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Abstract5

Susceptible-Infected-Recovered (SIR) models have long formed the basis for

exploring epidemiological dynamics in a range of contexts, including infectious

disease spread in human populations. Classic SIR models take a mean-field

assumption, such that a susceptible individual has an equal chance of catching

the disease from any infected individual in the population. In reality, spatial

and social structure will drive most instances of disease transmission. Here we

explore the impacts of including spatial structure in a simple SIR model. In

particular we assume individuals live on a square lattice and that contacts can

be ’local’ (neighour-to-neighbour) or ’global’ or a mix of the two. We combine

an approximate mathematical model (using a pair approximation) and

stochastic simulations to consider the impact of increasingly local interactions

on the epidemic. We find that there is a strongly non-linear response, with

small degrees of local interaction having little impact, but epidemics with

susbtantially lower and later epidemics once interactions are predominantly

local. We also show how intervention strategies to impose local interactions on

a population must be introduced early if significant impacts are to be seen.

1. Introduction6

The classic Susceptible-Infected-Recovered (SIR) model has long been used to7

model the spread of infectious disease in human, animal and plant populations8

(Kermack and McKendrick, 1927; Anderson and May, 1979). More recently it9

has formed a central pillar of much of the modelling of the Covid-19 pandemic10
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(Ferguson et al, 2020; Kucharski et al, 2020; Firth et al, 2020). In its standard11

form, the SIR model has a mean-field assumption, such that individuals in the12

population have purely random, ‘global’ interactions (Boots and Sasaki, 2000)13

and there is no spatial structure. In reality, individuals in a population are14

more likely to contract disease from infected individuals who are closer to15

them, both physically and socially. Incorporating this spatial structure into16

mathematical models is extremely challenging. In some cases, large datasets of17

known contact networks have been used to replicate epidemics to excellent18

effect (Ferguson et al, 2020; Firth et al, 2020). While such models have a high19

degree of realism and thus predictive power, they cannot be readily modelled20

by a simple set of equations and require significant computational exploration21

to capture possible outcomes and feedbacks.22

One common approach to incorporating a degree of regular spatial structure,23

and particularly ‘local’ near-neighbour interactions, in to infectious disease24

models is to use a lattice-based probabilistic cellular automata (Sato et al,25

1994; Rand et al, 1995). These stochastic individual-based models have also26

been combined with an analytic pair-approximation method (Matsuda et al,27

1992; Sato et al, 1994), where the full spatial dynamics are approximated by a28

set of ordinary differential equations based on the classic SIR model. Such29

models have been applied to infectious disease systems both with (Keeling30

et al, 1997; Webb et al, 2007a,b; Best et al, 2012) and without (Keeling, 1999;31

Sharkey, 2008) demography. These have found that local interactions reduce32

the value of R0, slowing or even preventing an epidemic that would occur33

when interactions are global (Keeling, 1999). These approaches largely insist34

on a strict degree of spatial structure, where infection and/or host35

reproduction can only be through near-neighbour interactions. While this is36

useful for comparison with the mean-field case, interactions are unlikely to be37

entirely local or global in reality, and we may be missing important features of38

systems where the interaction structure lies between these two extremes.39

The ability to move between local, near-neighbour interactions and global,40

2

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 28, 2020. ; https://doi.org/10.1101/2020.11.24.20237651doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.24.20237651
http://creativecommons.org/licenses/by-nc-nd/4.0/


mean-field interactions has been considered in a few spatial models of41

infectious disease, primarily in evolutionary (Boots and Sasaki, 1999, 2000;42

Kamo et al, 2007; Best et al, 2011; Débarre et al, 2012) and ecological (Ellner,43

