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Highlights: 

• Demonstrated method to acquire optimal parameters for regression μFA imaging  

• μFA measured using an optimized linear regression method at 3T 

• First μFA comparison between direct regression approach and the gamma model 

• Both approaches correlated strongly in white matter in healthy volunteers 

• Nearly full brain μFA demonstrated in a 3.3-minute scan at 2 mm isotropic resolution 

Abstract  

 Water diffusion anisotropy in the human brain is affected by disease, trauma, and 

development. Microscopic fractional anisotropy (μFA) is a diffusion MRI (dMRI) metric that can 

quantify water diffusion anisotropy independent of neuron fiber orientation dispersion. However, 

there are several different techniques to estimate μFA and few have demonstrated full brain 

imaging capabilities within clinically viable scan times and resolutions. Here, we present an 

optimized spherical tensor encoding (STE) technique to acquire μFA directly from the 2nd order 

cumulant expansion of the dMRI signal (i.e. diffusion kurtosis) which requires fewer powder-

averaged signals than other STE fitting techniques and can be rapidly computed. We found that 

the optimal dMRI parameters for white matter μFA imaging were a maximum b-value of 2000 

s/mm2 and a ratio of isotropic to linear tensor encoded acquisitions of 1.7 for our system 

specifications. We then compared two implementations of the direct approach to the well-

established gamma model in 4 healthy volunteers on a 3 Tesla system. One implementation of 

the direct cumulant approach used mean diffusivity (D) obtained from a 2nd order fit of the 

cumulant expansion, while the other used a linear estimation of D from the low b-values. Both 

implementations of the direct approach showed strong linear correlations with the gamma model 

(ρ=0.97 and ρ=0.90) but mean biases of -0.11 and -0.02 relative to the gamma model were also 
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observed, respectively. All three μFA measurements showed good test-retest reliability (ρ≥0.79 

and bias=0). To demonstrate the potential scan time advantage of the direct approach, 2 mm 

isotropic resolution μFA was demonstrated over a 10 cm slab using a subsampled data set with 

fewer powder-averaged signals that would correspond to a 3.3-minute scan. Accordingly, our 

results introduce an optimization procedure that has enabled clinically relevant, nearly full brain 

μFA in only several minutes. 

 

1. Introduction 

Diffusion MRI (dMRI) can noninvasively acquire information about the microstructural 

characteristics of biological systems by probing the displacement of water molecules in tissue 

(Stejskal and Tanner, 1965; Tanner, 1965). Microstructural features that affect the apparent 

diffusion rate of water include cell size, shape, density, orientation, and the presence of 

membranes and barriers; thus, dMRI has found use in the study of neurological diseases that 

alter tissue microstructure (Inglese and Bester, 2010; Rovaris et al., 2005; van Everdingen et al., 

1998; Zhang et al., 2009).  

The most commonly used dMRI technique is diffusion tensor imaging (DTI) (Basser et al., 

1994), in which dMRI data is fitted to the diffusion tensor model to estimate metrics such as the 

mean diffusivity (D) and fractional anisotropy (FA). DTI represents the dMRI signal as being 

entirely characterized by Gaussian diffusion (Basser, 1995), implicitly meaning the logarithm of 

the dMRI signal is assumed to depend on the b-value up to the first order in the cumulant 

expansion (Frisken, 2001). Despite DTI’s use in clinical applications, diffusion in tissues is too 

complex to be fully represented by Gaussian diffusion at high b-values (Johansen-Berg and 

Behrens, 2013), and characterizing the non-Gaussian effects provides more information about 

the underlying tissue (Shemesh et al., 2011). Diffusion kurtosis imaging (DKI) was developed to 

capture the effects of non-Gaussian diffusion by expanding the dMRI signal using cumulants up 

to second order in b-value (Jensen et al., 2005). Generally, DKI has been shown to be more 
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sensitive than DTI towards quantifying microstructural changes that result from disease 

(Falangola et al., 2008; Fieremans et al., 2013; Wang et al., 2011). 

