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1 Abstract

Different combinations of targeted quarantine and broad scale social distancing
are equally capable of stemming the transmission of a virus like SARS-CoV-
2. Finding the optimal balance between these policies can be operationalized
by minimizing the total amount of social isolation needed to achieve a target
reproductive number. This results in a risk threshold for triggering quarantine
that depends strongly on disease prevalence in a population, suggesting that
very different disease control policies should be used at different times or places.
Very aggressive quarantine is warranted given low disease prevalence, while
populations with a higher base rate of infection should rely more on broad
social distancing. Total cost to a society can be greatly reduced given modestly
more information about individual risk of infectiousness.

Keywords: risk management, economic epidemiology, control theory, ex-
posure notification

2 Introduction

SARS-CoV-2 transmission can be stemmed either by widespread social distanc-
ing, or by effective testing, tracing, and isolation. Social distancing to control
the spread of SARS-CoV-2 comes with immense social cost, and is difficult to
maintain for long periods. Targeting quarantine to those at higher risk of be-
ing infectious has the potential to reduce the indiscriminate harms of social
distancing at the whole population level. Here we explore the combination of
population-wide social distancing plus targeted quarantine that is best capable
of minimizing harms while stemming transmission. This can be operationalized
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by comparing the harms of different combinations that all achieve the same
target value for the effective reproduction number.

Our approach, at the interface of infectious disease epidemiology and eco-
nomics [1], solves a number of problems previously encountered in that area. It
is difficult to decide on an exchange rate between distancing and lives; further-
more, selfish agents may count only the cost to their own life, and not that of
others they infect [2]. Difficulties determining an exchange rate lead some to
present only idealized curves without a concrete recommendation [3, 4]. Ide-
alized curves can lead to abstract insights, but are of limited use to practical
decision-making. Here we make concrete recommendations, e.g. as to exactly
how a risk threshold should be set in an exposure notification app.

We avoid the need for an exchange rate between distancing and lives by in-
stead comparing one form of (population-wide, partial) distancing with another
form of (targeted, more stringent) distancing. This allows the lowest cost quar-
antine strategy to be selected without having to monetarize the cost of health
outcomes, the latter being held constant in our analysis. The policy optimiza-
tion problem is thus framed as a minimization of a cost function across different
degrees of isolation for different individuals.

Second, prior work tends to integrate across an entire sweep of a pandemic
modelled using an SIR approach [5]. This introduces substantial uncertainty
relative to our focus on a moment in time. Our focus is informed by a control
theory view described in Section 5, regarding how this will generalize to apply
over longer timescales.

Third, many models consider decision-making given the possession of instan-
taneous knowledge [5]. This is problematic given that key indicators such as
hospital usage or even positive tests have a marked lag relative to infections.
Our approach focuses instead on making optimal use of available, probabilistic
information. Past economic approaches to modelling covid treat more stark
examples of information, e.g. testing to find out who is infected and should
isolate, as opposed to who is exposed to what degree and should quarantine [5,
6]. But quantitative information about individual risk can be obtained from a
variety of sources. For example, the risk of infection with SARS-CoV-2 can be
estimated based on proximity and duration of contact with a known case, and
their estimated infectiousness as a function of timing relative to symptom onset
date [7]. Similarly, setting local rather than global shutdown policies, in the
light of differences between regions, can lower costs [8].

Our work ultimately describes the value of information, specifically informa-
tion about who is at high enough risk of being infected to quarantine strictly
rather than merely to conform to population-wide distancing measures. Given
an individual estimated to be infectious with probability ‘r’, we propose a
method for deciding whether to quarantine this individual. We do so by weigh-
ing the cost of quarantine against the degree to which indiscriminately applied
social distancing would need to be increased to achieve the same reduction in
transmission. Our approach informs choice of the lowest cost solution needed
to achieve epidemiological targets. In particular, we formalize the intuition that
populations with low prevalence should set more strict conditions for quarantine.
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3 Optimal Risk Threshold

Consider a population of size P, of which I people are currently both infected and
infectious, and S people are susceptible. Let the disease have initial reproduction
number R0, and effective reproduction number Rt = R0 ∗ S/P , depending on
the fraction of people still susceptible (S/P ). Here we define Rt to explicitly
exclude interventions such as social distancing or quarantine, because these are
the values being optimized. However, Rt is intended to include low cost and
fixed cost interventions like mask wearing and improved ventilation.

