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ABSTRACT 

Objective: The use of electronic health records (EHR) systems has grown over the past decade, and with 

it, the need to extract information from unstructured clinical narratives. Clinical notes, however, 

frequently contain acronyms with several potential senses (meanings) and traditional natural language 

processing (NLP) techniques cannot differentiate between these senses. In this study we introduce an 

unsupervised method for acronym disambiguation, the task of classifying the correct sense of acronyms 

in the clinical EHR notes.  

Methods: We developed an unsupervised ensemble machine learning (CASEml) algorithm to 

automatically classify acronyms by leveraging semantic embeddings, visit-level text and billing 

information. The algorithm was validated using note data from the Veterans Affairs hospital system to 

classify the meaning of three acronyms: RA, MS, and MI. We compared the performance of CASEml 

against another standard unsupervised method and a baseline metric selecting the most frequent 

acronym sense. We additionally evaluated the effects of RA disambiguation on NLP-driven phenotyping 

of rheumatoid arthritis. 

Results: CASEml achieved accuracies of 0.947, 0.911, and 0.706 for RA, MS, and MI, respectively, higher 

than a standard baseline metric and (on average) higher than a state-of-the-art unsupervised method. 
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As well, we demonstrated that applying CASEml to medical notes improves the AUC of a phenotype 

algorithm for rheumatoid arthritis.  

Conclusion: CASEml is a novel method that accurately disambiguates acronyms in clinical notes and has 

advantages over commonly used supervised and unsupervised machine learning approaches. In 

addition, CASEml improves the performance of NLP tasks that rely on ambiguous acronyms, such as 

phenotyping. 

Keywords: acronym disambiguation; electronic health records; natural language processing; predictive 

modeling; semantic embedding; unsupervised learning 

INTRODUCTION 

A large amount of important clinical data is embedded in the narrative notes within electronic health 

record (EHR) systems.  Mining these EHR data requires processing these unstructured clinical narratives. 

Current approaches to process unstructured text are mainly based on natural language processing (NLP) 

techniques [1-6], which have been deployed for tasks such as information extraction, phenotyping [7-

14], and making notes more readable [15]. A challenge of applying NLP methods to EHR text is the use of 

ambiguous acronyms to describe important medical terms. For example, RA is often used as an 

abbreviation for “rheumatoid arthritis” but it can also represent “room air” or "right atrium”. The use of 

ambiguous acronyms is ubiquitous – Moon et. al 2012 found 440 acronyms and abbreviations with 949 

total senses in a sample of clinical notes [16]. Directly using NLP results without correctly determining 

what the acronym stands for in context, a process known as acronym disambiguation, hampers the 

performance of research and clinical applications. As a motivating example, we focus on identifying 

when the acronyms RA, MS, and MI mean their target senses – “rheumatoid arthritis”, “multiple 

sclerosis”, and “myocardial infarction” – as these acronyms are highly relevant for information 

extraction relating to these diseases. For clarity throughout the paper, we will only use “RA”, “MS”, and 
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“MI” to represent the acronyms, not their long forms (i.e. when discussing the diseases/phenotypes we 

will always use “rheumatoid arthritis” as opposed to “RA”). 

Prior methods for acronym disambiguation in biomedical text such as PubMed and WebMD have been 

developed [17-19]. However, compared to biomedical text, clinical text in EHR provides extra challenges 

to disambiguation because of its informal and unstructured nature [20] and the more ambiguous use of 

words [21]. Recent efforts have been devoted to developing supervised acronym disambiguation 

algorithms for clinical text in EHRs [22]. These approaches rely on chart review labels of the acronyms of 

interest; although they are generally successful in disambiguation tasks, manually annotating acronyms 

is time-consuming and is not feasible for large sets of acronyms. As well, the training sample size is 

limited by the number of annotated labels; it may not be clear ahead of time how many labels are 

needed to effectively train the algorithm, especially because this number depends on the sense 

distribution of acronyms [20].  