Non-Gaussian diffusion can be attributed to a number of sources, such as polydisperse 

diffusion tensors with different mean diffusivities and diffusion tensors dispersed among multiple 

orientations (Henriques et al., 2020). Unfortunately, both DTI and DKI are unable to distinguish 

between true microstructural changes and neuron fiber orientation dispersion, reducing their 

specificity to disease in brain regions containing crossing or fanning axons (Jones et al., 2013; 

Szczepankiewicz et al., 2015). While DTI does not consider the effects of kurtosis at all, DKI 

cannot differentiate between the different sources of kurtosis without imposing assumptions about 

the underlying tissue (Fieremans et al., 2011; Jensen et al., 2005). 

Of the many dMRI metrics, water diffusion anisotropy is particularly useful for studying 

neurological diseases because of the eccentric shape of neuronal axons. Despite confounding 

orientation dispersion with true microstructural characteristics in brain regions containing crossing 

or fanning neuron fibers, FA has been shown effective for detecting evidence of 

neurodegeneration in numerous diseases including multiple sclerosis (MS) (Ceccarelli et al., 

2007; Cercignani et al., 2001), Alzheimer’s disease (Oishi et al., 2011), and stroke (Alegiani et 

al., 2017), among others. Generally, disease progression correlates with decreased anisotropy in 

white matter (WM) as neuronal axons lose their structural integrity or are demyelinated. 

In recent years, efforts have been made to develop dMRI techniques that can quantify 

water diffusion anisotropy independent of neuron fiber orientation dispersion (Jespersen et al., 

2013; Lasič et al., 2014). Microscopic anisotropy (μA) is an anisotropy metric that is independent 

of both reference frame and orientation dispersion, and microscopic fractional anisotropy (μFA) 

is a normalized variation of μA that additionally aims to remove the dependence on compartment 

size (Shemesh et al., 2016). There are multiple techniques to compute μFA, which can be 

categorized into: (1) methods that involve the use of linear tensor encoding (LTE)  sequences 

(Kaden et al., 2016b, 2016a; Novikov et al., 2019), (2) methods that utilize double diffusion 
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encoding (DDE) (Cory et al., 1990), and (3) methods that use nonconventional continuous 

gradient waveforms such as spherical tensor encoding (STE) (Eriksson et al., 2015; Lampinen et 

al., 2017; Lasič et al., 2014; Szczepankiewicz et al., 2015; Westin et al., 2016).  

LTE methods utilize models to decouple microstructural properties from mesoscopic 

tissue orientation (Henriques et al., 2019). These techniques require prior knowledge or estimates 

of tissue properties such as the axonal volume fraction or the intracellular radial diffusivity 

(Henriques et al., 2019) but are highly accessible because LTE sequences are commonly used 

in both DTI and DKI. Generally, anisotropy can be estimated by acquiring LTE signals across 

multiple directions and b-shells and fitting the powder-averaged signals to a constrained model 

such as the spherical mean technique (SMT) model (Kaden et al., 2016b, 2016a). Recently, 

Henriques et al showed that μFA estimations using LTE are inaccurate compared to ground truth 

anisotropy, suggesting the techniques are not robust or do not sufficiently describe the underlying 

microstructure (Henriques et al., 2019). 

DDE techniques to estimate μA and μFA use two independent diffusion-encoding pulse 

vectors in succession to probe the correlation of water diffusion in different directions (Ianuş et 

al., 2018; Jespersen et al., 2013; Lawrenz and Finsterbusch, 2015; Mitra, 1995; Ozarslan and 

Basser, 2008). DDE can distinguish between microstructural properties and orientation dispersion 

without imposing modeling constraints (Cory et al., 1990; Mitra, 1995), likely making the technique 

more robust and accurate than LTE techniques by eliminating the possibility of assumption 

misestimation. Furthermore, the clinical viability of DDE μFA imaging was demonstrated in a 

preliminary study of MS patients at 3T with a 5 minute scan time and 3 mm isotropic resolution 

(Yang et al., 2018). While DDE is a promising technique, it has some limitations. Due to the use 

of two consecutive diffusion-encoding pulses separated by a mixing time, DDE sequences require 

longer TEs than standard LTE sequences to achieve equal b-values. Furthermore, a twice-

refocused implementation is required to avoid biases due to concomitant fields (Baron et al., 2012; 

Szczepankiewicz et al., 2019), further increasing the TE.  
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Techniques that utilize nonconventional diffusion-encoding waveforms probe unique q-

space trajectories that provide additional information about tissue microstructure beyond the 

capabilities of LTE. One technique to estimate μFA and other parameters is the gamma model, 

in which the inverse Laplace transform of the gamma distribution is fitted to powder averaged 

dMRI signals from LTE acquisitions and STE acquisitions (Szczepankiewicz et al., 2016, 2015). 

