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ABSTRACT

We report a new approach using artificial intelligence to study and classify the severity of COVID-19 using 1208
chest X-rays (CXRs) of 396 COVID-19 patients obtained through the course of disease at Emory Healthcare
affiliated hospitals (Atlanta, GA, USA). Using a two-stage transfer learning technique to train a convolutional
neural network (CNN), we show that the algorithm is able to classify four classes of disease severity (normal, mild,
moderate, and severe) with average area under curve (AUC) of 0.93. In addition, we show that the outputs of
different layers of the CNN under dominant filters provide valuable insight about the subtle patterns in the CXRs,
which can improve the accuracy in the reading of CXRs by a radiologist. Finally, we show that our approach can
be used for studying the disease progression in single patients and its influencing factors. The results suggest
that our technique can form the foundation of a more concrete clinical model to predict the evolution of COVID-19
severity and the efficacy of different treatments for each patient through using CXRs and clinical data in early
stages. This will be essential in dealing with the upcoming waves of COVID-19 and optimizing resource allocation
and treatment.

Keywords: deep learning, interpretable models, dimen-
sionality reduction, X-ray, COVID-19, severity analysis,
monitoring progression

1 Introduction

COVID-19 was declared a global health emergency by
the World Health Organization in January of 2020, and
governments have put unprecedented measures to halt
the transmission of the virus [1]. However, the healthcare
systems are still struggling with the massive influx of
patients. The virus mostly emerges with mild or no
symptoms in the early stages. However, it can rapidly
cause pneumonia and lung opacity in patients resulting
in a fatality or long-term damages to the lung [2–4].
This emphasizes the importance of timely diagnosis and
evaluation of the severity degree and other features of
the disease to optimize resource allocation for extensive
treatments such as intensive care unit (ICU).

From the beginning of the pandemic, researchers
started to develop different platforms and test kits for di-
agnosis of COVID-19. Prior to the availability of reverse-
transcription polymerase-chain-reaction (RT-PCR) tests,
chest X-rays (CXRs) and computed tomography (CT)

scans were used to diagnose COVID-19 [5, 6]. Chest
imaging, CT in particular, shows a characteristic man-
ifestation of COVID-19, even in patients with limited
symptoms. However, this use of CT places a consid-
erable burden on radiology departments and poses an
immense challenge for infection control. There have
also been many cases with positive COVID-19 without
any pulmonary manifestations [7]. The significant ef-
forts and advances to foster the development of cheaper,
more accurate, faster, and easier-to-use test kits and the
aforementioned reasons raise questions about using med-
ical imaging as a tool for detecting the disease. Instead,
these modalities can play a crucial role in determining
the severity degree of the disease and understanding the
dynamics of its development from mild to severe in dif-
ferent patients as well as predicting its evolution and
assessing the efficacy of different treatments[2, 3, 8–14],
which are not feasible in RT-PCR and other laboratory
test kits.

Predicting the severity degree of COVID-19 and its
impacts on the lung are of great importance, enabling
monitoring the progress of the disease over time and
helping resource allocation in hospitals [15–17]. Several
studies have shown that the severity classification and
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Figure 1. Workflow of COVID-19 severity assessment and prognosis model. The input CXR is fed into the
CNN and will be processed by the network to extract the features and classify the severity degree of the disease. At
each layer, the outputs of the most dominant CNN layers will be extracted and visualized using a pruning approach
to understand the decision-making process. To monitor the progress of the disease, we reduce the dimensionality of
the last fully connected layer using UMAP and use the Gaussian Mixture Model (GMM) to cluster the space into
different severity regions. For series of input CXRs of a patient, we can visualize and monitor the progress of the
disease over time.