Unsupervised and knowledge-based methods (methods that rely on knowledge sources such as medical 

dictionaries) alleviate the need for labels. Some unsupervised methods have exploited acronym sense 

expansions, defined as the fully written out meaning of the acronym in that instance (e.g. “rheumatoid 

arthritis” or “right atrium” for RA) for semi-supervised or unsupervised disambiguation [23-28]. A 

limitation of these methods is that they rely on knowing a sense inventory, i.e. a dictionary of possible 

acronym meanings; however, common inventories can have limited sense coverage. For example, Moon 

et. al 2014 found that short form – sense pairs matched only 2.3% of the time across three sense 

inventories [29]. 

Embedding approaches such as word2vec [30] and GloVE [31] that use distributed representations of 

words have improved the accuracy of supervised and unsupervised disambiguation tasks. Finley et. al 

proposed a semi-supervised method using word embeddings and sense expansion to disambiguate 
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clinical acronyms [25], and Joopudi et. al adapted this method to use neural network-based word 

embeddings [27].  However, these approaches are still knowledge-based, so they rely on a sense 

dictionary. 

In this paper we propose CASEml (Classifying Acronym Sense using Ensemble machine learning), an 

unsupervised method for acronym disambiguation in clinical text. Specifically, CASEml is an ensemble 

(combination) of two models – one using context word embeddings and another leveraging visit-level 

text and billing information – to identify when an acronym means its target sense. CASEml only relies on 

the knowledge of one target sense rather than all possible senses. We validated CASEml using note data 

from the Veteran Affairs (VA) to classify three acronyms: RA, MS, and MI. The results indicate that 

CASEml can accurately predict acronyms as well or better than state-of-the-art supervised methods in 

both sets of data. To further analyze the usefulness of CASEml, we evaluated the impact of applying 

CASEml to medical notes on a downstream NLP task: developing a phenotype algorithm for rheumatoid 

arthritis using EHR data. We showed that for phenotyping, CASEml outperforms knowledge-based 

methods and significantly outperforms naïve methods of handling the acronym RA.  

METHODS 

Materials/Data  

This study used clinical text and billing codes from the EHR of the Veterans Affairs Healthcare Centers 

Data for RA and MS were extracted from the Million Veterans Project [32] while data for MI were 

extracted from the general VA EHR. 

For the validation of CASEml there are two types of labels: acronym-level labels of RA, MS and MI, and 

patient-level labels of rheumatoid arthritis (i.e., whether the patient has the disease) to evaluate the 

phenotyping performance. The rheumatoid arthritis phenotype prediction algorithm (discussed below) 
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is only applied to patients with at least one rheumatoid arthritis ICD code, the so-called “filter-positive” 

set. Since filter-positive patients are often the group of interest for applications of NLP, we performed 

CASEml separately on notes from the filter-positive set, defined as patients with at least one related ICD 

code to the target sense/phenotype (multiple sclerosis for MS and myocardial infarction for MI), as well 

as notes from all patients. For RA and MS, the acronym-level labels were created by randomly sampling 

100 notes from filter-positive patients and 100 notes from filter-negative patients; for MI, 100 notes 

from filter-positive patients who live in Michigan (because here MI often means “Michigan” but outside 

of the state it almost always means “myocardial infarction”) and 100 notes from filter-positive patients 

who live in Minnesota as a control group were randomly sampled. For the sampled notes, each acronym 

was assigned a binary label indicating if the acronym means the target sense. When applying 

disambiguation methods, we are often only interested in the occurrence of one target sense, so in this 

study we only aim to classify that one sense. In other words, we treat the disambiguation problem as a 

binary classification of a target sense rather than a multiclass classification of multiple senses. 

The patient-level labels were created by randomly sampling 227 filter-positive patients from MVP and 

then domain experts conducted chart review and assigned the phenotype labels for rheumatoid 

arthritis.  

CASEml approach 

CASEml is an ensemble (combination) of two models that incorporate different levels of information. 