2001; Webb et al, 2007a) contexts. This multiscale method is commonly44

achieved by allowing a proportion of transmission and/or reproduction to45

occur locally and the rest globally. We might interpret this, for example in a46

human population, as an individual mostly interacting within their household47

or community (local interactions), but also travelling some distance for work,48

holidays or visiting friends or family (global interactions). These studies have49

shown that there is increased potential for ecological cycles and disease-driven50

extinction as interactions become predominantly local (Webb et al, 2007a),51

while evolutionary selection is generally towards lower levels of infection in52

both host and parasite as interactions become more local (Boots and Sasaki,53

1999; Best et al, 2011), but not necessarily monotonically (Kamo et al, 2007).54

Most recently, this multiscale method has been applied to a human55

epidemiology model with equal births and deaths (Maltz and Fabricius, 2016),56

showing that pronounced (but damped) oscillations in infection may result57

after a sudden shift to local interactions. However, this simple mechanism to58

investigate the impacts of varying the degree spatial structure has yet to be59

applied to simple human epidemic models over short-term scales such that60

demography does not impact the dynamics.61

In this study we present a combination of a stochastic individual-based model62

and a pair approximation of epidemics on a lattice. We explore how changing63

the proportion of local-to-global interactions alters the course of an epidemic64

and investigate whether increasing the degree of local interactions - which we65

may define as restrictions on movement - can lessen the impact of an epidemic.66

2. Model67

2.1. Mean-field model68

The underlying dynamics of the model are based on the classic69

Susceptible-Infected-Recovered (SIR) epidemiological framework (Kermack70
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and McKendrick, 1927), with no demographic processes (births/deaths). We71

first consider the model under a mean-field assumption with no local72

interactions. All individuals in the population are either susceptible (S),73

infected (I) or recovered (R). The total population size N = S + I +R is74

constant (assume N = 1 for consistency with what follows), meaning we only75

need to track the dynamcis of S and I densities, given by the following76

ordinary differential equations,77

dS

dt
= −βSI

dI

dt
= βSI − γI.

Transmission is assumed to be density-dependent with coefficient β, while78

recovery occurs at rate γ and immunity is assumed to be permanent.79

2.2. Pair-approximation model80

To account for spatial structure and local transmission, we use a81

pair-approximation model (Matsuda et al, 1992). Assume individuals live on a82

square lattice, where each site is always occupied by one susceptible, infected83

or recovered individual. We define the probability that a site is occupied by a84

susceptible individual as PS , an infected individual as PI and a recovered85

individual as PR. The dynamics of these ’singlet’ densities mirror those of the86

mean-field model above, with the following ordinary differential equations,87

dPS

dt
= −β

[
LqS/I + (1− L)PS

]
PI (1)

dPI

dt
= β

[
LqS/I + (1− L)PS

]
PI − γPI (2)

with PR = 1− PS − PI . Here we have introduced our key parameter, L, which88

determines the proportion of transmsision that occurs ’locally’ between89

neighbouring individuals, with the remainder of transmission (1−L) occurring90

’globally’ between random individuals on the lattice. This corrersponds to91

individuals’ interactions being predomiantly local (with their near neighbours)92
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or global (randomly across the population). The conditional probability, called93

the ’environs density’, that an infected individual has a neighbour that is94

susceptible is denoted qS/I = PSI/PI . Therefore there are two routes to95

transmission:96

• global: (1− L)βPSPI97

• local: LβqS/IPI .98

This system of equations is not closed, since to calculate the conditional99

probabilities we need to know the ’pair’ density, PSI , e.g. the probability that100

a randomly chosen pair of neighbouring sites are a susceptible and an infected.101

The dynamics of these pair densities are governed by an additional set of102

ordinary differential equations,103

dPSS

dt
= −2β(L(3/4)qI/SS + (1− L)PI)PSS (3)

dPSI

dt
= −β(L((1/4) + (3/4)qI/SI) + (1− L)PI)PSI − γPSI (4)

+ β(L(3/4)qI/SS + (1− L)PI)PSS

dPSR

dt
= −β(L(3/4)qI/SR + (1− L)PI)PSR + γPSI (5)

dPII

dt
= −2γPII + 2β(L((1/4) + (3/4)qI/SI + (1− L)PI)PSI (6)

dPIR

dt
= −γPIR + β(L(3/4)qI/SR + (1− L)PI)PSR + γPII , (7)