In the gamma model, signal variance due to non-Gaussian diffusion is characterized into two 

sources: isotropic variance arising from polydispersity in mean diffusivity, and anisotropic variance 

arising from microscopic anisotropy (Szczepankiewicz et al., 2015); the model assumes that LTE 

signal depends on both isotropic and anisotropic variance while STE signals depend only on 

isotropic variance. Gamma model μFA protocols use unique waveforms to acquire single-shot 

isotropic diffusion weighted signals (Eriksson et al., 2013; Lasič et al., 2014). Though STE is more 

TE-efficient than DDE, STE waveforms can potentially introduce time-dependent effects due to 

varying spectral content over the different gradient channels (Eriksson et al., 2013). Furthermore, 

the implementation of the gamma model described by Szczepankiewicz et al (Szczepankiewicz 

et al., 2015) is a computationally-intensive technique for parameter estimation. Other techniques 

include deriving μFA from higher order cumulant expansions with direct linear regression of the 

cumulant expansion of the diffusion signal (Nery et al., 2019) and the correlation tensor model 

(Henriques et al., 2020). Notably, the direct linear regression approach offers the potential 

advantages of computational efficiency over the gamma model, but the two have not been directly 

compared. 

The application of μFA imaging to clinical workflow is appealing due to the unique insight 

it provides into brain microstructure. The parameter’s insensitivity to neuron fiber orientation is 

advantageous over FA in the study or diagnosis of neuropathology in brain regions containing 

crossing or fanning fibers. However, μFA generally requires long scan times that are not clinically 

feasible, especially when used in conjunction with other imaging techniques that are required in 

the clinical workflow. Other demonstrations of μFA that have achieved shorter scan times did so 
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at the cost of resolution (Nilsson et al., 2019; Yang et al., 2018), producing μFA maps with poorer 

resolution than typical FA maps acquired with DTI. In order to maximize scan efficiency, it is 

essential to understand the optimal parameters required to measure μFA. To our knowledge, no 

comprehensive assessment of the optimal choices of b-value and relative numbers of LTE and 

STE acquisitions for a direct linear regression approach have been performed.  

In this work, we investigated the optimal b-values and ratio of STE to LTE acquisitions for the 

estimation of μFA in white matter. We combined these findings with two implementations of direct 

linear regression to enable the acquisition of full-brain, 2 mm isotropic resolution μA and μFA 

maps in vivo within a 4.5 min scan time and a 2-minute computation time. Estimates of μFA using 

direct approaches strongly correlated with the gamma model (ρ ≥ 0.9), and all approaches 

exhibited high test-retest reliability (ρ ≥ 0.77).  

2. Theory 

2.1 μFA estimation 

The normalized signal intensity of powder-averaged dMRI acquisitions can be represented 

by the cumulant expansion (Lasič et al., 2014): 

 

ln (
𝑆

𝑆0
) = −𝐷𝑏 +

𝜇2
2
𝑏2 −⋯          (1) 

 

where S is the powder-averaged signal, S0 is the mean signal with no diffusion encoding, b is the 

b-value, and μ2 is the second central moment or variance. Lasic et al (Lasič et al., 2014) define 

the microscopic fractional anisotropy in terms of the scaled difference in variance between 

powder-average LTE and STE acquisitions: 

 

𝜇𝐹𝐴 = √
3

2
(1 +

2

5

1

∆𝜇2̃
 )
−
1
2
          (2) 
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∆𝜇2̃ =
𝜇2
𝑙𝑖𝑛 − 𝜇2

𝑖𝑠𝑜

𝐷2
          (3) 

 

where μ2
lin and μ2

iso are the second terms in the cumulant expansions of powder-averaged LTE 

and STE acquisitions, respectively. Using equation (1) up to the second cumulant term, the 

powder-averaged linear and mean isotropic signals can be represented as: 

 

Slin = 𝑆0𝑒
−𝐷𝑏+

𝜇2
𝑙𝑖𝑛

2
𝑏2−

𝑇𝐸
𝑇2           (4) 