Population-wide social distancing is parameterized using D, which varies
between 0 and 1. A value of 0 indicates normal social contact, 1 indicates
complete isolation, and the reproduction number is modeled as proportional to
(1−D). Here we assume that the effect of D on transmission is linear, but other
variations are explored in section 4. Qi denotes the number of infectious people
who are quarantined or isolated and Qn denotes the number of non-infectious
people who are quarantined. The effect of targeted quarantine is modeled using
I−Qi
I , the fraction of infectious cases who are not successfully quarantined and

then isolated. The local effective reproduction number R′t after social distancing
and quarantine interventions are applied is given by equation 1.

R′t = Rt ∗ (1−D) ∗ I −Qi
I

(1)

R′t calculates the expected number of onward transmissions per infected case
in the general population. Equation 1 is undefined when the number of locally
transmitted cases I = 0, and even for low value of I, a different, stochastic
treatment warranted - this is discussed in Appendix C. Failing that, equation 1
could be used by assuming a very small expected number of locally transmitted
cases I, given uncertainties in importation and subsequent spread.

The cost of reduced contact for a person is represented by the function f(x),
which is assumed to be strictly increasing (from 0 cost with normal contact, to
the maximum cost with complete isolation). The exact function is not speci-
fied, but in section 4 the resulting risk threshold is shown to have a bounded
dependence on its form. For a given level of social distancing and prevalence
of quarantine/isolation, the total cost to a population is given by Equation 2,
based on (Qi+Qn) people in complete isolation, and (P −Qi−Qn) people with
contact reduced by D.

f(1) ∗ (Qi +Qn) + f(D) ∗ (P −Qi −Qn) (2)

For a target reproductive number, Rtarget, and fixed quarantine quantities,
Qi and Qn, the amount of social distancing needed to meet the target can be
computed. The solution is given by Equation 3. The value is bounded at 0; if
Rt ∗ I−QiI ≤ Rtarget, the target has already been met and no social distancing is
required. In many real scenarios it is not possible to adjust D instantaneously
or exactly due to changes in quarantine policy. In Appendix D, Equation 3 is
shown to be independent of time and control uncertainty if the caseload and

3

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 28, 2020. ; https://doi.org/10.1101/2020.11.24.20238204doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.24.20238204
http://creativecommons.org/licenses/by/4.0/


control measures are fairly steady over time, as has been the case in many
regions for at least some substantial period of time.

D = max(0, 1− Rtarget
Rt

∗ I

I −Qi
) (3)

Combining equations 2 and 3, the total cost of a quarantine and distancing
scenario is given by J(Qi, Qn) in Equation 4. This equation could be used
to compare general quarantine policies using real or simulated data. In the
context of comparing classifiers, Qi represents true positives, and Qn represents
false positives.

J(Qi, Qn) = f(1)∗(Qi+Qn)+f(max(0, 1−Rtarget
Rt

∗ I

I −Qi
))∗(P−Qi−Qn) (4)

For this work, it is assumed that people under consideration for quarantine
have an estimated risk of infectiousness. This could be estimated using proxim-
ity and duration of contact with a known case as described in [7]. Or it could
be estimated for members of a sub-population like a workplace by rapid test-
ing of a random sample of that sub-population and projecting the proportion
positive onto the remainder. If a person with risk of infectiousness, r, were quar-
antined, Qi would be incremented by 1 with probability r, and Qn would be
incremented by 1 with probability 1−r. Quarantining this person is worthwhile
if the expected change in cost given by Equation 5 is less than 0.

r ∗ J(Qi + 1, Qn) + (1− r) ∗ J(Qi, Qn + 1)− J(Qi, Qn) < 0 (5)