severity progression of COVID-19 are highly related
to ICU admission, length of hospital stay, and optimal
planning of follow-ups [6, 8, 10, 12, 14]. Despite being
less sensitive than chest CT for diagnosis of COVID-19-
related pneumonia, especially in the early phases of the
disease, CXRs are often being utilized in the first-line
assessment of patients due to their affordability and ac-
cessibility. In its recent guideline, the American College
of Radiography (ACR) recommends portable CXR in
ambulatory care facilities over CTs [18]. The British
Medical Journal (BMJ) Best Practice recommendations
for COVID-19 management also endorses the use of
CXR in all patients with suspected pneumonia [19]. A
retrospective study by Wong H.Y.F. et al. [4] on 64 pa-
tients with an RT-PCR-confirmed COVID-19 diagnosis
found that the most common COVID-19-related signs
on CXRs were consolidation (47%) and ground-glass

opacities (33%). These alterations mostly had a bilat-
eral, peripheral, lower zone distribution and were rarely
associated with pleural effusion. In their study, 69% of
patients had CXR abnormalities on the baseline X-ray,
and another 11% developed CXR alterations later on in
the study. As a result, CXR can be a very effective modal-
ity for monitoring the progression of the disease and its
effect on the pulmonary system. However, the increas-
ing number of patients and the large number of CXRs
burden an unprecedented workload on radiologists and
calls for automatic severity prediction and monitoring
systems more than any time.

Artificial intelligence (AI) may be a viable solution
for the automatic diagnosis and prognosis of COVID-
19 and unburdening physicians and radiologists of the
high workload. Recent studies in using AI for diagnosis
of the disease from CXRs and CT scans shows the ca-
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pabilities of these methods in providing automatic and
rapid diagnosis [20–26]. However, despite the unique
opportunities enabled by AI, most existing works focus
on classification and detection of COVID-19 [27–32],
rather than classifying the severity degree of the disease
[33–37] and providing intuition about its potential evo-
lution to enable a decision-making process, which can
also facilitate unprecedented knowledge discovery in
COVID-19. In this paper, we demonstrate an effective
AI approach for this important purpose.

While most of the reported works on CXR for di-
agnosis of COVID-19 use online datasets that might
combine CXRs from different sources and different set-
tings, in this study, we use an authentic dataset from
Emory Healthcare affiliated hospitals (Atlanta, GA,
USA), which is labeled by an expert radiologist (CNDC)
with 15+ years of experience. Here, we report an AI
model based on training a deep convolutional neural net-
work (CNN) for predicting the severity of COVID-19
using CXR images. We will also use interpretable mod-
els through dimensionality reduction and visualization
of the outputs of different layers of the trained CNN to
obtain valuable insight about the evolution of the dis-
ease as well as the decision-making process [38–43].
We show that our model can predict the severity de-
gree of pneumonia caused by COVID-19 from CXR
images with the area under the curve (AUC) of 0.97,
0.90, 0.90, and 0.95 for normal, mild, moderate, and se-
vere COVID-19 classes over an unseen test set. We will
also visualize the most important and dominant features
that the CNN extracts from CXR images at each layer of
the CNN by applying a pruning algorithm based on the
average percentage of zeros (APoZ) [44]. Finally, we
leverage the uniform manifold approximation and projec-
tion (UMAP) method [45] to form the low-dimensional
manifold of the input-output relation (i.e., X-ray images
to COVID-19 severity classes) to clearly monitor the
disease progression.

2 Results

2.1 Emory hospital COVID-19 X-ray dataset for
training and evaluation

In total, 1208 CXRs from 396 patients are used in this
study. CXRs are consecutive samples from patients who
had a clinically-performed positive COVID-19 RT-PCR
test during the same admission as their CXR imaging
at Emory-Healthcare-affiliated hospitals (Atlanta, GA,
USA). An expert cardiothoracic radiologist with 15+

Table 1. Patients cohort utilized in the study. All
the patients in this study are diagnosed with COVID-19
using RT-PCR test. CXRs for training and testing the
model are chosen randomly from 1208 CXRs.

Total Number of Patients 396

Total Number of CXRs 1208

CXRs Class Distribution

Normal 178 (14.7%)
Mild 506 (41.9%)
Moderate 384 (31.8%)
Severe 140 (11.6%)

Age Statistics

Min 18
Mean 63.10
Max >90
Standard Deviation 16.19

Gender Distribution in
CXRs

Male 640 (53%)
Female 568 (47%)

Gender Distribution in
Patients

Male 196 (49.5%)
Female 200 (50.5%)

years of experience in reading CXRs has labeled all
CXRs. These CXRs are blinded and randomized for
the classification of the disease severity and the reader
has had no insight into clinical data and/or outcomes.
The CXRs are classified into normal, mild, moderate,
and severe classes depending on the consolidation and
opacity degrees (see section 4 for more details about
the labeling process). The number of images are 178,
506, 384, and 140 for the normal, mild, moderate, and
severe classes, respectively (see Table 1). The dataset
includes 196 males and 200 females with an average age
of 63.1. We use 966 CXRs for training and keep the rest
for evaluating the performance of the model.

