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Abstract 

Balancing the control of SARS-CoV-2 transmission with the resumption of travel is a global priority. 
Current recommendations include mitigation measures before, during, and after travel. Pre- and post-
travel strategies including symptom monitoring, testing, and quarantine can be combined in multiple 
ways considering different trade-offs in feasibility, adherence, effectiveness, cost and adverse 
consequences. Here we use a mathematical model to analyze the expected effectiveness of symptom 
monitoring, testing, and quarantine under different estimates of the infectious period, test-positivity 
relative to time of infection, and test sensitivity to reduce the risk of transmission from infected 
travelers during and after travel. If infection occurs 0-7 days prior to travel, immediate isolation 
following symptom onset prior to or during travel reduces risk of transmission while traveling by 26-
30%. Pre-departure testing can further reduce risk if testing is close to the time of departure. For 
example, testing on the day of departure can reduce risk while traveling by 37-61%. For transmission risk 
after travel with infection time up to 7 days prior to arrival at the destination, isolation based on 
symptom monitoring reduced introduction risk at the destination by 42-56%. A 14-day quarantine after 
arrival, without symptom monitoring or testing, can reduce risk by 97-100% on its own. However, a 
shorter quarantine of 7 days combined with symptom monitoring and a test on day 3-4 after arrival is 
also effective (95-99%) at reducing introduction risk and is less burdensome, which may improve 
adherence. To reduce the risk of introduction without quarantine, optimal test timing after arrival is 
close to the time of arrival; with effective quarantine after arrival, testing a few days later optimizes 
sensitivity to detect those infected immediately before or while traveling. These measures can 
complement recommendations such as social distancing, using masks, and hand hygiene, to further 
reduce risk during and after travel. 

Introduction 

 

Coronavirus disease 2019 (COVID-19) was first recognized in late December 2019. By March 2020, the 

virus causing COVID-19, SARS-CoV-2, had reached 6 continents and almost 70 countries. In response to 

the global COVID-19 outbreak, governments implemented a variety of mitigation measures including 

unprecedented social distancing measures, travel health alerts, and travel restrictions at national and 

sub-national levels [1,2]. These measures, as well as concern about exposures related to travel, led to 

major and prolonged reductions in air travel worldwide [3–7]. Spatiotemporally asynchronous waves of 

COVID-19 have led to dynamic risk and mitigation measures globally with an accompanying interest in 

identifying risk management steps for travel that can reduce the risk of transmission and address 

concerns of travelers, travel industry regulators, and public health authorities [8–10].  
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Initial policies for managing translocation of the virus from one destination to another relied on closing 

borders or restricting entry of travelers from countries with higher incidence rates [11,12].  Although 

these approaches may have reduced the importation of some cases and preserved resources, they came 

with enormous economic and individual impacts [13,14].  

For travelers, personal mitigation actions include wearing masks, social distancing at least 6 feet from 

others when possible, frequent hand washing or use of alcohol-based hand sanitizer, not touching their 

their face, and avoiding anyone who is sick. Governments, airlines, airports, and other businesses 

serving travelers have implemented or recommended measures to reduce the risk of COVID-19 

associated with air travel [15,16]. These measures have included enhanced disinfection procedures, 

employee health assessments, passenger health attestations, screening for fever, illness response 

protocols and other steps to reduce risk of transmission in airports and on conveyances [10,17]. 

Symptom-based screening at airports has proven ineffective because those measures miss mild, 

afebrile, asymptomatic, and pre-symptomatic SARS-CoV-2 infections [18–21]. Asymptomatic persons 

may account for 20% to 40% of SARS-CoV-2 infections and can transmit the virus to others [22–26], and 

epidemiological data indicate that infectiousness begins prior to symptom onset for those who do 

develop symptoms [27–31].  

In many destinations, arriving travelers, most of whom are asymptomatic with no specific known 
exposures, were asked to self-quarantine and reduce contacts as much as possible after arrival. The 
World Health Organization (WHO) defines quarantine as “the restriction of activities and/or separation 
from others of the suspect persons... who are not ill, in such a manner as to prevent the possible spread 
of infection” and indicates that quarantine may be considered for travelers based on risk assessment 
and local conditions. For known SARS-CoV-2 exposures, WHO recommends quarantine of 14 days based 
on the limit of the estimated incubation period for SARS-CoV-2 [32]. A 14-day quarantine alone, when 
effectively implemented and strictly adhered to, approaches 100% reduction in risk of transmission 
post-exposure [33,34]. However, travelers may have little incentive to consistently adhere to these 
measures at their destinations unless there is the ability to reliably communicate with them, support 
their needs, and enforce these measures. Monitoring and enforcing adherence to quarantine measures 
requires tremendous effort and resources by public health entities that may only be feasible in certain 
contexts.  
 
Inclusion of SARS-CoV-2 testing as a component of a multi-layered approach to risk-reduction is 
currently being implemented in various settings. Some businesses and educational institutions are 
incorporating SARS-CoV-2 screening strategies into their concepts of operations, sometimes including 
mandatory testing of employees and voluntary testing for customers [35–37]. While there is no current 
international standard for testing travelers, many countries and jurisdictions are requiring arriving 
travelers to be tested either prior to their departure or after arrival to identify infected persons who are 
asymptomatic so they can be isolated [38]. Current guidance or requirements vary from country to 
country, and from state to state within the United States, including the timing of the test prior to or 
after travel, the type of test used (viral antigen, viral RNA), and the use of negative test results to 
alleviate additional public health measures, such as quarantine, at the destination [39,40].  
 
Currently available SARS-CoV-2 tests for detecting active infections include nucleic acid amplification 
tests (NAAT), such as reverse transcription polymerase chain reaction (RT-PCR) tests, rapid isothermal 
NAATs (e.g., ID NOW™), and rapid antigen-based tests. Time to deliver results is hours to days for RT-
PCR and minutes to hours for rapid tests, which can also be processed without a specialized laboratory. 
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Rapid antigen tests for SARS-CoV-2 are currently authorized in the United States for suspected cases in 
the first 5-7 days of symptoms [41,42]. While rapid antigen tests have advantages over NAATs in terms 
of cost, simplicity and turn-around time, there are limited data on their efficacy in screening 
asymptomatic individuals.   
 