The first model, 𝑅𝐹 − 𝐶𝑈𝐼𝐼𝐶𝐷, is a visit-level prediction model using random forest (RF) to classify a 

noisy label representing the target sense; in this case, we used ICD codes related to the target sense as 

the training label. The second model, 𝑤𝑜𝑟𝑑𝑣𝑒𝑐𝑠𝑐𝑜𝑟𝑒 , uses vector representations of words (word 

embeddings) to compare the context of an acronym in clinical text to the average context of its target 

sense. Finally, the predicted probabilities from these two models are averaged to generate final 
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probabilities, which can be converted to binary classifiers using the estimated target sense prevalence. A 

flow-chart summary of CASEml is shown in Figure 1.  

Model 1: 𝑹𝑭 − 𝑪𝑼𝑰𝑰𝑪𝑫.  

The input features for 𝑅𝐹 − 𝐶𝑈𝐼𝐼𝐶𝐷 were counts of concept unique identifiers (CUIs), which are groups 

of terms that have the same meaning, in clinical notes. To generate the feature list, CUIs related to the 

acronym target sense were extracted from the Unified Medical Language System (UMLS) dictionary [33]. 

Mentions of these CUIs were extracted from notes with the acronym of interest using NILE, an NLP tool 

for efficient named entity recognition in EHR text [1]. As well, a set of ICD codes related to the target 

sense was created [34]. Since the proposed method is unsupervised without using any gold-standard 

acronym labels, the ICD codes were used to create a binary “silver-standard” (or “machine created”) 

label for each note. It is possible to use note mentions of the target sense or CUIs related to the target 

sense to create silver-standard labels, but we chose to use ICD codes in this study. 

𝑦𝐼𝐶𝐷 = {
1
0

     
𝑖𝑓 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 ℎ𝑎𝑠 𝑎𝑛 𝐼𝐶𝐷 𝑐𝑜𝑑𝑒 𝑜𝑛 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑑𝑎𝑦 𝑎𝑠 𝑡ℎ𝑒 𝑛𝑜𝑡𝑒 

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒    
 

A random forest model to classify 𝑦𝐼𝐶𝐷 with the CUI features, called 𝑅𝐹 − 𝐶𝑈𝐼𝐼𝐶𝐷, was trained with the 

randomForest_4.6-14 package in R with default parameters (500 trees, 9 features available at each node 

for rheumatoid arthritis and 3 for multiple sclerosis) [35].  

Model 2: 𝒘𝒐𝒓𝒅𝒗𝒆𝒄𝒔𝒄𝒐𝒓𝒆 

While 𝑅𝐹 − 𝐶𝑈𝐼𝐼𝐶𝐷 predicts the meaning of an acronym using broader visit-level information, often the 

textual context of an acronym is the most useful predictor of its meaning. To use the acronyms’ 

contexts, we implemented an unsupervised context embeddings method, 𝑤𝑜𝑟𝑑𝑣𝑒𝑐𝑠𝑐𝑜𝑟𝑒 , to classify a 

target sense, adapted from methods introduced in [25] and [27]. 
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Training the word embeddings 

The embeddings were taken from previous work [36]; first, the word-context pair cooccurrence was 

calculated from 1.7 million full text journal articles obtained from PubMed central. Word-context pairs 

were counted if they appeared within a window of 10 terms from each other, as previous literature has 

identified that expanding beyond this window size does not generally improve disambiguation 

performance [37]. A word-context pointwise mutual information (PMI) matrix was then created and 

factorized to create dimension 500 embeddings. Levy and Goldberg demonstrated that this matrix 

factorization performs skip-gram with negative sampling as originally introduced by Mikolov et. al [30 

38], showing that the vectors obtained are near state-of-the-art. 

Constructing word embeddings with à la carte 

À la carte [39] is a method to denoise embeddings 𝑢𝑤 by regressing them onto their context 

embeddings 𝑢𝑤
𝑐𝑜𝑛𝑡𝑒𝑥𝑡, thus making the embeddings more representative of their context in the corpus. 

The context embeddings were created by equation (1), where 𝐶𝑤 is a random set of 1000 contexts of 

the word 𝑤. The linear transformation matrix 𝐴 was found by solving equation (2) and then used to 

transform the embeddings to their denoised form 𝑣𝑤 via equation (3), where 𝑉 is the intersection of 

words in the set of PMC-based embeddings and in the clinical notes. The words in equation (2) were 

weighted by the log count of their frequency, as this has been recommended to improve à la carte [39]. 