Siso = 𝑆0𝑒
−𝐷𝑏+

𝜇2
𝑖𝑠𝑜

2
𝑏2−

𝑇𝐸
𝑇2           (5) 

 

If it is assumed that the only sources of kurtosis are dispersion in pore size and orientation, then 

the diffusion coefficient D will be equal between LTE and STE (Szczepankiewicz et al., 2015). By 

assuming D is the same between LTE and STE signals acquired at the same b-value, Equations 

(4) and (5) can be substituted into equation (3) to provide an estimate of the scaled difference in 

variance that notably does not depend on the non-diffusion weighted signal S0: 

 

∆𝜇2̃ =
2ln(𝑆𝑙𝑖𝑛/𝑆𝑖𝑠𝑜)

𝐷2𝑏2
          (6) 

 

Substituting equation (6) into equation (1) provides an estimate of the μFA (Nery et al., 2019): 

 

𝜇𝐹𝐴 = √
3

2
(1 +

𝐷2𝑏2

5 ln (
𝑆𝑙𝑖𝑛
𝑆𝑖𝑠𝑜

)
)

−
1
2

          (7) 
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Microscopic anisotropy is defined here based on the difference in signal between linear and 

isotropic dMRI acquisitions, similar to the equation used in DDE protocols (Ianuş et al., 2018): 

 

𝜇𝐴 =
√
ln (
𝑆𝑙𝑖𝑛
𝑆𝑖𝑠𝑜

)

𝑏2
           (8) 

 

By ignoring the third and higher order cumulant terms in deriving equations (4) and (5), μA can 

be estimated from a single b-shell, reducing scan time; however, ignoring the higher cumulants 

comes with the cost of potentially introducing a bias to the measurement (Shemesh, 2018). μFA 

can then be expressed in terms of μA by substituting equation (8) into equation (7): 

 

𝜇𝐹𝐴 = √
3

2

𝜇𝐴2

𝜇𝐴2 + 0.2𝐷2
           (9) 

 

2.2 Diffusion coefficient estimation using the diffusion kurtosis model 

 Explicitly enforcing that the diffusion coefficient D is the same between LTE and STE 

acquisitions causes the minimum number of powder-averaged samples required to estimate D, 

𝜇2
𝑙𝑖𝑛 and 𝜇2

𝑖𝑠𝑜 in a joint least squares estimation to be only 4 (with at least one non-zero b-value 

sampled for each of LTE and STE). Accordingly, a protocol to map μFA using equation (9) could 

contain LTE and STE acquisitions at a single high b-value for computation of μA2 using equation 

(8), plus either STE or LTE acquisitions at two smaller b-values to enable estimation of D, 𝜇2
𝑙𝑖𝑛, 

and 𝜇2
𝑖𝑠𝑜 in a joint kurtosis model. It is also possible to estimate D from a linear fit over the low b-

values, but this may introduce a bias. Notably, it is also possible to estimate uA2 directly from 𝜇2
𝑙𝑖𝑛 

and 𝜇2
𝑖𝑠𝑜 (equation (3)). 
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 2.3 μA Optimization  

To optimize a protocol for μA and μFA, sequence parameters that maximize the ratio of 

the mean measurement to its standard deviation can be evaluated, similar to the approach used 

to determine optimal parameters for diffusivity measurements (Xing et al., 1997). Using standard 

error propagation (Bevington et al., 1993), the signal-to-noise ratio (SNR) of a μFA image 

generated using equation (9) can be expressed as: 

 

𝜇𝐹𝐴

𝜎𝜇𝐹𝐴
=

𝜇𝐹𝐴

√𝜎𝜇𝐴2
2 (

𝜕𝜇𝐴2

𝜕𝜇𝐹𝐴
) + 𝜎𝐷

2 (
𝜕𝐷
𝜕𝜇𝐹𝐴

)

          (10) 

 

μFA image quality thus increases with reduced variance in μA2 and D measurements. It is 

expected that μA2 will generally have much higher variance than D because it depends only on 

the highest b-shell data (equation (8)), which has the lowest SNR. Thus, we will focus on the 

optimization of μA2 as a surrogate for the optimization of μFA. The SNR of a μA2 image can be 

expressed as (Appendix): 

 