SARS-CoV-2 transmission risk related to travel can be viewed in two domains: transmission risk during 
travel (e.g., by infected travelers while at an airport or on aircraft) and after travel is completed (e.g., 
introduction of SARS-CoV-2 to the destination location). There is also overlap as transmission risk during 
travel can lead to new infections, which can increase post-travel risk. Data on strategies for reducing risk 
associated with travel are scant and there are many potential strategies (e.g., the optimal timing of pre-
departure or post-arrival testing or the combination of testing and post-arrival quarantine) [36,43–45]. 
Mathematical models have provided some insights to the potential impact of quarantine combined with 
testing [44,46]. Here, we build upon those models, considering uncertainty in infectious periods and 
different testing options to assess a suite of possible combined pre- and post-travel strategies to reduce 
transmission risk from infected travelers. 
 

Methods 

 

First, we characterized component processes related to transmission risk during infection: the relative 

infectiousness over the course of infection, the proportion of infections resulting in symptoms, the 

timing of symptom onset for those who have symptoms, and the probability of testing positive over the 

course of infection. 

We used three distinct models to characterize relative infectiousness over time (Fig. 1a). We used a 

Gamma density function to approximate a 10-day infectious period with peak infectiousness on day 5 

based on observations from numerous studies [47–51]. We also replicated a within-host infection model 

by Goyal et al. [52], which suggests that most people are infectious from days 3 to 7, with tapering 

afterwards. The final model characterizes simulated infectious periods from Clifford et al. [44], based on 

estimated latent periods (the delay between infection and becoming infectious) [47] and infectious 

periods [53]. The Goyal et al. and Clifford et al. infectiousness models were fitted by first simulating daily 

individual-level infectiousness profiles from the original code and then fitting density functions to the 

simulation data. 

We assumed that approximately 70% of all infections result in symptomatic COVID-19 cases [25]. For the 

incubation period, we used a meta-estimated median of 5 days with a Log-Normal distribution based on 

a meta-analysis by McAloon et al. [54]. 

For diagnostic testing, we used two models: one directly estimating positivity by RT-PCR and one 

approximating an antigen detection assay (Fig. 1b).  For the RT-PCR model, we used the model 

generated by Clifford et al. [44] based on data from Kucirka et al. [55]. To approximate an antigen 

detection assay, we used the Gamma distribution for infectiousness as formulated above and calibrated 

it to have peak sensitivity of 80% at peak infectiousness. To assess the impact of test sensitivity we also 

compared this to a 95% sensitivity version of the same model. 

We then constructed a model capturing these components to assess the impacts of testing, symptom 
monitoring, and quarantine. Infections resulting in travel-related risk could occur before or during a trip 
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and we use the infectiousness described above, ����, at time � relative to travel based on infection at 
time �, relative to travel (prior to travel is negative): 

���, �� � I�� 	 ��. 

Here, we assessed two transmission windows: Days 0-1 for risk during travel to include potential risk in 
transit prior to and after airline travel and Days 0-28 for risk after travel. 

Symptom monitoring was assessed as a method to detect and isolate infected individuals and therefore 
prevent transmission after symptom onset. As described above, we assumed that a proportion of 
infected individuals develop symptoms (
�) and develop symptoms at rate 
��� as defined by the 
incubation period (described above). The onset of symptoms was assumed to lead to isolation until 
recovery, resulting in a residual in transmission risk over the transmission window: 

����, �� � 1 	 
�
�� 	 ��. 

Transmission at a time � can also be mitigated through quarantine. We estimated the impact of 
quarantine as a reduction in risk of a magnitude equal to the adherence 
� (1 = 100%) during a 

quarantine of duration ��  starting at the time of arrival �� with residual transmission risk: 

����� �  1	
� if � � ���, �� � ���, and 1 otherwise. 
Transmission can also be mitigated through test-based detection followed by isolation. For the purposes 
of the model, we assumed that test results were immediately available and a positive test immediately 
led to isolation until recovery. Test positivity for each test (described above) was characterized ���� and 
the corresponding residual in transmission associated with each test � at test time �� is: 

����, �, ��� � 1 	 ���� 	 �� if � � ��� , ∞�, and 1 otherwise. 
For a set of tests, �, the residual risk is the product: 

�����, �� � � ����, �, ���
�

���

 

Here, we assessed two transmission windows: Days 0-1 for risk during travel to include potential risk in 

transit prior to and after airline travel and Days 0-28 for risk after travel. The total transmission risk 

between times �� and �	 for individuals infected at time � is: 

����� � � ���, ��

�


�

��. 

The transmission risk for individuals with protocols including symptom monitoring, quarantine, and 
testing is: 

����� ��� � � ���, ������, ������������, ��

�


�

��. 

For exposure windows in which a unique time of exposure is unknown, we define the risk of exposure as 
uniformly distributed over a window defined by ��and �	:  

���� � 1 ��	 	 ���⁄  if � � ��� 	 �	�, and 0 otherwise. 
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����� � � � �������, ������, ������������, ��

�


�

��

��

����. 

Finally, we calculate the proportional reduction in transmission risk as: ����� ��⁄ . 
 

Results 

 

Reducing transmission risk after a specific known exposure 

Before looking at exposure over a range of times, we first assessed the impact of symptom monitoring, 

quarantine, and testing when the time of infection was known (for example, a brief high-risk contact). 

Isolating infected individuals at the time of symptom onset, without testing or quarantine, resulted in a 

reduction in transmission risk of 36-52% (minimum to maximum accounting for differences in 

infectiousness over time between models). Quarantine alone led to higher reductions in transmission 

risk, from 39-75% with 7 days to 90-100% with 14 days. Isolating individuals based on a single positive 

test result alone produced a 0-77% reduction in transmission, depending on the day of the test relative 

to the infectious period and the time-specific test sensitivity (Fig. 2). Testing earlier in infection was less 

effective at detecting infections; later testing means that while the test was more likely to be positive, 

the infectious period may begin prior to the test, leading to a smaller reduction in risk. Combining 

symptom monitoring or quarantine with testing provided added benefit, leading to increased risk 

reduction, especially with a test at day 4-5 post-exposure with symptom monitoring (52-84% reduction) 

or a test at day 5-6 with a 7-day quarantine (76-99% reduction). A 7-day quarantine with symptom 

monitoring and a test at day 5-6 further increased the lower bound of likely risk reduction to 91-99%. 