 
𝑢𝑤

𝑐𝑜𝑛𝑡𝑒𝑥𝑡 =
1

|𝐶𝑤|
∑

1

|𝑐|
𝑐∈𝐶𝑤

∑ 𝑢𝑡

𝑡∈𝑐

 
( 1 ) 

 

 𝐴 =  argmin
𝐴∈ℝ𝑑𝑥𝑑

∑ 𝑙𝑜𝑔(|𝑤|)

𝑤∈𝑉

‖𝑢𝑤 − 𝐴𝑢𝑤
𝑐𝑜𝑛𝑡𝑒𝑥𝑡‖2

2 ( 2 ) 

 𝑣𝑤 ← 𝐴𝑢𝑤
𝑐𝑜𝑛𝑡𝑒𝑥𝑡 ( 3 ) 
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Training the acronym-context vectors 

For each acronym, two embeddings were trained: 𝑣𝑆+, representing the target sense, and 𝑣𝑆−, 

representing the non-target sense, grouping all other senses together (e.g. “room air” and “right atrium” 

together for RA). To create 𝑣𝑆+, 1000 instances of the sense expansion in the text were randomly 

sampled and the weighted average of the context embeddings was taken. 

 
𝑣𝑆+ =

∑ 𝛼(𝑤) ∗ 𝑣𝑤𝑤𝜖𝐶

∑ 𝛼(𝑤)𝑤𝜖𝐶
, 

( 4 ) 

 

The weights 𝛼(𝑤) amplify words by their inverse frequency via the equation (2), where 𝑡𝑓𝑤 is the 

frequency of term 𝑤 and 𝛼 is the mean word frequency, roughly 4 ∗ 10−5. 

 𝛼(𝑤) =  
𝛼

𝛼 + 𝑡𝑓𝑤
;  𝛼 ~ 4 ∗ 10−5 ( 5 ) 

 

To create 𝑣𝑆−, we randomly sampled 1000 instances of the acronym where there was no related ICD 

code on the same day, indicating that the acronym likely did not mean the target sense. We then 

computed the weighted average of the contexts of these instances as was done in equation (4). 

Predicting target senses with embeddings 

To fully use the information from both positive and negative samples, we constructed the prediction 

score by subtracting 𝑐𝑜𝑠𝑖𝑛𝑒(𝑣𝑐𝑜𝑛𝑡𝑒𝑥𝑡 , 𝑣𝑆−) from 𝑐𝑜𝑠𝑖𝑛𝑒(𝑣𝑐𝑜𝑛𝑡𝑒𝑥𝑡, 𝑣𝑆+). Our preliminary analysis showed 

that this step significantly outperformed using just the positive sample, 𝑐𝑜𝑠𝑖𝑛𝑒(𝑣𝑐𝑜𝑛𝑡𝑒𝑥𝑡 , 𝑣𝑆+). As well, 

we found that performing a logit transformation, adapting for scores from -1 to 1, on the cosine 

similarities improved the performance. 
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 𝑤𝑜𝑟𝑑𝑣𝑒𝑐𝑠𝑐𝑜𝑟𝑒 = 𝑙𝑜𝑔𝑖𝑡−1,1(𝑐𝑜𝑠𝑖𝑛𝑒(𝑣𝑐𝑜𝑛𝑡𝑒𝑥𝑡, 𝑣𝑆+)) − 𝑙𝑜𝑔𝑖𝑡−1,1(𝑐𝑜𝑠𝑖𝑛𝑒(𝑣𝑐𝑜𝑛𝑡𝑒𝑥𝑡 , 𝑣𝑆−)), ( 6 ) 

where 𝑐𝑜𝑠𝑖𝑛𝑒(𝑎, 𝑏) =
𝑎∙𝑏

‖𝑎‖‖𝑏‖
 

and 𝑙𝑜𝑔𝑖𝑡−1,1(𝑥) = log (
𝑥+1

1−𝑥
) 

The output of this model is scores of the likelihood of acronyms meaning the target sense; therefore, it 

is not a direct classification or probability. To convert this score to a probability, we fit a univariate finite 

Gaussian mixture model using the flexmix package in R [40]. 