2.2 Deep-learning (DL)-based model for classi-
fying the severity of COVID-19

The CNN (shown in Fig. 1) is trained using 80% of the
CXRs through a two-stage transfer-learning algorithm
to assess the severity of COVID-19 for an input CXR
(see section 4 for details)[46, 47]. The receiver operating
characteristic curve (ROC) for the average performance
of the DL-based model over 10 unseen CXR test sets
(sampled from the dataset using the bootstrap method
[48, 49]) is shown in Fig. 2a. The average AUC over 10
test sets for normal, mild, moderate, and severe classes
are 0.97, 0.90, 0.90, and 0.95, respectively. The lower
AUC for mild and moderate classes in comparison with
normal and severe classes is in line with their larger over-
lap with other classes and the fairly subtle differences
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Figure 2. Model Performance. a The receiver operating characteristic (ROC) curves for normal, mild, moderate,
and severe classes and the micro- and macro-average ROCs. The solid lines show the means of ROCs over 10
independent test sets, sampled using the bootstrap method. The standard deviations for the ROCs are represented as
shadows with a similar color for each class. b Confusion matrix of the model for the test datasets. The values are
shown as the average performance of the model over 10 independent test sets (same as a) with the corresponding
standard deviations. The error in non-adjacent classes (e.g., normal vs. moderate) is zero for all classes (except for
severe vs. mild, which has a low error of 0.01).

between these categories (i.e., mild and moderate) and
surrounding categories (i.e., normal and severe). Based
on the confusion matrix of the model (Fig. 2b), the aver-
age recall (i.e., sensitivity) for normal, mild, moderate,
and severe classes is 0.83, 0.80, 0.68, and 0.65, respec-
tively. According to Fig. 2b, the misclassification rate
for non-adjacent classes (e.g., normal vs. moderate, se-
vere vs. normal, etc.) is zero with the exception of 0.01
for the severe vs. mild case, which is negligible. The
model specificity is 0.93, 0.81, 0.87, and 0.95 for the
normal, mild, moderate, and severe classes, respectively.
Similar to the AUC, the specificity of the model is lower
for intermediate classes (i.e., mild and moderate) due to
the reasons explained earlier.

2.3 Deep inside the layers of CNN
To assess the consistency of the results, we use the
Gradient-weighted Class Activation Mapping (Grad-
CAM) method for saliency map visualization of the input
CXRs [41]. Figures 3a-c show the original CXRs and
regions of interest (ROI) labeled by our expert radiolo-
gist for three images with mild, moderate, and severe

conditions; the corresponding saliency maps obtained
from the AI algorithms are shown in Figs. 3d-f. All of
the images have been classified correctly by our model,
and the probability of the true classes are 0.96, 0.67,
and 0.89, respectively. The saliency maps demonstrate
consistent activation in the regions that are affected by
COVID-19 pneumonia.

To understand the decision-making process in the
CNN and visualize the extracted features, we use a prun-
ing algorithm based on APoZ method to find the most
dominant filters in each convolutional layer of the CNN.
The outputs of the corresponding CNN layers under
these dominant filters are shown in Figs. 4a-p for an
input CXR of a patient with severe COVID-19 pneu-
monia. Comparing the filters to our expert radiologist’s
perspective of the traditional CXRs shows that each filter
highlights specific relevant parts of the CXRs similarly
to the radiologist’s workflow examination. The filters
from the first block of the CNN (Figs. 4a-c) focus more
on highlighting different parts of the image (e.g., lung
area, lower body part, etc.). In Figs. 4d-f, the filters high-
light different heterogeneities of the images. Depending

4/11

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted November 27, 2020. ; https://doi.org/10.1101/2020.11.24.20235887doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.24.20235887


a b c

d e f

Figure 3. CXRs and saliency maps for three patients chosen from the unseen test dataset. The CXRs and
affected areas for patients with a mild, b moderate, and c severe COVID-19 pneumonia (analyzed by our expert
radiologist). d-f The corresponding saliency maps for CXRs (found by our AI approach). The true class probability
for the images are 0.96, 0.67, 0.89, respectively. The saliency maps and regions of interest match well for all CXRs.

