEM (v0.7.10). PICARD(v1.94) was used for duplicate marking 

followed by indel realignment and base quality score recalibration with GATK 

light(v2.3.9). The mean depth of coverage of samples was higher than 800x. Variant 

calling was performed using SNver(v0.4.1), LoFreq(v0.6.1), GATK 

UnifiedGenotyper(v2.3.9) for SNVs. For Insertions and deletions in-house InDel caller 

was used26. The union of all called results were filtered meeting the internal criteria 

(total reads >=10, Alt reads >=10, positive Alt reads >=5, negative Alt reads >=5, MQV 

>=30, BQV >=30) and VAF falling between 2% and 30%. Common germline variants 

were filtered based on genomAD, 1k Genome v3, ESP6500 and ExAC data.  Lastly, 

technical artifact calls with maf >2% were filtered based on an internal panel of 1000 

individuals who were CH negative. 

Variant Annotation 

Variants from the MSK and KoCH cohort were uniformly annotated according to 

evidence for functional relevance in cancer (putative driver or CH-PD). We annotated 

variants as oncogenic if they fulfilled any of the following criteria: 1) truncating variants 

in NF1, DNMT3A, TET2, IKZF1, RAD21, WT1, KMT2D, SH2B3, TP53, CEBPA, ASXL1, 
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RUNX1, BCOR, KDM6A, STAG2, PHF6, KMT2C, PPM1D, ATM, ARID1A, ARID2, 

ASXL2, CHEK2, CREBBP, ETV6, EZH2, FBXW7, MGA, MPL, RB1, SETD2, SUZ12, 

ZRSR2 or in CALR exon 9; 2) any truncating mutations (nonsense, essential splice site 

or frameshift indel) in known tumor suppressor genes as per the Cancer Gene Census, 

OncoKB, or the scientific literature; 3) translation start site mutations in SH2B3; 4) TERT 

promoter mutations; 5) FLT3-ITDs; 6) in-frame indels in CALR, CEBPA, CHEK2, ETV6, 

EZH2; 7) any variant occurring in the COSMIC “haematopoietic and lymphoid” category 

greater than or equal to 10 times; 8) any variant reported as somatic at least 20 times in 

COSMIC; 9) any variant noted as potentially oncogenic in an in-house dataset of 7,000 

individuals with myeloid neoplasm greater than or equal to 5 times; 10) any loci (defined 

by the amino acid location) reported as having at least 5 missense mutations and at 

least one exact mutational match in TopMed6. 

 

Statistical analysis 
 
CH and Covid-19 Severity  

 

We used multivariable logistic regression to evaluate for an association between clonal 

hematopoiesis and Covid-19 severity adjusting for age (measured as a continuous 

variable), gender, race, smoking history and co-existing medical comorbidities including 

diabetes, COPD/asthma and cardiovascular disease all classified as per Table 1. This 

was done separately for the MSK and KoCH cohorts due to limitations of data sharing. 

For solid tumor patients at MSK we also adjusted for primary tumor site (thoracic or 

non-thoracic cancer) and receipt of cytotoxic chemotherapy before and after IMPACT 

blood draw . We performed a fixed effects meta-analysis of the MSK and KoCH cohorts 

to jointly estimate the odds ratio for severe Covid-19 among CH positive compared to 

CH negative individuals.  

 

CH and risk of infection in the MSK cohort 

 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted November 27, 2020. ; https://doi.org/10.1101/2020.11.25.20233163doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.25.20233163


 

 13 

We analyzed billing codes from 14,211 solid tumor patients at MSKCC who had their 

blood sequenced using MSK-IMPACT. We applied the phecode nomenclature 

developed at Vanderbilt9 to map ICD-9 and ICD-10 billing codes to infectious disease 

subtypes. Subjects who were billed using a ICD9/10 code within the phecode for the 

first time following their sequencing blood draw with evidence of CH were considered to 

have an incident infection. Those who were billed for an ICD9/10 code within the 

phecode prior to blood draw were removed from the analysis of that phecode. In order 

to evaluate the accuracy of the billing code data, the presence of a documented 

Clostridium Difficile or Streptococcus infection in an EMR physician note was manually 

checked for patients respectively identified by billing codes (N=525 patients) by three 

independent physicians using shared criteria for infection onset. Billing codes were 

highly accurate in identifying the presence of the respective infectious disease 

(concordance >95%). 