Ensemble model: CASEml   

We averaged the predicted probabilities from 𝑅𝐹 − 𝐶𝑈𝐼𝐼𝐶𝐷 and 𝑤𝑜𝑟𝑑𝑣𝑒𝑐𝑠𝑐𝑜𝑟𝑒  to create a final 

probability for CASEml. To classify acronym instances, we chose a probability cutoff that resulted in a 

sense prevalence equal to an estimate of the true sense prevalence. For example, if the estimated true 

sense prevalence is 𝑝𝑟𝑒𝑣, then we determine a cutoff 𝑐 such that 𝑚𝑒𝑎𝑛(𝐶𝐴𝑆𝐸𝑚𝑙 > 𝑐) = 𝑝𝑟𝑒𝑣. The 

estimate of prevalence used in this study was the proportion of acronym instances with a CUI disease 

mention or a disease ICD code on that day.   

Evaluating CASEml 

Methods for Comparison 

Two baseline models were considered for comparison: a standard baseline model, majority frequent 

sense (MFS), and a knowledge-based method (KB) from Finley et. al [25]. MFS always selects the most 

frequently occurring sense of an acronym, so in practice it requires manually reviewed labels to know 

this sense. KB extracts multiple possible senses for an acronym and, similar to CASEml, derives an 

embedding for each sense from the notes. For each acronym instance, KB computes the cosine 

similarities of the acronym context embedding with the sense embeddings and classifies the acronym as 
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the sense with the highest cosine similarity. The context is taken with a window of 12 and a sigmoid-

weighting function is used to weight closer words more heavily. As well, the terms are weighted by the 

inverse document frequency and the square root of the embeddings is taken. For RA and MS, as was 

done in Finley et. al, the possible acronym senses were taken from a previously published knowledge-

base [29]; for RA the senses are “rheumatoid arthritis”, “right atrium” and “room air” (which matches 

the common senses found in this study) and for MS the senses are “multiple sclerosis”  and “morphine 

sulfate” (which misses two of the three most common senses found in this study – “Ms.” And 

“milliseconds”). MI was not present in the knowledge database, so we used the common acronym 

senses found in our chart review – “myocardial infarction” and “Michigan”. 

Acronym-level evaluation  

CASEml yields both probabilities and classifications for predicting the target sense of an acronym. We 

calculated the area under the receiver operating curve (AUC) for the CASEml probabilities and the 

accuracy for the CASEml, MFS, and KB classifications. Since 100 filter-positive notes and 100 filter-

negative notes were used for validation, the results for the full data set were weighted to match the 

true proportion of filter-positive and filter-negative notes with acronym mentions. If P was the 

percentage of notes with acronym mentions that are filter-positive, then the filter-positive labels were 

weighted by P and the filter-negative labels were weighted by 1-P. Since equal numbers of notes were 

labeled from the filter-positive and filter-negative sets, weighting the labels by P and 1-P scaled the 

results to represent the true proportion of filter-positive and filter-negative notes with acronym 

mentions. The same scaling was applied to the Michigan + Minnesota data set for MI, where P 

represented the percentage of notes with MI mentions in Michigan out of both states. 
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Acronym WSD for downstream phenotyping prediction 

We evaluated the impact of using CASEml for downstream phenotyping prediction of rheumatoid 

arthritis. Previous studies have found that the patient-level counts of the rheumatoid arthritis CUI, 

C0003873, are useful for phenotyping rheumatoid arthritis [41]. C0003873 contains terms such as 