Solving for r, the optimal risk threshold is given by Equation 6.

rthresh =
J(Qi, Qn)− J(Qi, Qn + 1)

J(Qi + 1, Qn)− J(Qi, Qn + 1)
(6)

The simplest equation for the cost of isolation is a linear function, f(x) = x.
Using this equation in a situation where some social distancing is necessary
(
Rtarget
Rt

∗ I
I−Qi−1 < 1), Equation 6 simplifies to Equation 7.

rthresh =
I −Qi − 1

P −Qi −Qn − 1
(7)

In this simple case, the interpretation of Equation 7 is straightforward and
intuitive. The optimal risk threshold for quarantine is based on the disease
status within a community. With this simple choice of f(x), the threshold is
equal to the disease probability in the community (excluding both those already
isolated or quarantined, and the focal individual). This implies that in regions
with very low prevalence rates, much stricter quarantine requirements should
be used. By doing this, the general population doesn’t need to be as impacted
by disease-control measures. In populations with higher prevalence rates there
is less benefit to quarantining someone with low risk because they represent a
much smaller fraction of the overall disease risk.
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4 Sensitivity to Isolation Cost and Benefit Func-
tions

Even the simplest cost and benefit functions can inform an order-of-magnitude
risk threshold, which we will see in Section 6 is sufficient for evaluating quaran-
tine policies. Here we discuss several refinements, in part to evaluate sensitivity.

The shape of the isolation cost function, f(x), as the extent of isolation x
varies, is unknown. In Appendix A, we show that the deviation from Equation 7
is relatively small for reasonable choices of f(x). In particular, if r1 is computed
using f1(x) = x and r2 is computed using any f2(x) that is strictly increasing

and concave up, then r2 ≥ r1 and r2
r1
≤ maxx∈[0,1] f

′
2(x)

minx∈[0,1] f
′
2(x)

. In practice, the values are

often much closer than the upper bound. For example, the difference between
optimal risk thresholds for the two cost functions shown in Figure 1 is bounded
at a 10-fold difference, and is numerically found to be 4.1-fold.
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Figure 1: The two isolation cost functions (left) differ by a modest ratio in their
risk thresholds (r2/r1; right) as a function of population-wide distancing.

Adjustments to Rt or Rtarget shift the amount of broad social distancing
needed. For a linear cost function this change has no impact on the risk threshold
(except when the target has already been met) because the cost and benefit of
the shift exactly cancel out. For concave up cost functions, an increase in
Rt/Rtarget will increase the amount of broad-scale social distancing needing,
causing a slight decrease in the risk threshold.

Both the cost of isolation and the benefit of isolation can vary among indi-
viduals. For example, the cost of isolation is higher for essential workers than
for those that can easily work from home, while the benefit of isolation is higher
for those whose jobs expose many and/or vulnerable people. Equation 7 can
be modified to accommodate knowledge about an individual. If the isolation
cost function is a multiple of m more expensive for this person than the general
population, and the potential danger to others if they are actually infectious is
a multiple of d compared to an average case, then the risk threshold for this
person should be modified to rthresh ∗ m/d. Note that this approach differs
from other suggestions to target isolation directly to the elderly and other high
medical risk individuals [4]. We instead recommend increasing the stringency
of quarantine among their contacts.
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For a given individual, the cost of quarantine is likely to depend more than
linearly on its length, due both to logistical and to psychological factors. To
accommodate this, the cost of quarantine could be modelled as time-dependent
by scaling f(x) ∗m(t). The benefit of quarantine is not equal for each possible
day of quarantine, given a probability distributions for incubation period and
quantitative timecourse of infectiousness [7]. Consideration of these two factors
will lead shorter recommended quarantine durations, targeted to the most infec-
tious days. Testing individuals in quarantine could further shorten its duration
[9].

Equation 3 assumes that the benefits from both social distancing and quar-
antine are linear. In practice, both are likely somewhere between linear and
quadratic [4]. When people seek out places that have variable levels of crowd-
ing, benefits are quadratic; when they seek out people who are still willing to
meet with them, benefits are linear. The effect of non-linearity is explored in
Appendix B.