Transmission risk during travel 

To assess approaches for reducing risk of transmission while traveling, we assumed that exposure may 

have occurred at any time in the 7 days prior to arrival at a destination. Isolating individuals at the time 

of symptom onset prior to or during travel resulted in a 26-30% reduction in risk (Fig. 3A). Testing 

resulted in the greatest reduction of risk when the specimen was collected closest to the time of travel. 

Testing 3 days prior to travel resulted in a 5-9% reduction in transmission risk compared to a 37-61% 

reduction with testing on the day of travel. This was also true for testing combined with symptom 

monitoring, which had higher overall reductions.  

We assessed the impact of test sensitivity relative to timing by comparing the antigen-type test model to 

the same model with higher sensitivity. With the same time-specific pattern but different sensitivity 

(80% vs. 95%, Fig. 3B), the higher sensitivity test gives a higher reduction in transmission risk if used at 

the same time. However, the importance of sensitivity is intertwined with timing. The lower sensitivity 

test was as effective or more effective than a higher sensitivity test if it was performed closer to the 

time of travel. For example, the test with 80% sensitivity performed 1 day prior to departure was 36-

44% effective at reducing transmission risk during travel, while the test with 95% sensitivity performed 3 

days prior to departure was 8-10% effective.  

Compared to the effects with a known infection time (Fig. 2), the mitigation measures are generally 

more effective with a 7-day exposure window (Fig. 3A). This trend continues with longer potential 

exposure periods prior to travel (e.g., 2 weeks or more). Individuals infected 7 days or more prior to 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for thisthis version posted November 24, 2020. ; https://doi.org/10.1101/2020.11.23.20237412doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.23.20237412


travel may be infectious while traveling, but on average they are less infectious than those infected 

closer to the time of travel. 

Transmission risk after travel 

We then considered measures to reduce the risk of SARS-CoV-2 introduction to the destination location 

from travelers, i.e., transmission risk after traveling (Fig. 4). Assuming infection occurs at an unknown 

time within a 7-day exposure period prior to arrival, a single test on its own was most effective when 

performed 1- or 2-days post-arrival (29-44% and 29-45% reduction in transmission risk, respectively). 

This reduction in introduction risk was higher than reductions generated by testing prior to travel; a test 

1 day prior to arrival provided a 17-30% reduction in risk and a test 3 days prior to arrival provided an 8-

21% reduction (not shown). Tests prior to travel do not detect travelers infected while traveling and 

were less likely to detect travelers infected close to the time of travel. These travelers are those who are 

most likely to experience their entire infectious period in the destination location, and therefore, pose 

the greatest introduction risk. 

Although a pre-travel test was less effective on its own than a post-travel test, the combination of pre-

travel and post-travel tests provided additional risk reduction. A pre-travel test was most effective at 

reducing transmission risk after travel when performed close to the time of travel (as described above 

for risk during travel). In the absence of post-arrival quarantine, a second test post-travel was optimal 2-

3 after arrival. The pre-travel test was likely to detect individuals who were infectious upon arrival and 

the later test was likely to detect those who became infectious after arrival. Combined, these tests can 

reduce introduction risk by 40-66%. A similar effect can be attained by testing immediately upon arrival 

and again 3-4 days post-arrival, which reduced introduction risk by 45-70%. 

Symptom monitoring and isolation before, during, and after travel, with no other measures in place, 

reduced introduction risk by 42-56% and was more effective when combined with testing (Fig. 4). For 

example, a test 1-day post-arrival combined with symptom monitoring before, during, and after travel 

reduced introduction risk by 56-74%. However, quarantine for 7 days or more on its own was more 

effective than testing combined with symptom monitoring, regardless of when the test occurred. A 14-

day quarantine reduced transmission risk by 96-100%, a 10-day quarantine by 84-100%, and a 7-day 

quarantine by 65-95% (Fig. 5). Testing and symptom monitoring further enhanced the effectiveness of 

quarantine. A single test conducted 3-4 days after arrival with symptom monitoring and a 7-day 

quarantine reduced introduction risk by 95-99% (Fig. 4). The day 3-4 window is optimal because it 

balances the reduced risk while in quarantine, with higher sensitivity for detecting individuals who may 

remain infectious at the end of the quarantine period.  

A 7-day quarantine in conjunction with symptom monitoring and testing had similar effectiveness to a 

10-day or 14-day quarantine on its own. Comparing quarantine with imperfect adherence (50%), we 

found that with symptom monitoring and no test, a 7-day quarantine (70-72%) was likely to be almost as 

effective as a 14-day quarantine (71-77%; Fig. 5). Combined with a test within 0-3 days after arrival and 

symptom monitoring, a 7-day quarantine with 50% adherence was estimated to be more effective (77-

84%) than a 14-day quarantine with 50% adherence and no test (71-77%) and as effective as a 14-day 

quarantine with a test (77-87%). 
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Discussion 

Control of SARS-CoV-2 is contingent upon multiple layered mitigation measures. Reducing the risk of 

transmission associated with travel is critical to reducing the impact related to importations on local 

health and healthcare systems. This is important when transmission at the destination is low and an 

introduction could spur additional outbreaks, but also when transmission is already high and health 

systems may be strained. Reducing risks associated with air travel could pave the way to air industry 

recovery, as well as offer relief to national economies and reduce social distress [56]. Efforts to control 

transmission before and after travel rely on individual mitigation measures such as mask use and social 

distancing before, during, and after travel, but additional control measures, such as testing and 

quarantine, have also been used by some countries. The fifth meeting of the International Health 

Regulations Emergency Committee convened by WHO regarding the COVID-19 pandemic stated that for 

health measures related to international travel, countries should regularly reappraise measures applied 

to international travel and ensure those measures (including targeted use of diagnostics and quarantine) 

are risk- and evidence-based [57]. 