“arthritis, rheumatoid” and “proliferative arthritis” as well as the commonly used, yet ambiguous, 

acronym “RA”. To perform phenotyping prediction, the acronym classifications obtained by 

disambiguation approaches were further aggregated to patient-level. We tested four methods to classify 

instances of RA and included them in the NLP counts of C0003873: (1) always classify RA as negative (not 

meaning “rheumatoid arthritis”), (2) always classify RA as positive (i.e. use MFS), (3) use KB 

classifications and (4) use CASEml classifications. More details of the phenotyping process are provided 

in supplementary section 2. 
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Figure 1: Flowchart of the CASEml method. Rectangular boxes represent data sets and rhombuses 

represent actions.  
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RESULTS 

Acronym-level classification 

Table 1 shows the sense distributions of the acronyms from the validated notes. In the full data set, the 

distributions were weighted by the filter-positive acronym percentage P used to weight the validation 

results. P is 0.15 for RA, 0.08 for MS, and 0.83 for MI. 

Table 2 compares the accuracy of CASEml, KB, and MFS. The estimated target sense prevalences used to 

determine the classification cutoffs for CASEml in the full and filter-positive data sets were 13% and 67% 

for RA, 8% and 73% for MS, and 20% and 22% for MI.  

In the full note set, CASEml significantly outperformed MFS, while in the filter-positive set it was more 

accurate for RA and MI and less accurate for MS. CASEml performed significantly better than KB for MS 

in the full data set and slightly worse for the remaining sets. 

Table 1: Distribution of acronyms RA, MS, and MI 

Acronym Full data set Filter-positive set 

 Number 
of notes 
reviewed 

Number 
of 
acronyms 

Percentage of senses 
(weighted to match 
filter/non-filter 
distribution) 

Number 
of notes 
reviewed 

Number 
of 
acronyms 

Percentage of senses 

RA 200 311 Rheumatoid 
arthritis: 17% 
Room air: 72% 
Right Atrium: 11% 
Other: 0% 

100 188 Rheumatoid arthritis: 
69% 
Room air: 22% 
Right Atrium: 7 % 
Other: 2% 

MS 200 385 Multiple sclerosis: 
12% 
Ms. (Title): 34% 
Milliseconds: 30% 
Other: 24%* 

100 215 Multiple sclerosis: 
83% 
Ms. (Title): 10% 
Milliseconds: 3 % 
Other 3%* 

 Michigan + Minnesota Michigan 

MI 200 289 Myocardial 
Infarction: 43% 
Michigan: 54% 
Other: 3% 

100 147 Myocardial 
Infarction: 33% 
Michigan: 65% 
Other: 3% 

* “Other” for MS includes “musculoskeletal”, “masters of science”, and “mental status” 
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Table 2: Accuracy of the three methods on the full data set and the filter-positive set 

Data 
set 

Measure Acronym CASEml KB MFS* 

Fu
ll

 D
at

a 

Se
t 

Accuracy RA 0.947 0.955 0.832 

MS 0.911 0.32 0.879 

MI 0.706 0.895 0.572 

Average 0.855 0.723 0.761 

Fi
lt

e
r 

P
o

si
ti

ve
 

Se
t 

Accuracy RA 0.824 0.846 0.686 

MS 0.707 0.763 0.833 

MI 0.802 0.891 0.673 

Average 0.778 0.833 0.731 

* The most common senses for the full note set were different from the filter-positive set for both 
acronyms tested, so MFS had a different classification between both sets. 
 
The filter positive set is the Michigan only set for MI and the full data set is the Michigan + Minnesota 
set. Since MI is not in the knowledge dictionary, KB for MI is a supervised method, relying on manually 
selecting the possible senses of the acronym. The estimates of accuracy for CASEml are from estimated 
sense prevalences; using the estimates of the true sense prevalence generally yields more accurate 
results. 

 

Rheumatoid arthritis phenotype prediction 

Figure 1 shows the receiver operating curves and area under these curves (AUC) for the four methods of 

rheumatoid arthritis prediction tested. Using CASEml to classify RA returned a phenotyping AUC of 

0.937, which is higher than the 0.928 AUC from using KB, and significantly higher than the 0.871 AUC 

from MFS and 0.91 AUC from excluding RA counts. 