5 Control of Rt

At the beginning of the COVID-19 pandemic, populations experienced rapid
exponential growth, e.g. as high as a 2.75 day doubling time in New York City
[10]. Through some combination of top-down control measures and individual
behavior modifications, many populations subsequently achieved relatively flat
case counts, i.e. an effective R value remarkably close to 1 [11]. Even locations
that subsequently lost control of the pandemic have tended to eventually issue
stay at home orders leading to exponential decline. Over the very long term, a
geometric mean of R not much greater than 1 is inevitable (see Appendix D).

This implies that there is a form of control system (whether intentional or
not) using social distancing to regulate transmission rate. A well-functioning
control system is one with a negative feedback loop such that the error in achiev-
ing a desired outcome feeds in as a correcting input [12]. As case counts rise, con-
tact tracing becomes more difficult, and the subsequent breakdown in quarantine
can create a positive feedback loop [13], potentially accelerating the outbreak.
Consciously adjusting the risk threshold that triggers quarantine, whether re-
garding incoming travellers, or risk thresholds in an exposure notification app,
contributes to the same positive feedback loop. However, conscious manage-
ment of this positive feedback loop can manage the process to focus contact
tracers’ attention where it can do the most good, in a manner that is under
straightforward real-time control.

Control of R′t, e.g. to bring it back down to its target given a rise due
to seasonal conditions or simply pandemic fatigue, is better exerted through
population-wide measures to affect D. Our work shows that this is the socially
optimal approach, and indeed if performed adequately, should be accompanied
by a perhaps unintuitive relaxing of quarantine. Our formal development so far
assumes a perfect control system, and focuses on one-individual perturbations to
an equilibrium. It is likely that D will not reliably adjust in a completely timely
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manner, but a proactive approach can improve the chances of this occurring.
The manner in which control of R′ is achieved matters. Using a simple

model, this control system can be explained as a combination of proportional,
integral, and derivative control [12]. Derivative control would set social distanc-
ing policy based on whether exponential growth has resumed, and if so with
what doubling time. This achieves the most effective control, but is unlikely to
occur spontaneously, but rather requires government action in response to epi-
demiological reports not yet of concern to the general population. Spontaneous
control by self-interested individuals responding to local conditions would under
ideal circumstances follow proportional control, i.e. reflect current case counts.
More likely, individuals will respond to the integral of case counts over time,
which is the least effective control system, allowing significant fluctuations.

If testing and tracing improves, then less population-wide distancing will be
required. This can similarly be recognized as a drop in R′t. In many cases,
this might lead to a reconsideration of Rtarget to a lower level once that seems
achievable at lower cost, but otherwise, reductions in social distancing should
again ideally be triggered via derivative control.

6 Examples of application

In a large population with many cases, Equation 6 is closely related to the base
rate of infection in the population. When rapid testing is widespread, but only
when symptoms are present, as was the case in British Columbia in October
2020, official case counts of around 100/day are a good estimate of symptomatic
cases, and asymptomatic and presymptomatic cases can be estimated in pro-
portion. When testing is less adequate, estimating the true number of cases is
more complex, involving projections from death rates and/or testing rates, but
has been attempted e.g. at [11] or [14]. Assuming another 20 asymptomatic or
other undiscovered cases per day in our British Columbia example, each with a
10 day infectious window, yields 200 non-isolated infectious individuals on any
given day. In addition, we estimate 4 infectious days per discovered case prior to
isolation, yielding another 400 non-isolated infectious individuals on any given
day. The base rate of infectiousness, conditional on not having been isolated,
is thus of order 600/5,000,000=O(10-4). From Equation 7, a quarantine risk
threshold of 10-4 is appropriate, or a little higher if a non-linear cost function
is assumed in Equation 6. This implies that quarantine recommendations for
entire schools or workplaces may be worthwhile if it is expected to isolate one
more infected person than would be achieved via traditional contact tracing.