on the underlying anatomical structure, different parts of
the CXR will have more homogenous intensities, such as
the fat layers and the upper abdominal area. The aerated
parts show different types of heterogeneity, caused by
differences in air and fluid content. In these filters the
lung fields and projected ribs are highlighted, which can
help in understanding the COVID-19 disease, where we
see an increased heterogeneity in the intensities of the
lung fields, caused by pulmonary infiltrates. The deeper
layers of the CNN extract more complex and difficult-to-
interpret features (yet potentially more insightful) from
the CXRs, and the final layers localize the ROIs in the
image. It is clear that the large number of filters in our al-
gorithm provides a larger range of important features and
CXR areas that might offer new insights to radiologists
about the disease.

2.4 Manifold learning for better CXR image vi-
sualization and analysis

We reduce the dimensionality of the output of the penul-
timate layer in the CNN in Fig. 1 using UMAP to visu-
alize the distribution of the data in a two-dimensional
(2D) space, called the latent space, and compare differ-
ent COVID-19 severity classes (see Methods for details).

Next, we cluster the latent space using GMM into dif-
ferent severity regions. Fig. 5 shows the output of the
model and the regions of normal, mild, moderate, and
severe classes in green, blue, orange, and red colors. The
results shown in Fig. 5 support the robustness of our
model in classifying non-adjacent classes, as there is
no overlap between their corresponding regions in the
latent space. More importantly, this approach provides a
visualization tool for monitoring the progression of the
disease and studying the changes in the severity degree
of COVID-19 for a specific patient over time. Progres-
sions of the disease in consecutive follow-up visits for
two patients are shown in Fig. 5 with their correspond-
ing CXRs. Patient 1 is an Asian female with body mass
index (BMI) of 22.5, and is in their 70’s. As it is shown
in Fig. 5, the patient has normal CXR in the first visit
and the severity increases in the follow-ups and unfor-
tunately dies. The severity path and CXRs for patient
2 (African American female with BMI of 29.8, in their
60’s) are also shown in Fig. 5. This patient starts from
mild stage and as the disease progresses, the CXR shows
severe condition in the 5th follow-up and fortunately
starts recovering in the next visits.
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Figure 4. Deep inside the CNN. The representation of the dominant filters of CNN for an input CXR of a patient
with severe COVID-19 pneumonia. a-p Outputs of the different CNN layers (from the first to the last convolutional
layer) through the dominant filters. Each three filters correspond to one block of the CNN (see methods for details).
q The original input CXR for the patient. r Saliency map of the input CXR. s Affected regions labeled by our expert
radiologist.

3 Discussion

With the availability of the simpler, more reliable, and
faster RT-PCR test kits, the strength of AI approaches
must be utilized to provide early prognostication and
more subtle details about the disease than just the basic
detection. With pneumonia being a catastrophic feature
of COVID-19, there is an urgent need for better under-
standing the dynamics of the progression of the adverse
effects of COVID-19 on the lung. X-ray imaging can
play an important role in this endeavor as the first-line
imaging tool, which is an important part of the standard
protocols, requiring a low radiation dose, easy to dis-
infect, inexpensive, and widely available, especially in
low-income/rural areas and countries.

In this study, we developed an AI system to assess the
severity degree of COVID-19 pneumonia using CXRs
and monitor the progression. Figures 2, 3, and 5 clearly
show that our algorithm can learn to assess the severity
degree of COVID-19 similar to an expert radiologist.
Our algorithm can also provide more features than a
typical CXR using the outputs of the CNN layers under
dominant filters as shown in Fig. 4. Having these dif-
ferent views of a single CXR can help radiologists to