Figure 1: Receiver operating curves (ROC) for rheumatoid arthritis phenotype prediction using NLP. Red: 

ROC if RA is never included in the NLP feature. Green: RA always counted in the NLP feature. Purple: KB 

is used to identify when to include RA in the feature. Blue: CASEml is used to identify when to include RA 

in the feature. 
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DISCUSSION 

In this study, we developed an unsupervised acronym disambiguation method, CASEml, and 

demonstrated its effectiveness in disambiguating RA, MS, and MI in clinical EHR notes from 112 VA 

centers across the United States. CASEml ensembles two approaches: a random forest model using CUI 

counts trained on silver-standard labels and a model using word embeddings to compare the similarity 

of the acronym context with the target sense. We created a CASEml classifier by leveraging an estimated 

acronym sense prevalence. We compared the predictions of CASEml with MFS, a baseline method, and 

KB, another unsupervised method, and showed that CASEml generally outperforms both. Finally, we 

demonstrated that CASEml improves the performance of NLP-based phenotyping. 

Analysis of the ensemble method 

In many machine learning applications, ensemble models of multiple individually trained models 

outperform the individual models themselves  [42 43]. In this study, 𝑅𝐹 − 𝐶𝑈𝐼𝐼𝐶𝐷 and  𝑤𝑜𝑟𝑑𝑣𝑒𝑐𝑠𝑐𝑜𝑟𝑒  
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are two base models for CASEml which have different architectures and use different levels of 

information. Because the models make partially independent and supplementary decisions, as long as 

neither model is significantly worse than the other, combining them will usually reduce the overall bias 

in the final result. While 𝑤𝑜𝑟𝑑𝑣𝑒𝑐𝑠𝑐𝑜𝑟𝑒  outperformed 𝑅𝐹 − 𝐶𝑈𝐼𝐼𝐶𝐷 for all three acronyms, on average 

both models independently performed worse than the ensemble model (Supplementary Table 2).  

The results indicate that KB is often sufficiently accurate but can be completely inaccurate. For RA and 

MI, KB was more accurate than CASEml, while for MS, CASEml was significantly more accurate. One 

reason KB performed poorly for MS because the senses in the knowledge-dictionary are not 

representative of the true common senses. However, even after manually selecting the most common 

senses in this set of notes – multiple sclerosis, miss, milliseconds, and musculoskeletal – KB had an 

accuracy of 0.493 in the filter-positive set and 0.494 in the full data set. This demonstrates the additional 

benefit of CASEml over KB (and other published unsupervised methods) in that it does not rely on the 

sense expansion of the non-target senses and it also uses 𝑅𝐹 − 𝐶𝑈𝐼𝐼𝐶𝐷, which significantly improved the 

accuracy and AUC for MS. 

If the true target sense prevalence of an acronym is available in practice, it could be used to determine 

the classification cutoffs, but for the purpose of keeping CASEml unsupervised in this study we used the 

estimated target sense prevalence from ICD and NLP features. When using the true prevalence of 

acronym senses for classification, the accuracy of RA, MS, and MI change to 0.983, 0.896, 0.86 for the 

full data set and 0.824, 0.805, 0.871 for the filter-positive set, an average improvement of .06 for both 

data sets.  

In cases where the context distribution of an acronym sense expansion is different than that of the 

acronym itself, e.g. if “rheumatoid arthritis” was used differently in text than “RA” representing 

“rheumatoid arthritis”, 𝑤𝑜𝑟𝑑𝑣𝑒𝑐𝑠𝑐𝑜𝑟𝑒  might perform poorly (KB would similarly perform poorly). As 
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well, if a visit’s ICD codes are a poor surrogate for the true acronym meaning or if the visit-level CUIs are 

not predictive of acronym sense, 𝑅𝐹 − 𝐶𝑈𝐼𝐼𝐶𝐷 would perform poorly. 