and PRR = 1− PSS − PII − 2PSI − 2PSR − 2PIR. Again, this system of104

equations is not closed as we have further conditional probabilities that105

depend on ’triplets’ (e.g. qI/SI = PSII/PSI). One can appreciate that this106

pattern will continue and that the equations will never form a closed system.107

We thus apply a ’pair approximation’ (Matsuda et al, 1992) where we assume108

that, for example, qI/SI = qI/S , allowing us to close the system.109

2.3. Basic reproductive ratio110

The basic reproducive ratio, R0, is the well-known quantity that measures the111

average number of secondary infections caused by an infected individual in an112
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otherwise disease-free population (Anderson and May, 1981). For the113

mean-field (global) case where L = 0, this is simply given by R0 = β/γ. When114

interactions are fully local with L = 1, we have R0,l = βqS/I/γ. In the limit115

where the population is indeed entirely disease-free, the environs density116

qS/I = PS = 1, and the two basic reproductive ratios will be equal. However,117

in the early stages of an epidemic the environs density qS/I rapidly shrinks as118

the contact network is formed, meaning it quickly becomes that R0,l < R0,119

leading to a slower epidemic (Matsuda et al, 1992; Keeling, 1999). Given the120

total reproductive ratio will be,121

R0,t = LR0,l + (1− L)R0 (8)

it is clear that the initial growth rate of an epidemic will be slower the greater122

the degree of local interactions.123

2.4. Stochastic simulations124

Alongside these mathematical models we additionally conduct stochastic125

individual-based simulations using a probabilistic cellular automata. Similarly126

to the model described above, a lattice of sites is established, now of fixed size,127

where each site is again occupied by one individual. A Gillespie algorithm128

(Gillespie, 1977) is implemented for tau-leaping between events of recovery129

and transmission (local or global). At each step, exactly one of these events130

occurs, with probabilities proportional to their rates, and a suitable host is131

chosen randomly from the lattice for it to occur to (e.g. recovery requires an132

infected host to be selected). After an event occurs, the lattice is updated and133

a new tau-leap calculated for the next event. This approach is fully spatially134

explicit, unlike the approximation present in the mathematical methods above.135

Code for the models are provided as electronic supplementary material.136
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(a) (b) (c)

Figure 1: Epidemic curves from pair approximations and the ’most central’ 50% of 100 stochas-
tic simulations for different values of L. γ = 1/14. (a) R0 = 2, (b) R0 = 5, (c) R0 = 10.

3. Results137

3.1. Epidemic curves138

We begin by examining the epidemic curves predicted by the pair139

approximation and stochastic simulations for different values of L (0.1 and140

0.9) and different mean-field basic reproductive ratios, R0 (2, 5 and 10).141

Recent work has highlighted the pitfalls of combining mutliple stochastic142

individual-based models into simple static statsitics of means and variances143

(Juul et al, 2020). We follow the methods of Juul et al (2020) by finding the144

’most central’ 50% of 100 simulated curves to present here (see appendix for145

details).146

Focussing on the effect of increasing the proportion of local interactions, from147

figure 1 it is clear viusally that the higher value of L produces a lower and148

later peak of infection. Restricting global interactions may therefore, in itself149

(without further reductions to transmission probability), slow down and limit150

the spread of an epidemic. Increasing R0 not only moves the epidemics earlier151

and higher, but also reduces the effect of local interactions. Comparing the152

plots, we can see that control mechanisms that both shift interactions from153

predominatly global to predominatly local and reduce R0 (for example,154

through both movement restrictions and ‘social distancing’ and hygiene155

measures) are predicted to have a signfiicant effect on reducing the epidemic.156
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We can also compare the fit of the pair-approximation to the stochastic157

models. As we might expect, when L is small the pair approximation appears158

to present a reasonable ‘average’ of the stochastic model runs. As L becomes159

larger we find that, while the pair approximation often sits within the most160

central runs, for larger R0 at least, it tends to predict that the epidemic peak161

is rather earlier and higher than seen in most of the fully spatially-explicit162

model runs. The discrepancy between the pair approximation and stochastic163

simulations is most pronounced at low values of R0. In particular, in this case164

a number of the stochastic simulations produce ‘failed’ epidemics, as evidenced165

by the lower bound of the 50% central curves running close to 0. In the online166

appendix we show that for L = 1 and R0 = 2 around 30% of stochastic167

simulations do not result in an epidemic.168

3.2. Descriptive statistics169

We now explore the behaviour as we vary local interactions across the full170

range of L from 0 (fully global) to 1 (fully local). Five descriptive statistics171

