Abstract
SARS-CoV-2 transmission continues to evolve in the United States following the large second wave in the Summer. Understanding how location-specific variations in non-pharmaceutical epidemic control policies and behaviors contributed to disease transmission will be key for designing effective strategies to avoid future resurgences. We offer a statistical analysis of the relative effectiveness of the timing of both official stay-at-home orders and population mobility reductions, offering a distinct (but complementary) dimension of evidence gleaned from more traditional mechanistic models of epidemic dynamics. Specifically, we use a Bayesian hierarchical model fit to county-level mortality data from the first wave of the pandemic from Jan 21 2020 through May 10 2020 to establish how timing of stay-at-home orders and population mobility changes impacted county-specific epidemic growth. We find that population mobility reductions generally preceded stay-at-home orders, and among 356 counties with a pronounced early local epidemic between January 21 and May 10 (representing 195 million people and 32,000 observed deaths), a 10 day delay in population mobility reduction would have added 16,149 (95% credible interval [CI] 9,517 24,381) deaths by Apr 20, whereas shifting mobility reductions 10 days earlier would have saved 13,571 (95% CI 8,449 16,930) lives. Analogous estimates attributable to the timing of explicit stay-at-home policies were less pronounced, suggesting that mobility changes were the clearer drivers of epidemic dynamics. Our results also suggest that the timing of mobility reductions and policies most impacted epidemic dynamics in larger, urban counties compared with smaller, rural ones. Overall, our results suggest that community behavioral changes had greater impact on curve flattening during the Spring wave compared with stay at home orders. Thus, community engagement and buy-in with precautionary policies may be more important for predicting transmission risk than explicit policies.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This work was partially funded by grants from the National Science Foundation, the National Institutes of Health, and by a gift from Tito's Handmade Vodka to the UT COVID-19 Modeling Consortium
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
No IRB exemption was sought or required as all data used in the analysis are publicly available.
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
Data on COVID-19 deaths were provided by the New York Times and are publicly available: https://github.com/nytimes/covid-19-data/ Data on social-distancing metrics were provided under a Data Use Agreement by SafeGraph and are available by contacting SafeGraph directly: https://www.safegraph.com/dashboard/covid19-shelter-in-place