Here, we used a mathematical model to assess the relative impact of three mitigation measures to 
reduce transmission risk from infected travelers: symptom monitoring, testing, and quarantine. We 
assessed combinations of these mitigation measures with different estimates of the infectious period, 
different estimates of test-positivity relative to time of infection, and different assumptions about 
infection timing and test sensitivity. We frame these results as proportional reductions in transmission 
risk from infected travelers during or after travel to consider the importance of optimizing mitigation 
measures to address peak infectiousness (Fig. 1a). On its own, quarantine was the most effective of the 
three strategies, with a 14-day quarantine almost eliminating risk and a 7-day quarantine being more 
effective than any single other measure. However, these measures can be more effective when used 
together. Symptom monitoring is relatively easy and further increases the effect of a 7-day quarantine 
to 88-97% (with a 7-day exposure window prior to arrival; Fig. 4). 
 
Testing also provides added benefit but is contingent on the timing and quality of the test. Testing prior 
to travel reduces transmission risk both while traveling and after travel if testing is done close to the 
time of travel. Testing closer to the time of travel is more likely to detect individuals who are infectious 
while traveling and immediately afterwards but can still miss infected travelers who are in their latent 
period, as they may not have enough viral shedding to be detected. While testing immediately prior to 
travel can substantially reduce risk, it poses additional logistical challenges: results must be reliably 
available prior to travel and protocols would be needed to effectively isolate individuals who test 
positive. On the other hand, testing more than 3 days before travel provides little benefit beyond what 
symptom monitoring can provide, because individuals who test positive at that point contribute less to 
transmission risk later, including both during and after travel. Because of the value of testing close to the 
time of travel, a lower sensitivity test with faster results can be more effective despite decreased 
sensitivity. This finding is consistent with modeling work by Larremore et al. showing that limitations of 
reduced sensitivity can be overcome by more frequent testing that can still identify infections in time to 
reduce transmission, in this case closer to the time of travel [58]. This conclusion draws attention to the 
importance of turnaround times to allow for corresponding decision-making, not just the sensitivity of 
the test. While test and setting-specific test turnaround times are critical to planning, they are highly 
varied and were not included here. These results should be considered in that context. For example, 
short turn-around time is very important for pre-travel testing but less critical for post-travel testing at 
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day 1 or 2 when individuals are expected to remain in quarantine for 7 days or more. 
 
In the absence of quarantine or with low adherence to quarantine, post-arrival testing is likely most 
effective 1-2 days after arrival, balancing early detection with optimal sensitivity for travelers in their 
latent period while traveling. With high-adherence quarantine or potential exposure closer to the time 
of travel (for example, while traveling), optimal post-arrival test timing is later, 3 or more days after 
travel. This corresponds to improved sensitivity for detecting individuals who may be infected close to 
the time of arrival and are most likely to be infectious at the end of the quarantine. With exposure up to 
7 days prior to travel, we found that optimal test timing was on days 0-2 after arrival with symptom 
monitoring and no quarantine, days 3-4 with symptom monitoring and quarantine with 100% 
adherence, and days 0-3 with symptom monitoring and quarantine with 50% adherence. Beyond days 5-
8 post-infection, the sensitivity for detecting infections in the models considered here begins to 
decrease (Fig. 1b). Even with quarantine measures in place, tests on or after arrival may have additional 
roles if quarantine adherence is imperfect or to assist in contact tracing when other travelers are 
potentially infected. Waiting to test several days after arrival improves the chance of detecting an 
individual who will be infectious at the end of the quarantine but does not optimize early detection of 
other infections among travelers. 

These results are generally consistent with other analyses of risk associated with travel. Early in the 
pandemic, it was apparent that symptom screening at airports or other transit hubs could not stop the 
spread of SARS-CoV-2 [18]. Using an individual-level simulation framework, Clifford et al. found that 
more than half of infected travelers would not be detected by exit and entry screening based on 
temperature measurement, observation for illness, and health declaration [44]. Sufficient detection of 
infected travelers to avoid uncontrolled importations is largely dependent on a set of assumptions that 
are inconsistent with COVID-19 epidemiology: asymptomatic transmission being negligible, very high 
airport symptom screening sensitivity, and a short incubation period. Clifford et al. also assessed 
combined measures and estimated that an 8-day quarantine period with an RT-PCR test on day 7 would 
be nearly as effective as a 14-day quarantine on its own. Other recent work highlights the effectiveness 
of shorter quarantine periods combined with testing for individuals with known exposures [46,59,60]. 
Across these studies, the specific days for quarantine or testing and the estimated effectiveness varied 
due to differences in assumptions about the time of exposure, different modeled test characteristics, 
and differences in parameters for the infectious period. Nonetheless, all indicate the value of shorter 
quarantine combined with symptom monitoring and testing, a finding that is helpful both in the travel 
setting and in other settings with exposure risk. 

The model used here has some specific limitations. First, the infectious period of SARS-CoV-2 is not well-
defined. We considered multiple models of the infectious period generated by multiple approaches to 
reflect uncertainty around this period, yet these models also have limitations, are not exhaustive, and 
more detail is needed for more precise estimates. Moreover, each of the infectious period models 
captures only the average infectious period, so for individual travelers, this could be substantially 
different. The most effective measures modeled here are close to 100% effective in the model; however, 
the existence of individual-level variation suggests that none of these approaches would truly be 100% 
effective. Even with a 14-day quarantine, it is likely that some individuals will be infectious later, or even 
develop symptoms only at the end of the time period. Nonetheless, the average parameterization gives 
the expected average effectiveness for larger numbers of infected travelers; this is the scale at which 
policies may be most useful. Testing options are also highly varied and not well-characterized. The test 
options considered here are not exhaustive nor precisely characterized. Moreover, test turn-around 
time can also vary. We did not model test turn-around time; instead we focused on when the test was 
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performed, such that the results could be considered in the context of whatever testing and laboratory 
resources are available. For example, a test during quarantine should be done sufficiently early so that 
results are available before the end of quarantine, but that delay varies in different settings. Our 
framework, however, can be applied with many other options, or with better characterized distributions 
as these become available. 