were evaluated, with three presented here (percentage of the population172

infected by day 300, percentage of the population infected at the peak and the173

day of the peak) with two further statistics in the online appendix (days till174

less than 1% of the population were infected and days with greater than 15%175

of the population infected). In order to take results from the individual-based176

simulations, 100 runs of the model were created and the mean and variance of177

the aforementioned statistics were taken.178

Two clear trends emerge from all of the results. Firstly, the impact of local179

interactions is significantly reduced the higher R0 is. For every statistic180

investigated, varying the value of L has little effect on the plots for R0 = 10.181

Secondly, there is an accelerating impact of local interactions, with little effect182

seen as L is first increased from 0, but the impact growing as L moves towards183

1. Both effects are clear when plotting the percentage of the population184

infected by day 300 (broadly, the total infected during an epidemic in this185

case) in figure 2(a)-(c). When R0 = 2, there is a slow decrease in the186

8

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 28, 2020. ; https://doi.org/10.1101/2020.11.24.20237651doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.24.20237651
http://creativecommons.org/licenses/by-nc-nd/4.0/


(a) (b) (c)

(d) (e) (f )

(g) (h) (i)

%
 in

fe
ct

ed
 b

y 
da

y 
30

0
%

 in
fe

ct
ed

 b
y 

da
y 

30
0

%
 in

fe
ct

ed
 b

y 
da

y 
30

0
%

 in
fe

ct
ed

 a
t p

ea
k

D
ay

 o
f p

ea
k

Figure 2: Descriptive statistics of PA and stochastic simulations. (a)-(c) Percentage of popu-
lation infected by day 300. (d)-(f) Percentage infected at peak. (g)-(i) Day of peak.

percentage infected for 0 < L < 0.6, but once L is greater than this there is a187

large accelerating decrease in the number of individuals infected during the188

epidemic. However for larger values of R0, there is a smaller decrease which189

doesn’t happen until L is almost 1. A similar pattern can be seen in plots190

(d)-(f): increasing L initially causes little change in the proportion infected at191

the peak of the epidemic, but then decreases more rapidly as L approaches 1,192

but this is less evident the higher R0 is.193

Figure 2(g)-(i) shows that the number of days until the peak increases with L,194

again accelerating as L increases. There is an exception to this when R0 = 2195

as L approaches 1. Here, the peak moves significantly earlier because the196

infection fails to spread through the population meaning the peak of the197

epidemic is both very early on and very low, as confirmed in figure 2a.198

Obviously, the larger R0 is, the faster the disease will be able to spread199

9

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 28, 2020. ; https://doi.org/10.1101/2020.11.24.20237651doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.24.20237651
http://creativecommons.org/licenses/by-nc-nd/4.0/


through the population and therefore the faster it will die out (with no200

susceptible individuals left to infect).201

In general, the pair approximation appears to be a good fit to the results from202

the stochastic model and is almost always within a standard deviation of the203

mean, but this fit appears to be least good as L approaches 1. The pair204

approximation is less accurate for R0 = 2 than for higher values of R0, and205

this is likely due to the large proportion of infections which fail to become206

established in the stochastic model when the disease spreads slowly, resulting207

in a lower mean and larger standard deviation, as described in the online208

appendix.209

3.3. Using local interactions as a control mechanism210

We now explore how enforcing movement restrictions, resulting in more211

localised interactions, might impact the spread of an epidemic. We assume212

that initially a population has predominantly global interactions (L = 0.1).213

We then assume that when a threshold of percentage infected (here, 5%) is214

reached, interactions immediately switch to being predominantly local215

(L = 0.9) and remain so until the infected percentage returns below the216

threshold. Figure 3 shows that compared to the case where interactions217

remain predominantly global throughout (red), if movement restrictions are218

imposed (blue) the peak of the epidemic is reduced, but less substantially than219

if interactions had always been predmoniantly local, particularly for the lower220

R0 (see figure 1 and table 1). Interestingly, we also see a second wave221

emerging for lower R0 once restrictions are lifted since the herd-immunity222

threshold has not been reached, suggesting further and/or longer restrictions223

may need to be imposed.224

We further investigate by varying the threshold at which restrictions are225

imposed and the value of L moved to under the restrictions (figure 4).226

Changing the bound at which L increases seems to have relatively little effect227

on the course of the epidemic, with there being little change in the the number228
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(a) (b)

Figure 3: Epidemic curve with (a) R0 = 2 and (b) R0 = 5. Red curves, L = 0.1 throughout.
Blue curves: L = 0.1 until PI > 0.05, then L = 0.9 while PI > 0.05, dropping back to L = 0.1
thereafter.