better evaluate the severity of the disease. The accura-
cies obtained for the severity classification (Fig. 2) are
good, especially knowing that the comparison is made
with the labeling of only one expert radiologist. Aside
from the actual classification accuracies, the separation
of different severity classes in Fig. 5 clearly shows that
our algorithm successfully distinguishes different classes
with maximum spatial distance in the latent space be-
tween the normal and severe classes. It is also trivial
why the errors in classifying mild and moderate classes
are higher than those in the other two. A valuable use
of the manifold-learning approach in Fig. 5 is the obser-
vation of the disease progression path for each patient.
Interestingly we see that these patients take two differ-
ent disease progression paths with different specifics.
Patient 2, initially worsens, showing increasing signs
of COVID-19-related pneumonia on sequential CXRs.
However, after day 5, the patient starts recovering, show-
ing improvement on CXRs and on day 20 is successfully
discharged without re-admission. Patient 1 does not
show this turning point and shows increasing disease
severity on the CXRs and unfortunately dies. Under-
standing such turning points based on available data and
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Figure 5. Latent space representation of the X-rays. The dimensionality of the penultimate layer of the network
is reduced using UMAP, and the resulting latent space is clustered into 4 regions corresponding to different severity
degrees using GMM. Green, blue, orange, and red are related to the normal, mild, moderate, and severe classes,
respectively. The datapoints for each class are shown as circles with the corresponding color. The progressions of
the disease over time for two patients are shown by the dashed blue and red paths in the latent space.

relating them to the influencing factors on the disease
progression are essential to create more insight into the
disease trajectory to enable intelligent prediction of the
disease evolution and assessment of treatment options
for specific patients early on.

Having more frequent CXRs for more patients will
enable the algorithm to relate the dynamics of disease
progression to the clinical data and treatment details.
Combined with other clinical data for a patient, CXRs
can provide valuable insight into the disease progression
over time and the patient’s response to treatments. This
can also help us to develop a more concrete model to
project at an early stage which patients might become in
need for more intensive treatment and which patients are
more likely to recover. AI approaches can use such data
to learn these dynamics and predict the course of disease
evolution for each patient. It can also be used to predict
the best treatment approach at each stage of the disease.

It is important to note that the applicability of our
AI approach for clinical data analysis is not limited to

COVID-19 and can be extended to a wide range of lung
diseases. Once the algorithm is trained to learn the pat-
terns of a disease through a series of training CXRs, the
outputs of the different CNN layers under dominant fil-
ters can identify subtle patterns in the imaging data (as
seen in Fig. 4 for CXRs) that can provide more detailed
information than a single image. This can improve the
accuracy of CXR reading by a radiologist. In a bigger
picture, our algorithm can be adopted and extended to
include other forms of imaging data for a wider range of
medical diagnosis.

4 Methods

4.1 COVID-19 dataset population and labeling
procedure

Patients included retrospectively for this study are se-
lected as a consecutive sample who had a clinically per-
formed positive COVID-19 RT-PCR test related to their
CXR imaging date at Emory Healthcare affiliated hospi-
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tals (Atlanta, GA, USA). The CXRs are collected from
January 1st, 2020 to May 1st, 2020, and the need for
informed consent is waived by the institutional review
board (IRB). Both in-patients and out-patients are in-
cluded. All CXRs during the entire hospital admission
of the patient are collected, ranging from 1–30 images.
CXRs are acquired in the posteroanterior (PA) or antero-
posterior (AP) projection according to standard clinical
protocols. Lateral X-rays were present for some patients,
however not used for the current study. Depending on
patient status, CXRs are taken with a portable X-ray unit
and in a supine, erect, or semi-erect position. All CXRs
have been labeled by an expert cardiothoracic radiolo-
gist with 15+ years of experience reading CXRs. All the
images are blinded and randomized for the qualification
of disease severity, and the reader had no insight into
clinical data and/or outcomes. The CXRs are classified
into normal, mild, moderate, and severe categories. This
is done based on clinical experience of the reader in
addition to the following guidelines:

Normal: no opacities and/or abnormalities, indicative
of pneumonia, are present.

Mild: less than 50% of the lung area is affected by
pneumonia-related abnormalities. Patchy (partly
peripheral) opacities are present in the lower and
mid lung zones

Moderate: approximately 50% of the lung area is af-
fected by pneumonia-related abnormalities. Opaci-
ties are present, often bilateral, in the mid and lower
zones.

Severe: more than 50% of the lung area is affected by
pneumonia-related abnormalities. Opacities are
dense, often bilateral, and can affect all lung zones
(lower, mid, and upper).