𝜇𝐴2

𝜎𝜇𝐴2
=
ln (
𝑆𝑙𝑖𝑛
𝑆𝑖𝑠𝑜

)√𝑛𝑙𝑖𝑛𝑛𝑖𝑠𝑜𝑆𝑙𝑖𝑛𝑆𝑖𝑠𝑜

𝜎√𝑛𝑙𝑖𝑛𝑆𝑙𝑖𝑛
2 + 𝑛𝑖𝑠𝑜𝑆𝑖𝑠𝑜

2

           (11) 

 

where nlin is the number of LTE directions acquired, niso is the number of STE averages acquired, 

Slin and Siso are the powder-averaged signals of the LTE and STE images, respectively, and σ is 

the mean image noise. Given that μA2/σμA2 is maximized when niso/nlin = Slin/Siso (see Appendix), 

and that Slin and Siso are dependent on b-value, the optimal protocol parameters (b and niso/nlin) 

can be determined using equation (11).  
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 To observe the effect of TE on the μA2 SNR, equations (4) and (5) can be substituted into 

equation (11): 

 

𝜇𝐴2

𝜎𝜇𝐴2
= 𝑒−

𝑇𝐸
𝑇2

𝑏2√𝑛𝑙𝑖𝑛𝑛𝑖𝑠𝑜 (
𝜇2
𝑙𝑖𝑛 − 𝜇2

𝑖𝑠𝑜

2 )(𝑒
−𝐷𝑏+𝑏2(

𝜇2
𝑙𝑖𝑛+𝜇2

𝑖𝑠𝑜

2 )
)

𝜎√((𝑛𝑙𝑖𝑛)𝑒
𝑏2(𝜇2

𝑙𝑖𝑛) + (𝑛𝑖𝑠𝑜)𝑒
𝑏2(𝜇2

𝑖𝑠𝑜))                  

          (12) 

 

 Equation (12) reveals that the SNR depends on TE by an exponential prefactor.  

3. Methods 

 Two sets of MRI scans were performed on two sets of volunteers for this study. The first 

set of scans (3.1) consisted of LTE and STE acquisitions over a wide range of b-values and was 

acquired to provide the signal data needed to optimize μA using equation (11). The second set of 

scans (3.2, 3.3) performed test-retest measurements with a comprehensive sequence that 

allowed for μFA mapping using the gamma model, equation (2), and equation (9).  

3.1 Sequence optimization 

MRI scans were performed in 4 healthy volunteers (2 females, mean age 22.4 ± 1.7 years) 

on a 3T Prisma whole-body MR system (Siemens Healthineers) with 80 mT/m strength and 200 

T/m/s slew rate. Informed consent was obtained before scanning and the study was approved by 

the Institutional Review Board at Western University. Multiple b-shell diffusion data were acquired 

in a single scan using LTE and STE sequences (Fig. 1): 6 image volumes were acquired at b = 0 

s/mm2, and 6 linear directions and 6 isotropic averages were acquired at b-values between 500 

and 3500 s/mm2, in increments of 500 s/mm2. The other parameters were TE/TR = 125/8700 ms, 

FOV = 192x192 mm2, 2 mm isotropic resolution, 45 slices, rate 2 GRAPPA, 2 averages, and total 

scan time = 29 minutes. Images were processed using Gibbs ringing correction and Eddy current 

correction with FSL Eddy (Andersson and Sotiropoulos, 2016).  
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Fig. 1. Schematic representation of the spherical tensor encoding gradient waveforms: 

diffusion encoding blocks have been inserted on both sides of a 180° pulse in all three gradient 

directions to acquire an isotropic diffusion MRI signal. Implicit gradient reversal due to the 180° 

pulse has been applied. 