In contrast, North Dakota in October 2020 had around 400 detected cases
per day and perhaps another∼400 undetected in a population of ∼800,000. This
yields ∼5000 undetected infectious individuals on a given day, or a 0.6% base
rate and corresponding risk threshold. Several studies have found the secondary
attack rate to be on the order of 1/10 - 1/100 [15, 16, 17], so this risk threshold
aligns well with standard guidelines for the minimum contact considered close
for tracing purposes. We note that 14 day quarantine is more than is needed to
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put the conditional probability of infectiousness, given lack of symptoms, of a
non-household close contact below the base rate [7].

Imported and exported cases introduce complications. Policy is best set
for regions that match natural migration, and do not e.g. cut off commuter
communities from one another. When imported and exported cases make up
only a small fraction of total cases, then subtleties in using case counts to
estimate R′t (discussed in Appendix C) have negligible effects. When local
transmissions are abundant enough such that elimination is not a near-term
goal, then incoming individuals can therefore be quarantined by comparing their
infectiousness risk to rthresh on the basis of base rates of infection in the location
they arrived from, plus the risk of travel. These considerations apply e.g. to
the need to quarantine following travel from one part of the U.S. to another.

Some locations, e.g. British Columbia, have achieved very low levels of
local transmission, but the degree of economic connectedness with harder hit
locations makes infeasible sufficiently strict quarantine to put the risk from in-
comers below rthresh as described above [18]. This is because the marginal cost
of quarantine applies not just to the quarantined individuals, but to trucking
routes and other aspects of the economic system. At this point, some significant
expected number of imported cases acts as a forcing function outside the expo-
nential dynamics of R′t. In this case, it might be better to set a target value for
the expected number of cases per day, and then to set Rtarget to achieve this in
combination with imported cases.

If local elimination is achieved, including successfully quarantining all im-
ported cases, thenRtarget can be relaxed up toRt, removing all social distancing,
with huge social gain. The disproportionate benefits warrant careful attention
to avoid even a single imported non-quarantined case. How best to achieve
this is best quantified by a stochastic model, outside the scope of this paper.
Qualitatively, we note that the danger of letting a single case slip through, and
hence having to return to social distancing, is higher for larger populations.
The harm is magnified by delays in realizing that an outbreak is underway, and
hence the extent of harm depends strongly on local surveillance and contact
tracing capabilities.

When different regions come under shared political control, importation risk
can be controlled at the source rather than the destination. An example is Viet-
nam in March 2020. Viewed as an entire country instead of as smaller regions,
it is optimal to quarantine at a threshold of 1/106. This would motivate quaran-
tining entire cities so that the rest of the country doesn’t have to substantially
modify their behaviour. This is similar to the approach Vietnam actually took,
with up to 80,000 people in quarantine at a time from regional lockdowns and
aggressive contact tracing [19].

7 Discussion

Here we showed that the socially optimal policy is to quarantine an individual
if their risk of infectiousness is even mildly above that of the average person in
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the population who is not under quarantine. How much above depends slightly
on the non-linearity of the cost of isolation with the strictness of isolation. In
practice, only order of magnitude calculations may be possible in many circum-
stances, but given that case prevalences vary over orders of magnitudes among
populations, our rough calculations are nevertheless instructive. Some tools, like
exposure notification apps, have quantitative sensitivities that can be tuned in
real time in ways informed by such calculations.

To simplify the optimal trade-off between targeted quarantine and broad
social distancing, we have neglected two complications. First, we have based
recommendations as to who should quarantine on the assumption that they will
do so completely. In reality, quarantined individuals often reduce rather than
eliminate non-household contact, let alone all contact. More nuanced messaging
regarding the degree of quarantine may be difficult to manage.