In addition to the images, basic demographics are col-
lected such as age (at the scan time), body-mass index
(BMI), and gender. All images are de-identified accord-
ing to Health Insurance Portability and Accountability
Act (HIPAA) and hospital-specific guidelines. Patients
with an age above 90 were noted as > 90. DICOM head-
ers are anonymized and only contain technique-related
information, such as information about position of the X-
ray (supine, semi-erect etc.) and whether it is a portable
X-ray machine or not; all patient-related data are re-
moved. Patients and imaging dates are coded to keep the

longitudinal information between CXRs from the same
patient. In addition, the date and time stamp, burned into
the CXRs, are removed.

4.2 DL-based severity classification model
We divide the dataset into 80% training and 20% test
sets per class and use the bootstrap sampling method
to create 10 different sets of training and test data to
independently train and evaluate the performance of the
model. Due to the limited number of CXRs, we use a
two-stage transfer-learning approach for training the DL-
based method for predicting the severity of COVID-19.
We first use the pre-trained convolutional layers of the
VGG-16 network for the classification task over the Ra-
diological Society of North America (RSNA) pneumonia
dataset that includes 25684 CXRs corresponding to nor-
mal, lung opacity, and other classes of lung pathologies
(e.g., pulmonary edema, atelectasis, lung cancer, etc.).
Then, we transfer the fine-tuned convolutional layers of
the network and add fully connected layers to the trans-
ferred network, trained by our CXRs, for classifying the
severity of COVID-19.

All the CXR images are resized to 224 × 224 and
preprocessed to scale the pixels between -1 and 1. We
use random rotations, horizontal and vertical shifts, ran-
dom shears, and random zooms to augment the training
set for better generalization. The network includes 13
convolutional layers (5 blocks of convolutional layers,
each one having 2, 2, 3, 3, and 3 convolutional layers,
respectively) transferred from VGG-16 [50] followed by
an average pooling layer, a flatten layer, a dense layer
of 256 neurons with the rectified linear unit (ReLU) ac-
tivation function and the output layer with 4 neurons
and softmax activation function. We use a categorical
cross-entropy loss function and 1.5, 2, 2, 3 as the cost of
error on each class (normal, mild, moderate, and severe,
respectively) to handle the unbalanced dataset.

To find the regions of interest for the CNN, we use
the Grad-CAM method. The output of our severity clas-
sification model will be the saliency map of the input
CXR and the class probabilities. Algorithms are imple-
mented in Python using the Keras package and trained
on a workstation with an NVIDIA RTX2080 GPU, a
Core i7 CPU, and 32 GB of RAM.

4.3 Filter representation model
To understand the role of convolutional layers in the
CNN and the details of the decision-making process, we
visualize the outputs of each layer of the CNN under
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different applied filters. We first find the most dominant
filters by applying the APoZ pruning method over the
training dataset. We keep 1% of the filters at each CNN
layer with highest average activity (i.e., `0-norm) over
the training set and visualize the corresponding outputs
of those CNN layers for any given input CXR.

4.4 Dimensionality reduction and latent space
representation model

The output of the penultimate layer (i.e., the last fully
connected layer before the output layer of the CNN) is
used for the latent space representation. We reduce the
dimensionality of the data from 256 to 2. The number
of neighbors in the UMAP algorithm are 5; the distance
measure is correlation; and the minimum distance is 0.3.
The UMAP is trained using the same training dataset
on which the CNN is trained; none of the test samples
are used during the training stage of the latent space
representation model. After reducing the dimension-
ality to 2, we train a GMM to cluster the latent space
into the regions for normal, mild, moderate, and severe
COVID-19 pneumonia. The number of Gaussians (i.e.
the constituents of the mixture in the GMM that model
the distribution of the data) is selected as 4, and the la-
bels are imposed as colors to specify the regions after
training.

Compliance
All the approaches and methods used the anonymized
and de-identified CXR data according to the guidelines
of Emory University and Georgia Tech and approved
by the IRB. All procedures followed HIPAA guidelines.
The Emory IRB approved the collection of this data and
waived the need of informed consent. The part of the
research that is performed at Georgia Tech was based on
totally de-identified data and the need for IRB is waived
by Georgia Tech IRB.
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