(1 column figure, grayscale) 

 

A region of interest (ROI) across multiple slices was manually selected in the frontal WM 

for each patient and used to measure the mean linear signal and mean isotropic signal at each 

b-value. A joint regression was performed on the mean LTE and STE signal data to fit the curves 

to equation (1) up to the third cumulant, with the assumption that D is the same in both linear and 

isotropic acquisitions. The best-fit cumulant expansions for each of the 4 volunteers were 

averaged and used together with equation (11) to determine the optimal b-value and optimal ratio 

of linear to isotropic acquisitions in a μA protocol. In evaluation of equation (11), the T2 decay 

constant was assumed to be 80 ms to approximate WM at 3T (Wansapura et al., 1999). These 

SNR calculations assume the same total number of acquisitions at each b-value, with only the 

ratio of niso/nlin acquisitions changing. 
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3.2 Test-retest Acquisitions 

 A comprehensive 113 acquisition dMRI protocol was used to acquire the data to compare 

μFA volumes generated with different methods. 4 healthy volunteers (2 females, mean age 28.0 

± 6.6 years) were imaged at 3T with a 9-minute dMRI scan with TE/TR = 94/4500 ms. The scan 

consisted of 3, 3, 15, 6, and 22 LTE directions and 6, 6, 10, 10, and 27 STE averages at b = 100, 

700, 1000, 1400, and 2000 s/mm2, respectively, as well as 5 averages at b = 0 s/mm2. These 

directions were chosen to enable retrospective splitting of the data into the subsets described 

below. The other parameters were FOV = 220x220 mm2, 2 mm isotropic resolution, 48 slices, and 

rate 2 GRAPPA. Volunteers were also scanned using T1-weighted MPRAGE with 1 mm isotropic 

resolution. After removing each volunteer from the MR scanner for a period of 5-10 minutes, a 

repeat measurement was performed using only the dMRI protocol. Data from these acquisitions 

is available online [dataset] (Baron and Arezza, 2020). 

 Two separate post-processing pipelines were performed on the data to acquire two 

different data sets: a denoised data set to compare the direct μFA approaches to the gamma 

model, and a “noisy” data set that omitted denoising to test the effects of using an optimized vs. 

suboptimal ratio of STE to LTE scans to compute μA, since denoising is a non-linear operation 

that invalidates the assumptions used in the derivation of equation (11). All the diffusion MRI data 

was processed using Gibbs ringing correction and FSL Eddy (Andersson and Sotiropoulos, 2016), 

and PCA denoising (Veraart et al., 2016) was performed prior to these corrections for the 

denoised data set. 

The T1-weighted anatomical volumes were segmented into WM and gray matter (GM) 

masks using FMRIB’s Automated Segmentation Tool (FAST) (Zhang et al., 2001) and were 

registered to the denoised dMRI volumes using symmetric diffeomorphic and affine transforms 

with ANTS software (https://github.com/ANTsX/ANTs) (Chen et al., 2019). The retest noisy and 

denoise volumes were also registered to the respective test volumes using a rigid transform with 

ANTS.  
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 The noisy dMRI data were split into two 56-acquisition subsets to represent optimized and 

suboptimal protocols, respectively, to validate equation (11). The optimized protocol was based 

on a rapid sequence proposed by Nilsson et al (Nilsson et al., 2019) and included 3, 3, 6, and 6 

LTE directions and 6, 6, 10, and 16 STE averages at b = 100, 700, 1400, and 2000 s/mm2. The 

suboptimal protocol consisted of the same acquisitions with one exception: the ratio niso/nlin at the 

b = 2000 s/mm2 shell was 6/16 instead of 16/6, a suboptimal ratio (see 4.1). The 6 direction subset 

of LTE acquisitions used an icosahedral sampling scheme (Nilsson et al., 2019), and the 16 

direction subset was distributed using electrostatic repulsion (Jones et al., 1999). 

 The denoised dMRI data were split into two subsets with each containing 56 acquisitions. 

The “standard subset”, to be used to compare the gamma model vs. equation (3), used the rapid 

sequence by Nilsson et al described above (Nilsson et al., 2019). An additional subset, referred 

to herein as the “DTI subset”, included 22 STE directions at b = 2000 s/mm2 and 3, 15, and 16 

LTE averages at b = 100, 1000, and 2000 s/mm2 (56 total acquisitions), and was designed to 

investigate whether a single b-shell to compute μA2 (b = 2000 s/mm2) can be added to a DTI 

acquisition (b = 100, 1000 s/mm2) to enable μFA imaging using equation (9). The 15 and 16 

direction LTE shells were determined separately from each other using electrostatic repulsion. 

3.3 Test-retest Analysis 

To compare the SNR of μA2 between the optimized and suboptimal subsets of the noisy 

dMRI data, μA2 was estimated at b = 2000 s/mm2 in both the test and retest volumes for each 

volunteer. The test-retest coefficients of variance (CoVs) of the optimized and suboptimal volumes 

across all volunteers were compared. 