Second, how to choose Rtarget is not specified here. In Section 5, we discuss
a control theory perspective on the fact that social distancing adjusts to keep
the long-term geometric mean of Rt near 1. There are obvious advantages to
having it do so against a background of low case counts rather than high case
counts. In the shorter term, a separate control problem is whether shorter,
sharper action vs. moderate decline with more social freedom achieves the least
harm in transitioning between different case prevalences. The choice of Rtarget
to control the speed with which case numbers are brought to low levels must also
place a value on illness and death in comparison with social restrictions, a dif-
ficult problem. We note that in practice, compliance with transmission control
measures such as size limits to gathering, compulsory masking etc. can be hard
to predict, and hence the degree of top-down control is limited. This underlies
our decision in this manuscript to focus on marginal costs given prevailing policy
and behaviors.

The total cost of social distancing could be reduced if we issued immunity
passports. In Equation 2, the total number of people who need to socially dis-
tance could be reduced from P − Qi − Qn to S − Qi − Qn, which becomes
substantial when S < P . The problem with immunity passports is that they
set up an adverse incentive in favor of contracting SARS-CoV-2, especially for
young and healthy individuals, where the risks from illness are outweighed by
the subsequent restoration of freedom from social distancing constraints. To
avoid creating such an adverse incentive, it may be necessary to continue to en-
force some social distancing requirements even on those who are likely immune.
However, with increasing vaccine availability, the benefits from immunity pass-
ports will rise and the adverse incentive to get infected gets converted into a
socially aligned incentive to get vaccinated.

In many countries, compliance not just with social distancing, but also with
quarantine has been low. This is to be expected, given the uncompensated cost
of quarantine to individuals, who are currently asked (or in cases coerced) to
sacrifice for the public good. We advocate that governments align incentives,
by guaranteeing e.g. 150% the individual’s normal daily income. This approach
can also be used to assign a dollar value to quarantine, on the order of USD$150
per day of complete quarantine. This is the implied utility sacrificed by either
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total quarantine or equivalent social distancing D. I.e., this is what one would
need to pay people in order to incentivize their compliance, i.e. to achieve
neutrality among preferences.

Cost as a function of the degree of social distancing should be interpreted
as total cost to society, i.e. both individual preferences for one day of total
quarantine vs. two days of 50%, and incidental consequences and expenses.
Redistributive payments move this cost from the quarantined individuals to the
taxpayer. Part of the curvature of the cost function comes from the need for
room and board, so that quarantined individuals do not put their household
members at risk. Placing a dollar value on the marginal cost of quarantine is
instructive regarding the value of information about risk of infectiousness. With
better risk resolution, fewer people need to be quarantined in order to achieve
a target level of transmission reduction.

As proof as principle of the value of information, we simulate a range of
encounters using the COVID Tuner risk score configuration tool [20], following
a 3D grid with distance distributed uniformly between 0 and 5 meters, durations
uniformly between 5 and 30 minutes, and date relative to symptom onset date
uniformly between -10 days and +10 days. This tool, on the basis of the current
public health definition of close contact (2 metres for 15 minutes from day -2 to
day +9) uses an implicit risk threshold of 0.002. We simulate the Swiss, Irish,
and Arizonan configurations included in this tool, plus a “baseline” configuration
that is equivalent to the Arizonan configuration but with only two rather than
6 non-zero levels of infectiousness. The Swiss and Irish configurations use only
one non-zero level of infectiousness.

We assume that the cost of quarantine is $150 per day, and that the average
quarantine is 10 days long. This gives an expected cost of quarantine of $1500
per individual that a particular configuration succeeds in getting to quarantine.
At the margin, this indicates the value that society implicitly places, i.e. that
removing a 0.002 risk is worth $1500. The benefit of quarantine is calculated in
terms of “excess risk” above 0.002 having a value where each 0.002 of excess is
worth $1500.

Net benefit was calculated for the specific scenario of a population of 10 mil-
lion, 2% of whom test positive over the time period of interest. We assume that
20% use the app, of whom 50% enter their diagnosis into the app, thus notifying
20% of contacts that the app scores as above threshold risk, who go on to infect
half as many people as they would were they not contacted. We assume the cost
of quarantine is similarly only half what it would be given complete compliance.
We assume that each has 30 contacts following the distribution described above.
Net benefit comes out to $6.1 million for the Irish app, $6.2 million for the Swiss
app, $11.4 million for the baseline app and $14.7 million for the Arizonan app.
The differences between these figures illustrates the importance of infectiousness
information - unfortunately, version 2 of the Google/Apple exposure notification
system restricts the number of non-zero levels of infectiousness down to two.