We also did not consider behavioral aspects of prevention, with the exception of adherence to 
quarantine. For simplicity, we assumed that quarantine was equivalent to individual-level isolation and 
that symptomatic individuals or those testing positive are also isolated immediately. However, 
individuals may quarantine with others. In that case, symptom onset or a positive test for a single 
individual can indicate exposure for the others during quarantine. Without symptom onset or a positive 
test, there may be silent secondary transmission that could result in additional post-quarantine risk. 
Moreover, travelers may have little incentive to consistently adhere to these measures, and notification 
or enforcement of them also would require substantial effort and resources. Some travelers could 
attribute symptoms to other etiologies, such as an exacerbation of a pre-existing condition or travel 
fatigue. While adherence to all measures may be lower in practice than considered here, the relative 
effectiveness of measures still provides a useful guide. Moreover, the effectiveness of shorter 
quarantines, especially when combined with symptom monitoring and testing, may be enhanced 
because a shorter quarantine is less onerous and may drive better adherence [61]. 
 
Finally, we focused on comparing the effectiveness of intervention measures for infected travelers. This 
is not an analysis of the conditions in which these measures should be implemented, nor of the specific 
logistical and policy challenges that arise in different situations. Quarantine of all travelers can be an 
effective prevention measure but could also result in the restricted movement of many travelers who 
are not infected and, therefore, pose no risk. When the absolute risk of infection in travelers is low and 
the number of travelers is high, quarantine of travelers without symptoms would predominantly result 
in the quarantine of uninfected people. Testing is helpful in part because it can reduce the length of 
quarantine needed for optimal prevention. However, testing can also result in false negatives (missed 
cases that are released from quarantine when still infectious) or false positives (individuals who test 
positive but are not actually infected). The impact of false positives can be partly mitigated by 
confirmatory testing. It is also possible that some recently recovered individuals will test positive but no 
longer be infectious (e.g., by RT-PCR which can detect SARS-CoV-2 RNA after the infectious period has 
ended). Additional testing or assessment of cycle threshold values may help reduce the impact on these 
individuals [62]. It is important that authorities also carefully consider prioritization of testing resources 
in the context of other public health needs in resource-limited situations. 
 
A multi-layered approached is needed to control SARS-CoV-2 transmission associated with travel. 
Infection prevention measures (e.g., social distancing, mask use, hand hygiene, enhanced cleaning and 
disinfection) are expected to reduce risk before, during, and after travel. Symptom monitoring, 
quarantine, and testing can all complement those measures to further reduce risk. Pre-departure SARS-
CoV-2 testing can supplement symptom monitoring to identify potentially infectious travelers who do 
not have symptoms, and therefore, offers an opportunity to further reduce transmission risk during and 
after travel. Post-arrival SARS-CoV-2 testing can identify asymptomatic or pre-symptomatic infected 
travelers, including some who may have tested negative prior to departure, if prior testing took place. 
Post-arrival testing is likely effective at days 1-2 without quarantine, but more effective later, at days 3-
4, if effective quarantine is in place. A 14-day quarantine is effective on its own but combined with 
testing and symptom monitoring (with isolation of those who develop symptoms or test positive), 
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quarantine can be shortened and still be effective. These findings can inform policies for travel until safe 
and effective vaccines become widely available. 
 
  

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for thisthis version posted November 24, 2020. ; https://doi.org/10.1101/2020.11.23.20237412doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.23.20237412


References 

 
1.  Devi S. Travel restrictions hampering COVID-19 response. The Lancet. 2020;395: 1331–1332. 

doi:10.1016/S0140-6736(20)30967-3 

2.  Studdert DM, Hall MA, Mello MM. Partitioning the Curve — Interstate Travel Restrictions During 
the Covid-19 Pandemic. New England Journal of Medicine. 2020;383: e83. 
doi:10.1056/NEJMp2024274 

3.  TSA checkpoint travel numbers for 2020 and 2019 | Transportation Security Administration. [cited 
5 Nov 2020]. Available: https://www.tsa.gov/coronavirus/passenger-throughput 

4.  Diseases TLI. Air travel in the time of COVID-19. The Lancet Infectious Diseases. 2020;20: 993. 
doi:10.1016/S1473-3099(20)30647-2 

5.  Maneenop S, Kotcharin S. The impacts of COVID-19 on the global airline industry: An event study 
approach. Journal of Air Transport Management. 2020;89: 101920. 
doi:10.1016/j.jairtraman.2020.101920 

6.  Sun X, Wandelt S, Zhang A. How did COVID-19 impact air transportation? A first peek through the 
lens of complex networks. Journal of Air Transport Management. 2020;89: 101928. 
doi:10.1016/j.jairtraman.2020.101928 

7.  Forsyth P, Guiomard C, Niemeier H-M. Covid −19, the collapse in passenger demand and airport 
charges11The authors wish to thank Brian Pearce of IATA and Michael Stanton-Geddes of ACI for 
helpful discussions and data, and also two anonymous referees for their comments. Journal of Air 
Transport Management. 2020;89: 101932. doi:10.1016/j.jairtraman.2020.101932 

8.  Airlines Seek Gate Checks for Virus to Revive Foreign Travel. Bloomberg.com. 9 Sep 2020. 
Available: https://www.bloomberg.com/news/articles/2020-09-09/airlines-seek-u-s-airport-virus-
tests-to-revive-foreign-travel. Accessed 5 Nov 2020. 

9.  Wilson ME, Chen LH. Re-starting travel in the era of COVID-19: preparing anew. J Travel Med. 
2020;27. doi:10.1093/jtm/taaa108 

10.  US Department of Transportation. Runway to Recovery: The United States Framework for Airlines 
and Airports to Mitigate the Public Health Risks of Coronavirus, Guidance Jointly Issued by the U.S. 
Departments of Transportation, Homeland Security, and Health and Human Services. Available: 
https://www.transportation.gov/sites/dot.gov/files/2020-07/Runway_to_Recovery_07022020.pdf 

11.  Anderson SC, Mulberry N, Edwards AM, Stockdale JE, Iyaniwura SA, Falcao RC, et al. How much 
leeway is there to relax COVID-19 control measures? medRxiv. 2020; 2020.06.12.20129833. 
doi:10.1101/2020.06.12.20129833 