Interaction R0 = 2 R0 = 5
L = 0.1 constant 15.8% 48.0%
L = 0.9 constant 4.0% 35.3%
L Varying 7.6% 36.6%

Table 1: Peak infections from PA for different levels of local interactions

of people infected, but a modest decrease in the peak and a somewhat later229

peak for lower thresholds. When varying L, again there is little change in the230

total proportion infected, a modest decrease in the peak for higher restrictions231

but almost no change to the peak day. The variance in the results from the232

stochastic simulations is large, suggesting that it may be more difficult to233

predict the outcome of a disease once restrictions on global interactions are234

implemented, but the mean of these results is close to the pair approximation.235

When the higher L = 1, the PA results change dramatically, due to the236

emergence of the second peak. As the higher L increases towards 0.9, it can be237

seen that the impact of the epidemic is mitigated, with the biggest change238

seen in the peak infected proportion of the population almost halving from239

L = 0.1 to L = 0.9.240

This relative lack of impact is because of the speed with which the lattice

becomes correlated in the early stages of an epidemic. The correlation between

11
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Figure 4: Impact of changing (a) the threshold at which interactions switch from L = 0.1 to
L = 0.9 and (b) the degree of movement restrictions.

12
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Figure 5: Correlation coefficient, CSI , from pair approximation for different values of L. Left:
Predicted quasi-equilibrium, ĈSI from equation (10). Right: Early-time correlation dynamics
CSI from full pair-approximation model. The vertical line marks where the quasi-equilibrium
is reached when L = 0.1.

S and I sites on the lattice is given by,

CSI =
PSI

PSPI
=
qS/I

PS
. (9)

At the start of an epidemic with predominantly global interactions then the

lattice is uncorrelated and CSI = 1. During the early stages, the correlation

rapidly approaches a quasi-equilibrium as the contact network forms (Keeling,

1999), which we show in the appendix can be approximated as,

ĈSI =
3L− 2 +

√
−7L2 + 4L+ 4

4L
. (10)

Figure 5 shows that increasing L leads to much stronger early-time S-I241

correlation, due to increasingly spatially-localised contact networks. If an242

epidemic begins in a population with predominatly local interactions, the243

lattice quickly becomes correlated, qS/I falls and the infection slows itself244

down due to a lack of locally available susceptible individuals. In contrast, if245

an epidemic has established with predominatly global interactions, the246

network is already highly uncorrelated before the movement restrictions are247

imposed. The late implementation of local interactions therefore cannot cause248

high correlation of the lattice, and a large number of local epidemics can still249

occur.250
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4. Discussion251

In this study we have used a pair approximation alongside stochastic252

simulations to investigate the impact of local interactions on an epidemic. Our253

results show that epidemics where interactions are predominantly local will254

result in fewer infections spread over a longer period of time than those where255

interactions are global, in line with previous studies (Keeling, 1999).256

Importantly, we find that the trends as we move from purely global to purely257

local interactions are not linear. Instead, our results consistenly show initially258

flat responses in various infection statistics as L is increased, with rapid259

changes as L approaches 1. This suggests that the course of an epidemic in a260

population with relatively high proportions of local interactions (even 50:50)261

will be roughly the same as an epidemic in a population with purely global262

interactions. Even at relatively low proportions of global interactions, enough263

long-range infections can occur in the early stages of an epidemic to seed large264

numbers of local epidemics, allowing the infection to spread throughout the265

population. For example, if R0 = 2 and L = 0.5, on average an infected266

individual passes the disease to one local and one global contact, allowing the267