We note that the value of an exposure notification app would be dramatically
higher if, instead of a blanket 14 day quarantine duration, a shorter quarantine,
targeted to the days of greatest risk, were used [7]. Further gains would come
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from using negative test results to shorten quarantine. We have shown here
how to use information about expected infectiousness to recommend quarantine
in a socially optimal way, by treating risk consistently, and quarantining those
above a threshold. We further provide order of magnitude methods to choose
the optimal threshold. The more information we have about risk, the more that
quarantine policy creates the conditions for a return to more normal life.
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Appendices

A Cost Function Dependence

Consider the situation where r1 is calculated using f1(x) = x, and r2 is calcu-
lated using f2(x), where f2(x) is strictly increasing, concave up, and differen-

tiable. For both of these calculations, define D0 = max(0, 1 − Rtarget
Rt

∗ I
I−Qi ),

D− = max(0, 1− Rtarget
Rt

∗ I
I−Qi−1 ), and Q = Qi +Qn. The two risk thresholds

are then given by equation 9 and 10.

r =
f(1) ∗ (Q) + f(D0) ∗ (P −Q)− f(1) ∗ (Q+ 1)− f(D0) ∗ (P −Q− 1)

f(1) ∗ (Q+ 1) + f(D−) ∗ (P −Q− 1)− f(1) ∗ (Q+ 1)− f(D0) ∗ (P −Q− 1)
(8)

r1 =
f1(1)− f1(D0)

f1(D0)− f1(D−)
∗ 1

P −Q− 1
(9)

r2 =
f2(1)− f2(D0)

f2(D0)− f2(D−)
∗ 1

P −Q− 1
(10)

Substituting f1(x) = x, and taking the ratio of the two thresholds gives

Equation 11. Since f2(1)−f2(D0)
1−D0

≤ maxx∈[0,1] f
′(x), and f(2D0)−f2(D−)

D0−D− ≥ minx∈[0,1] f
′(x),

then Equation 12 gives a bound on the ratio of the two thresholds. If f2(x) is con-

cave up (indicating that additional isolation is more costly), then f2(1)−f2(D0)
1−D0

≥
f(2D0)−f2(D−)

D0−D− , and therefore r2 ≥ r1.

r2
r1

=

f2(1)−f2(D0)
1−D0

f(2D0)−f2(D−)
D0−D−

(11)

r2
r1
≤

maxx∈[0,1] f
′
2(x)

minx∈[0,1] f
′
2(x)

(12)
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B Matching Function Dependence

The effect of social distancing on transmission reduction was previously assumed
to be linear. Here we show that for α ∈ [1, 2] the risk threshold computed using
R′t = Rt ∗ (1−D)α ∗ I−QiI is approximately a multiple of α greater than when
α = 1.

Define g(y) = max(0, 1− y), gα(y) = max(0, 1− y1/α), y0 =
Rtarget
Rt

∗ I
I−Qi ,

y− =
Rtarget
Rt

∗ I
I−Qi−1

r1 =
f(1)− f(g(y0))

f(g(y0))− f(g(y−))
∗ 1

P −Q− 1
(13)

r2 =
f(1)− f(gα(y0))

f(gα(y0))− f(gα(y−))
∗ 1

P −Q− 1
(14)

r2
r1

=
f(1)− f(gα(y0))

f(gα(y0))− f(gα(y−))
∗ f(g(y0))− f(g(y−))

f(1)− f(g(y0))
(15)

Assuming y0 < 1, y− < 1 (some social distancing necessary)

r2
r1

=
f(1)− f(1− y1/α0 )

f(1− y1/α0 )− f(1− y1/α− )
∗ f(1− y0)− f(1− y−)

f(1)− f(1− y0)
(16)

Setting the cost function f(x) = x

r2
r1

=
y
1/α
0

y
1/α
− − y1/α0

∗ y− − y0
y0

(17)