12.  Proclamation on Suspension of Entry as Immigrants and Nonimmigrants of Persons who Pose a 
Risk of Transmitting 2019 Novel Coronavirus. In: The White House [Internet]. [cited 5 Nov 2020]. 
Available: https://www.whitehouse.gov/presidential-actions/proclamation-suspension-entry-
immigrants-nonimmigrants-persons-pose-risk-transmitting-2019-novel-coronavirus/ 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for thisthis version posted November 24, 2020. ; https://doi.org/10.1101/2020.11.23.20237412doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.23.20237412


13.  Linka K, Peirlinck M, Costabal FS, Kuhl E. Outbreak dynamics of COVID-19 in Europe and the effect 
of travel restrictions. Computer Methods in Biomechanics and Biomedical Engineering. 2020;23: 
710–717. doi:10.1080/10255842.2020.1759560 

14.  Chinazzi M, Davis JT, Ajelli M, Gioannini C, Litvinova M, Merler S, et al. The effect of travel 
restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak. Science. 2020;368: 
395–400. doi:10.1126/science.aba9757 

15.  Pombal R, Hosegood I, Powell D. Risk of COVID-19 During Air Travel. JAMA. 2020;324: 1798. 
doi:10.1001/jama.2020.19108 

16.  International Civil Aviation Organization Council Aviation Recovery Task Force. Take-off: guidance 
for air travel through the COVID-19 public health crisis. 2020 May. Available: 
https://www.icao.int/covid/cart/Documents/CART_Report_Take-Off_Document.pdf 

17.  Mouchtouri VA, Bogogiannidou Z, Dirksen-Fischer M, Tsiodras S, Hadjichristodoulou C. Detection 
of imported COVID-19 cases worldwide: early assessment of airport entry screening, 24 January 
until 17 February 2020. Tropical Medicine and Health. 2020;48: 79. doi:10.1186/s41182-020-
00260-5 

18.  Gostic K, Gomez AC, Mummah RO, Kucharski AJ, Lloyd-Smith JO. Estimated effectiveness of 
symptom and risk screening to prevent the spread of COVID-19. Franco E, Ferguson NM, McCaw 
JM, editors. eLife. 2020;9: e55570. doi:10.7554/eLife.55570 

19.  Considerations relating to passenger locator data, entry and exit screening and health declarations 
in the context of COVID-19 in the EU/EEA and the UK. In: European Centre for Disease Prevention 
and Control [Internet]. 12 Jun 2020 [cited 5 Nov 2020]. Available: 
https://www.ecdc.europa.eu/en/publications-data/passenger-locator-data-entry-exit-screening-
health-declaration 

20.  Vilke GM, Brennan JJ, Cronin AO, Castillo EM. Clinical Features of Patients with COVID-19: is 
Temperature Screening Useful? Journal of Emergency Medicine. 2020;0. 
doi:10.1016/j.jemermed.2020.09.048 

21.  Dollard P. Risk Assessment and Management of COVID-19 Among Travelers Arriving at Designated 
U.S. Airports, January 17–September 13, 2020. MMWR Morb Mortal Wkly Rep. 2020;69. 
doi:10.15585/mmwr.mm6945a4 

22.  Oran DP, Topol EJ. Prevalence of Asymptomatic SARS-CoV-2 Infection. Annals of Internal Medicine. 
2020;173: 362–367. doi:10.7326/M20-3012 

23.  Furukawa NW, Brooks JT, Sobel J. Evidence Supporting Transmission of Severe Acute Respiratory 
Syndrome Coronavirus 2 While Presymptomatic or Asymptomatic - Volume 26, Number 7—July 
2020 - Emerging Infectious Diseases journal - CDC. [cited 5 Nov 2020]. 
doi:10.3201/eid2607.201595 

24.  Lavezzo E, Franchin E, Ciavarella C, Cuomo-Dannenburg G, Barzon L, Del Vecchio C, et al. 
Suppression of a SARS-CoV-2 outbreak in the Italian municipality of Vo’. Nature. 2020;584: 425–
429. doi:10.1038/s41586-020-2488-1 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for thisthis version posted November 24, 2020. ; https://doi.org/10.1101/2020.11.23.20237412doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.23.20237412


25.  Buitrago-Garcia D, Egli-Gany D, Counotte MJ, Hossmann S, Imeri H, Ipekci AM, et al. Occurrence 
and transmission potential of asymptomatic and presymptomatic SARS-CoV-2 infections: A living 
systematic review and meta-analysis. PLOS Medicine. 2020;17: e1003346. 
doi:10.1371/journal.pmed.1003346 

26.  Joshi RK, Ray RK, Adhya S, Chauhan VPS, Pani S. Spread of COVID-19 by asymptomatic cases: 
evidence from military quarantine facilities. BMJ Mil Health. 2020 [cited 5 Nov 2020]. 
doi:10.1136/bmjmilitary-2020-001669 

27.  Tindale LC, Stockdale JE, Coombe M, Garlock ES, Lau WYV, Saraswat M, et al. Evidence for 
transmission of COVID-19 prior to symptom onset. Franco E, Lipsitch M, Lipsitch M, Miller J, Pitzer 
VE, editors. eLife. 2020;9: e57149. doi:10.7554/eLife.57149 

28.  Nishiura H, Linton NM, Akhmetzhanov AR. Serial interval of novel coronavirus (COVID-19) 
infections. International Journal of Infectious Diseases. 2020;93: 284–286. 
doi:10.1016/j.ijid.2020.02.060 

29.  Zhao S, Gao D, Zhuang Z, Chong MKC, Cai Y, Ran J, et al. Estimating the Serial Interval of the Novel 
Coronavirus Disease (COVID-19): A Statistical Analysis Using the Public Data in Hong Kong From 
January 16 to February 15, 2020. Front Phys. 2020;8. doi:10.3389/fphy.2020.00347 

30.  Wei WE. Presymptomatic Transmission of SARS-CoV-2 — Singapore, January 23–March 16, 2020. 
MMWR Morb Mortal Wkly Rep. 2020;69. doi:10.15585/mmwr.mm6914e1 

31.  Tong Z-D, Tang A, Li K-F, Li P, Wang H-L, Yi J-P, et al. Potential Presymptomatic Transmission of 
SARS-CoV-2, Zhejiang Province, China, 2020. Emerging Infectious Diseases. 2020;26: 1052–1054. 
doi:10.3201/eid2605.200198 