disease to become established across the lattice and to then form a series of268

outbreaks. It is only as L becomes close to 1 and almost all interactions are269

local that the likelihood that an infected individual transmits the disease270

globally is small enough to have a significant impact. Interestingly, in the271

similar model by Maltz and Fabricius (2016) that includes simple272

demographics (and thus yields an endemic equilbrium), the infected273

equilibrium is initially fairly static as interactions become more local before274

rapidly falling as local interactions become more dominant, suggesting this275

non-linear trend is robust in simple epidemic models.276

Our results have important implications for attempting to limit an epidemic277

through restricting movement. In particular, such restrictions must be278

considerable, with almost all global interactions removed, if significant effects279

are to be seen. It is important to note that in our model restricting movement280
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does not lead to lowered per-individual contacts, as might be assumed under281

’lockdown’ scenarios (for example due to social distancing, regular282

hand-washing, wearing masks, etc). We found that restrictions that both make283

interactions more local and infectious contacts less frequent (through lowered284

R0) can substantially reduce the impact of an epidemic. Moreover, we found285

that if the population starts from a position of having predomninantly global286

interactions, movement restrictions must be imposed very early on in the287

course of an epidemic or they will have minimal effect. This is due to the fact288

that, if a disease has already begun to spread randomly through a population289

with global contacts, when restrictions are put in place there will already be290

large numbers of local outbreaks forming across the lattice. If an infection has291

a particularly high R0, and therefore rapid growth, it may be that infection is292

already too widespread for movement restrictions to take effect by the time293

public health officials realise an epidemic has begun. In this study we assumed294

a simple switch such that interactions returned to the default after the295

infected proportion fell back below the threshold. More realistic approaches296

might be to gradually ease restrictions or enact further restrictions in cases297

where a ”2nd wave” emerges. In the similar study by Maltz and Fabricius298

(2016), they found a simple switch to a different proportion of local299

interactions led to pronounced (damped) oscillations and significant periodic300

outbreaks as the system was effectively moved such that it was no longer at its301

steady state. Further investigation in to the use of movement restrictions as a302

control mechanism is needed to explore the best strategies.303

Combining mathematical analysis, using the pair approximation (Matsuda304

et al, 1992; Sato et al, 1994), and stochastic simulations has allowed us to305

explore the dynamics of our model in depth. Interestingly we found that the306

deterministic results from the pair approximation model provide a good307

’average’ of the dynamics from fully-spatial stochastic simulations. The308

weakest ’fits’ were for low values of R0, where a proportion of simulations lead309

to failed epidemics, whereas the analytical model always assumes an outbreak310
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occurs. Given the problems in accurately depicting ’averages’ of stochastic311

simulations (Juul et al, 2020), such analytic approximations may provide a312

useful guide.313

We have deliberately focussed on the simplest possible epidemic model in this314

study, with the only two mechanisms being transmission and recovery. This315

has allowed us to draw clear conclusions and insight in to the behaviour of the316

model, but it clearly cannot and should not be used as an accurate predictive317

model for a particular epidemic. In an earlier study, Maltz and Fabricius318

(2016) considered the same model with simple demographics, finding that the319

infected equilibrium reduces with more local contacts, while (Webb et al,320

2007a) examined the impact of varying local interactions on a fully ecological321

model, noting the potential for disease-induced extinctions and endemic cycles322

of disease. Clearly, however, there are many further elements that could be323

considered to make the model appropriate for specific infections or systems. A324

standard extension for many disease models is to add an exposed325

compartment, separating out those that are infected from those that are also326

infectious (see Keeling and Rohani, 2008). It may also be instructive to327

consider the dynamics if immunity to infection wanes over time, since the328

non-spatial model would then yield an endemic equilibrium, unlike our model.329

If we wish to consider a disease persisting over the long-term, we should not330

only add demographics but also consider seasonal-forcing (Aron and Schartz,331

1984; Schwartz, 1985; Altizer et al, 2006). Finally, more realistic spatial and332

social networks would be needed for any conclusions around333

movement/interaction restrictions in specific circumstances to be considered,334

such as in recent models of Covid-19 in the UK (Ferguson et al, 2020;335

Kucharski et al, 2020; Firth et al, 2020). As it is, our model suggests that336

significant movement restrictions may be a useful strategy in tackling an337

epidemic.338
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