Define ∆y = y− − y0

r2
r1

=
y

1
α−1
0 ∗∆y

y
1/α
− − y1/α0

(18)

Using the Taylor expansion to replace y
1/α
− − y1/α0 with 1

α ∗ y
1
α−1
0 ∗∆y:

r2
r1
≈ y

1
α−1
0 ∗∆y

1
α ∗ y

1
α−1
0 ∗∆y

(19)

r2
r1
≈ α (20)

C Imported Cases and Stochasticity

For regions where imported cases make up a significant fraction of total cases,
policy makers should consider the modified dynamics when choosing Rtarget.
Imported cases act as a forcing term, with the number of cases at a future
timepoint being the sum of locally obtained infections and imported infections.
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The mechanics of choosing a risk threshold do not change, but it is important
to highlight that Rtarget only determines a portion of future cases. A complete
solution must also consider the effect of border policies.

When the total number of cases is small, e.g. in a region with excellent
local control for which imported cases are the primary concern, discrete and
stochastic effects become important.

Quantitative models of tiny case count scenarios are challenging, because of
stochasticity in the length of time needed to return to elimination, combined
with curvature in the harms of shutdown as a function of its length. This is
further exacerbated by superspreader dynamics, i.e. the low over-dispersion pa-
rameter [21]. Modelling the number of secondary cases with a negative binomial
distribution with over-dispersion 0.1 and mean 2.5 yields a variance of 65. In
locations not aiming for local elimination, stochasticity averages out over time,
and expected values can be used. When local elimination is being attempted,
it would be useful to make use of discrete, stochastic models when choosing
Rtarget, e.g. to calculate the probability distribution of time to elimination and
the expected damage from shutdowns of different severity. With the choice of
Rtarget set, the previous arguments mostly still hold (although some considera-
tion may be given to the difference in variance in transmissions based on broad
vs. targeted distancing).

If local elimination has already been achieved, then a still more complicated
case is to consider the risk of an outbreak from an imported case, the time delay
and growth in the outbreak before it is noticed, and the subsequent shutdowns
needed to re-achieve local elimination and thus relax general social distancing. It
is likely that the considerable costs of such an outbreak warrant strict quarantine
for incoming individuals. A robust testing and contact tracing system capable
of quickly containing any new outbreak is also key.

D Long-term R′t

In Section 3, the relationship between broad social distancing and targeted
quarantine/isolation was presented with Rtarget constrained at an instant in
time. In this section, we show that the same relationship holds when averaged
over time, even including stochastic effects, time delays, and uncertainty about
system state. To make this argument, we assume that for a certain region and
time frame, the virus is neither eliminated nor infects the entire population,
and that control measures are relatively stable. In this situation, the product
of R′t over time must be within a few orders of magnitude of 1, so we assume

that 1 ≈ (
Dinf (tN )
Dinf (t1)

)1/N . N denotes the number of serial intervals considered

and Dinf (t) gives the number of daily infections at a certain time. Replacing
Dinf (tN )
Dinf (t1)

with the product of R over time gives:
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1 ≈ (
Dinf (tN )

Dinf (t1)
)1/N ≈ (

∏
n

(R′t(tn)))1/N = (
∏
n

(Rt(tn)∗(1−D(tn))∗I(tn)−Qi(tn)

I(tn)
))1/N

(21)

0 ≈ mean(log(Rt(t))) +mean(log(1−D(t))) +mean(log(
I(t)−Qi(t)

I(t)
)) (22)

Assuming control measures don’t change drastically over time, we replace
the mean of the log with the log of the mean:

0 ≈ log(mean(Rt(t)))+ log(meant(1−D(t)))+ log(meant(
I(t)−Qi(t)

I(t)
)) (23)

1 ≈ mean(Rt(t)) ∗mean(1−D(t)) ∗mean(
I(t)−Qi(t)

I(t)
) (24)

This is equivalent to Equation 1 with R′t set to 1, showing that by averaging
over time, the requirements for precise knowledge and control of system state
can be relaxed.
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