32.  Considerations for quarantine of contacts of COVID-19 cases. [cited 5 Nov 2020]. Available: 
https://www.who.int/publications-detail-redirect/considerations-for-quarantine-of-individuals-in-
the-context-of-containment-for-coronavirus-disease-(covid-19) 

33.  Peak CM, Kahn R, Grad YH, Childs LM, Li R, Lipsitch M, et al. Individual quarantine versus active 
monitoring of contacts for the mitigation of COVID-19: a modelling study. The Lancet Infectious 
Diseases. 2020;20: 1025–1033. doi:10.1016/S1473-3099(20)30361-3 

34.  Saldaña F, Flores-Arguedas H, Camacho-Gutiérrez JA, Barradas I. Modeling the transmission 
dynamics and the impact of the control interventions for the COVID-19 epidemic outbreak. Math 
Biosci Eng. 2020;17: 4165–4183. doi:10.3934/mbe.2020231 

35.  Paltiel AD, Zheng A, Walensky RP. Assessment of SARS-CoV-2 Screening Strategies to Permit the 
Safe Reopening of College Campuses in the United States. JAMA Netw Open. 2020;3: e2016818. 
doi:10.1001/jamanetworkopen.2020.16818 

36.  Taylor T, Das R, Mueller K, Pransky G, Christian J, Orford R, et al. Safely Returning America to Work: 
Part I: General Guidance for Employers. Journal of Occupational and Environmental Medicine. 
2020;62: 771–779. doi:10.1097/JOM.0000000000001984 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for thisthis version posted November 24, 2020. ; https://doi.org/10.1101/2020.11.23.20237412doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.23.20237412


37.  Murray MT. Mitigating a COVID-19 Outbreak Among Major League Baseball Players — United 
States, 2020. MMWR Morb Mortal Wkly Rep. 2020;69. doi:10.15585/mmwr.mm6942a4 

38.  Coronavirus (COVID-19) Travel Restrictions By Country. In: KAYAK [Internet]. [cited 5 Nov 2020]. 
Available: https://www.kayak.com/travel-restrictions 

39.  Visiting Iceland. [cited 5 Nov 2020]. Available: https://www.covid.is/categories/tourists-travelling-
to-iceland 

40.  No. 205.2: Quarantine Restrictions on Travelers Arriving in New York. In: Governor Andrew M. 
Cuomo [Internet]. 31 Oct 2020 [cited 5 Nov 2020]. Available: 
https://www.governor.ny.gov/news/no-2052-quarantine-restrictions-travelers-arriving-new-york 

41.  Centers for Medicare and Medicaid Services. What is CMS’s policy regarding laboratories 
performing antigen tests authorized by the Food and Drug Administration (FDA) under an 
Emergency Use Authorization (EUA) for use at the point of care (POC) or in patient care settings 
operating under a Clinical Laboratory Improvement Amendments of 1988 (CLIA) Certificate of 
Waiver on asymptomatic individuals? Available: https://www.cms.gov/files/document/clia-poc-ag-
test-enforcement-discretion.pdf 

42.  Food and Drug Administration. Individual EUAs for Antigen Diagnostic Tests for SARS-CoV-2. FDA. 
2020 [cited 5 Nov 2020]. Available: https://www.fda.gov/medical-devices/coronavirus-disease-
2019-covid-19-emergency-use-authorizations-medical-devices/vitro-diagnostics-euas 

43.  Burns J, Movsisyan A, Stratil JM, Coenen M, Emmert-Fees KM, Geffert K, et al. Travel-related 
control measures to contain the COVID-19 pandemic: a rapid review. Cochrane Database of 
Systematic Reviews. 2020 [cited 5 Nov 2020]. doi:10.1002/14651858.CD013717 

44.  Clifford S, Quilty BJ, Russell TW, Liu Y, Chan Y-WD, Pearson CAB, et al. Strategies to reduce the risk 
of SARS-CoV-2 re-introduction from international travellers. medRxiv. 2020; 2020.07.24.20161281. 
doi:10.1101/2020.07.24.20161281 

45.  Dickens BL, Koo JR, Lim JT, Sun H, Clapham HE, Wilder-Smith A, et al. Strategies at points of entry 
to reduce importation risk of COVID-19 cases and re-open travel. J Travel Med. 2020. 
doi:10.1093/jtm/taaa141 

46.  Ashcroft P, Lehtinen S, Angst DC, Low N, Bonhoeffer S. Quantifying the impact of quarantine 
duration on COVID-19 transmission. medRxiv. 2020; 2020.09.24.20201061. 
doi:10.1101/2020.09.24.20201061 

47.  He X, Lau EHY, Wu P, Deng X, Wang J, Hao X, et al. Temporal dynamics in viral shedding and 
transmissibility of COVID-19. Nature Medicine. 2020;26: 672–675. doi:10.1038/s41591-020-0869-5 

48.  Casey M, Griffin J, McAloon CG, Byrne AW, Madden JM, McEvoy D, et al. Pre-symptomatic 
transmission of SARS-CoV-2 infection: a secondary analysis using published data. medRxiv. 2020; 
2020.05.08.20094870. doi:10.1101/2020.05.08.20094870 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for thisthis version posted November 24, 2020. ; https://doi.org/10.1101/2020.11.23.20237412doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.23.20237412


49.  Benefield AE, Skrip LA, Clement A, Althouse RA, Chang S, Althouse BM. SARS-CoV-2 viral load peaks 
prior to symptom onset: a systematic review and individual-pooled analysis of coronavirus viral 
load from 66 studies. medRxiv. 2020; 2020.09.28.20202028. doi:10.1101/2020.09.28.20202028 

50.  Walsh KA, Jordan K, Clyne B, Rohde D, Drummond L, Byrne P, et al. SARS-CoV-2 detection, viral 
load and infectivity over the course of an infection. Journal of Infection. 2020;81: 357–371. 
doi:10.1016/j.jinf.2020.06.067 