 

We used Cox proportional hazards regression to estimate the hazard ratio for risk of 

infection among those with CH compared to CH negative individuals. The date of blood 

draw (used for MSK-IMPACT sequencing) served as the onset date for this time-to-

event analysis; the end-date was the date of billing code entry for the infectious disease 

subtype phecode, death or last follow-up, whichever came first. All models were 

adjusted for age, gender, race, smoking, tumor type, and cumulative exposure to 

cytotoxic chemotherapy prior to blood draw and after blood draw as previously 

described10. Following the 10:1 rule regarding the number of covariates in a 

multivariable model in proportion to the number of events16, we excluded infection 

subclasses populated with less than 80 individuals. The analysis utilized multiplicity 

correction with the Benjamini-Hochberg method to establish adjusted q-values for 

hazard ratio with a prespecified false-discovery-rate (FDR) <0.10. 

 
All the statistical analyses were performed with the use of the R statistical package 

(www.r-project.org).  
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Figure 1. Association between CH and Covid-19 severity. Shown are the results from logistic 
regression adjusted for age, gender, race, smoking, diabetes, cardiovascular disease, 
COPD/asthma, cancer primary site (if history of malignancy), exposure to cytotoxic cancer 
therapy for the MSK and KoCH. Summary statistics for a fixed effects meta-analysis are shown. 
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Figure 2. Association between CH and risk of infection in solid tumor patients. A) Volcano 
plot of the log(Hazard ratio) of infection with CH using multivariable cox proportional hazards 
regression. B) Association between CH subtype defined by putative driver status and risk of 
Clostridium Difficle and Streptococcus/Enterococcus infection using cox proportional hazards 
regression. All models were adjusted for age, gender, race, smoking, diabetes, cardiovascular 
disease, COPD/asthma, cancer primary site (if history of malignancy), exposure to cytotoxic 
cancer therapy. 
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Table 1. Characteristics of study participants 
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Extended Data Figure 1. Association between CH and Covid-19 severity. Shown are 
the results from logistic regression adjusted for age, gender, race, smoking, diabetes, 
cardiovascular disease, COPD/asthma, cancer primary site (if history of malignancy), 
exposure to cytotoxic cancer therapy for the MSK and Korea Consortia. Summary 
statistics for a fixed effects meta-analysis are shown. 
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Extended Data Figure 2. Number of mutations and variant allele fraction of CH by Covid-
19 Status. a) Number of CH mutations among those with severe and non-severe Covid-19 b) 
VAF of CH mutations by Covid-19 severity and infection status. 
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Extended Data Figure 3. Association between CH and Covid-19 severity stratified by the 
number of mutations. Shown are the results from logistic regression comparing the odds ratios 
of severe Covid-19 among those with one mutation and those with two or more mutations. 
Models were adjusted for age, gender, race, smoking, diabetes, cardiovascular disease, 
COPD/asthma, cancer primary site (if history of malignancy), exposure to cytotoxic cancer 
therapy for the MSK and Korea Consortia. Summary statistics for a fixed effects meta-analysis 
are shown. 
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Extended Data Figure 4. Association between maximum VAF of CH-mutation(s) and 
Covid-19 severity. Shown are the results from logistic regression comparing the odds ratios of 
severe Covid-19 among those with one or more CH mutations <5% VAF compared to no CH 
and CH with a VAF >5% and no CH. Models were adjusted for age, gender, race, smoking, 
diabetes, cardiovascular disease, COPD/asthma, cancer primary site (if history of malignancy), 
exposure to cytotoxic cancer therapy for the MSK and Korea Consortia. Summary statistics for a 
fixed effects meta-analysis are shown. 
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Extended Data Table 1. Frequency of clonal hematopoiesis by Covid-19 status. 
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Supplementary Figure 1. Frequency of genes with non-driver mutations among 
individuals with severe Covid-19. 
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