The visit-level model 

𝑅𝐹 − 𝐶𝑈𝐼𝐼𝐶𝐷 captures broad information – mentions of related medical concepts – about the visit 

where an acronym is mentioned. Other studies have used visit-level information, though not extensively 

[15]. To the best of our knowledge, this is the first study to use visit-level concept counts as features or 

structured billing codes to create silver-standard labels. However, 𝑅𝐹 − 𝐶𝑈𝐼𝐼𝐶𝐷 was generally less 

accurate than 𝑤𝑜𝑟𝑑𝑣𝑒𝑐𝑠𝑐𝑜𝑟𝑒 , signifying that the immediate context of an acronym is more indicative of 

its sense than the broader information and that 𝑅𝐹 − 𝐶𝑈𝐼𝐼𝐶𝐷 would not be good as a stand-alone 

method.  

We compared random forest, logistic and lasso regression models in this approach, and the random 

forest model performed slightly better on the validation set, though there was not a significant 

difference in the results. 

Word embeddings and à la carte 

As reported in previous work [25 27], the unsupervised (or semi-supervised) word embeddings approach 

using sense expansions accurately disambiguated acronyms. An additional step used in this study was à 

la carte, which reduces noise and widens the difference between unrelated word embeddings; in fact, 

the average cosine similarity of two random embeddings in 𝑉 decreased from 0.887 before applying à la 

carte to 0.449 after. Previous work has found that acronym sense distributional similarity (how closely 

related acronym sense embeddings are) hurts the performance of disambiguation tasks [20]; à la carte 

may alleviate this issue.  
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Acronym disambiguation and downstream NLP tasks 

We demonstrated that acronym disambiguation with CASEml can significantly improve the performance 

of NLP-based phenotyping. Phenotyping in EHR is important for cohort creation, creating co-morbidities 

for other studies, and running genetic analyses. To the best of our knowledge, this is the first study to 

show that acronym disambiguation can improve the performance of phenotyping tasks. While we only 

explored one application to phenotyping, there are many other acronyms that could be important to 

analyze for phenotyping tasks, e.g. ED for eating disorders and erectile disfunction. 

Limitations 

While CASEml does not require manually annotated labels, it does require some manual input. For each 

acronym, the target sense needs to be identified, and for this target sense a list of ICD codes and related 

CUIs needs to be created. In this paper we only considered when the target sense of an acronym is a 

disease, which makes the list of related ICD codes and CUIs easy to obtain. In other cases, when the 

target sense is not a disease or well-defined clinical concept (such as “milliseconds” for MS), using 

CASEml, specifically 𝑅𝐹 − 𝐶𝑈𝐼𝐼𝐶𝐷, could be problematic. 

Another limitation of CASEml is that it is designed specifically for binary classification of a target sense. It 

is not directly applicable to disambiguation of multiple acronym senses, though the methods presented 

in this study could be adapted to that type of problem. 

Future work 

To analyze the robustness of CASEml, future directions include applying this approach to a broader set 

of medical acronyms. It is possible the finite mixture model would not converge for acronyms with a 

highly dominant sense. As well, since only the phenotype label for rheumatoid arthritis was available at 
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the time of this study, CASEml and other disambiguation methods should be tested on acronyms 

affecting other phenotypes; this would allow for a better comparison of CASEml, KB, and MFS. 

For 𝑅𝐹 − 𝐶𝑈𝐼𝐼𝐶𝐷, silver-standard labels other than 𝑦𝐼𝐶𝐷 could be tested, and it would be useful if these 

silver-standard labels did not require any manual curation to create. Another improvement of CASEml 

could be for 𝑤𝑜𝑟𝑑𝑣𝑒𝑐𝑠𝑐𝑜𝑟𝑒  to use word embeddings created from the clinical text as opposed to 

biomedical text. 

CONCLUSION 

In this study we presented the unsupervised Classification of Acronym Sense with Ensemble machine 

learning (CASEml) method to classify when an acronym means a target sense. We demonstrated the 

usefulness of combining two approaches: a visit-level random forest model using billing codes and CUI 

counts and a context-driven word embeddings model with a denoising step, à la carte. Further, we 

demonstrated that CASEml improves downstream NLP-based phenotype prediction. CASEml is able to 

efficiently and accurately disambiguate acronyms, thus improving our ability to extract useful 

information from clinical text in the EHR. 
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