51.  Byrne AW, McEvoy D, Collins AB, Hunt K, Casey M, Barber A, et al. Inferred duration of infectious 
period of SARS-CoV-2: rapid scoping review and analysis of available evidence for asymptomatic 
and symptomatic COVID-19 cases. BMJ Open. 2020;10: e039856. doi:10.1136/bmjopen-2020-
039856 

52.  Goyal A, Reeves DB, Cardozo-Ojeda EF, Schiffer JT, Mayer BT. Wrong person, place and time: viral 
load and contact network structure predict SARS-CoV-2 transmission and super-spreading events. 
medRxiv. 2020; 2020.08.07.20169920. doi:10.1101/2020.08.07.20169920 

53.  Wölfel R, Corman VM, Guggemos W, Seilmaier M, Zange S, Müller MA, et al. Virological 
assessment of hospitalized patients with COVID-2019. Nature. 2020;581: 465–469. 
doi:10.1038/s41586-020-2196-x 

54.  McAloon C, Collins Á, Hunt K, Barber A, Byrne AW, Butler F, et al. Incubation period of COVID-19: a 
rapid systematic review and meta-analysis of observational research. BMJ open. 2020;10: 
e039652.  

55.  Kucirka LM, Lauer SA, Laeyendecker O, Boon D, Lessler J. Variation in False-Negative Rate of 
Reverse Transcriptase Polymerase Chain Reaction–Based SARS-CoV-2 Tests by Time Since 
Exposure. Ann Intern Med. 2020;173: 262–267. doi:10.7326/M20-1495 

56.  Lamb TL, Winter SR, Rice S, Ruskin KJ, Vaughn A. Factors that predict passengers willingness to fly 
during and after the COVID-19 pandemic. J Air Transp Manag. 2020;89: 101897. 
doi:10.1016/j.jairtraman.2020.101897 

57.  Statement on the fifth meeting of the International Health Regulations (2005) Emergency 
Committee regarding the coronavirus disease (COVID-19) pandemic. [cited 5 Nov 2020]. Available: 
https://www.who.int/news/item/30-10-2020-statement-on-the-fifth-meeting-of-the-
international-health-regulations-(2005)-emergency-committee-regarding-the-coronavirus-disease-
(covid-19)-pandemic 

58.  Larremore DB, Wilder B, Lester E, Shehata S, Burke JM, Hay JA, et al. Test sensitivity is secondary to 
frequency and turnaround time for COVID-19 surveillance. medRxiv. 2020; 2020.06.22.20136309. 
doi:10.1101/2020.06.22.20136309 

59.  Quilty BJ, Clifford S, Group2 C nCoV working, Flasche S, Eggo RM. Effectiveness of airport screening 
at detecting travellers infected with novel coronavirus (2019-nCoV). Eurosurveillance. 2020;25: 
2000080. doi:10.2807/1560-7917.ES.2020.25.5.2000080 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for thisthis version posted November 24, 2020. ; https://doi.org/10.1101/2020.11.23.20237412doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.23.20237412


60.  Wells CR, Townsend JP, Pandey A, Krieger G, Singer B, McDonald RH, et al. Optimal COVID-19 
quarantine and testing strategies. medRxiv. 2020; 2020.10.27.20211631. 
doi:10.1101/2020.10.27.20211631 

61.  Webster RK, Brooks SK, Smith LE, Woodland L, Wessely S, Rubin GJ. How to improve adherence 
with quarantine: rapid review of the evidence. Public Health. 2020;182: 163–169. 
doi:10.1016/j.puhe.2020.03.007 

62.  Bullard J, Dust K, Funk D, Strong JE, Alexander D, Garnett L, et al. Predicting Infectious Severe 
Acute Respiratory Syndrome Coronavirus 2 From Diagnostic Samples. Clin Infect Dis. [cited 5 Nov 
2020]. doi:10.1093/cid/ciaa638 

 
  

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for thisthis version posted November 24, 2020. ; https://doi.org/10.1101/2020.11.23.20237412doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.23.20237412


Figures 
 

Figure 1a. Models of average infectiousness of individuals infected with SARS-CoV-2 relative to time 

since infection: a Gamma density function approximating a 10-day infectious period with a peak on day 

5 [47–51], a host infection model adopted from Goyal et al. [52], and simulated infectious and latent 

periods adopted from Clifford et al. [44]. 

Figure 1b. Models of the probability of a positive test for SARS-CoV-2 relative to time since infection: a 

distribution estimating positivity by RT-PCR adopted from Clifford et al. [44] and the Gamma 

infectiousness function as an approximation for an antigen test when test positivity tracks infectiousness

with a maximum sensitivity of 80%. 
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Figure 2. Reductions in total average SARS-CoV-2 transmission risk after infection at a known high-risk 

exposure time (Day 0), stratified by method of risk reduction and day of test. Symptom monitoring is 

assumed to be ongoing regardless of the test date when implemented and either symptom onset or a 

positive test result is assumed to result in immediate isolation until the individual is no longer infectious.

The bars represent the median estimate and the error bars show the range (minimum and maximum). 
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Figure 3a. Reductions in SARS-CoV-2 transmission risk during a 1-day trip assuming a 7-day exposure 

window prior to travel, stratified by method of risk reduction. Individuals developing symptoms are 

assumed to be isolated and therefore do not travel. 

Figure 3b. Reductions in SARS-CoV-2 transmission risk during a 1-day trip assuming a 7-day exposure 

window prior to travel comparing the Gamma function version of the assays with 80% and 95% 

sensitivity. Ranges indicate uncertainty from the different infectiousness models. 
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Figure 4. Reductions in SARS-CoV-2 transmission risk from infected travelers post-arrival assuming a 7-

day exposure window prior to arrival, stratified by day of test and symptom monitoring, with and 

without a 7-day quarantine. Symptom monitoring is assumed to be ongoing before, during, and after 

travel and either symptom onset or a positive test result is assumed to result in immediate isolation 

until the individual is no longer infectious. 
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Figure 5. Reductions in transmission risk post-arrival assuming a 7-day exposure window prior to arrival 

and symptom monitoring, stratified by quarantine length, quarantine adherence, and day of test.  

 

 

 

 

 

 

 

 

 

 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for thisthis version posted November 24, 2020. ; https://doi.org/10.1101/2020.11.23.20237412doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.23.20237412