For the denoised data, the powder-averaged STE and LTE signals vs. b-value were fitted 

to the diffusion kurtosis model using a joint non-negative least squares method assuming 

consistent D between STE and LTE, and μFA was computed using equation (2) (μFAE2). μFA was 

also estimated using Nilsson et al’s Multidimensional diffusion MRI software (Nilsson et al., 2018) 

(https://github.com/markus-nilsson/md-dmri) to fit the diffusion-weighted signals to the gamma 
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model (μFAgamma). μFA maps were generated for each volunteer using these two methods in the 

standard subset of data. 

Additionally, μFA was estimated using equation (9) in the DTI subset by decoupling μA2 

and D (μFAE9+DTI): μA2 was estimated at b = 2000 s/mm2 using the direct cumulant method 

(equation (8)) while D was estimated by fitting the b = 100 and 1000 s/mm2 data to the DTI model 

using FMRIB’s DTIFIT tool. 

The μFA maps from the different methods and subsets were then compared in WM using 

Bland-Altman plots and voxelwise scatter plots, and Pearson correlation coefficients were 

computed between each technique. To test the repeatability of the measurement techniques, 

Bland-Altman plots were generated for each patient to compare the initial and repeat μFA volumes 

and Pearson correlation coefficients were computed between initial and repeat μFA maps.  

4. Results 

4.1 Sequence optimization 

The logarithm of the powder-averaged WM dMRI signal as a function of b-value, averaged 

across all volunteers, is shown in Fig. 2. As expected (Szczepankiewicz et al., 2015), the 

departure from monoexponential signal decay was greater in the LTE than STE signal curve due 

to the mesoscopic orientation of tensors. Fig. 3 shows the variation in μA2/σμA2 with b-value and 

the ratio of niso/nlin. For any given b-value, the optimal niso/nlin was computed to be equal to the 

ratio of the powder averaged signals, Slin/Siso, at said b-shell. The highest μA2/σμA2 occurred when 

the b-value was 2000 s/mm2, for which the optimal niso/nlin was approximately 1.7. However, a 

wide range of dMRI parameter configurations yielded an SNR above 95% of the optimal 

parameters for μA2 SNR. 
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Fig. 2. Logarithm of the diffusion MRI signal vs. b-value in frontal white matter. The plot 

shows the powder-averaged signal from a manually prescribed region of interest across four 

volunteers as measured with linear tensor encoding and spherical tensor encoding (black and 

blue circles, respectively), while the dashed lines show the third order cumulant model fit. Also 

depicted are the standard deviations across the volunteers. 

(1 column figure, printed in color) 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 24, 2020. ; https://doi.org/10.1101/2020.11.23.20237099doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.23.20237099
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Fig. 3. Simulated μA2 SNR in white matter as a function of the b-value and the ratio of STE 

to LTE acquisitions (niso/nlin). Though the maximum SNR occurred when b = 2000 s/mm and 

niso/nlin = 1.7 (marked by an ‘X’), a wide range of parameters yielded SNRs greater than 95% of 

the maximum SNR, suggesting that there is flexibility in parameter choice when designing a 

protocol. Notably, a significant drop off in SNR occurred for niso/nlin < 1, suggesting that image 

quality is maximized when the number of STE acquisitions is greater than or equal to the number 

of LTE acquisitions. 

(1.5 column figure, printed in color) 

 

Using the powder averaged STE and LTE WM signal data from the noisy data subset at 

b = 2000 s/mm2 across all volunteers along with equation (11), the SNR of μA2 in the suboptimal 

subset was predicted to be 87% of the SNR of μA2 in the optimized subset. Analysis of the test 

and retest μA2 volumes revealed a CoV of 22.96% in the optimized measurement and a CoV of 

25.75% in the suboptimal measurement, yielding an experimentally acquired SNR ratio of 
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approximately 89% (since CoV is analogous to SNR-1). Example μA2 images estimated using the 

optimized and suboptimal subsets are depicted in Fig. 4.  

 

 

Fig. 4. Example μA2 images acquired with the optimized (left) and suboptimal (right) 

subsets of the data without denoising. Lower image quality is observed in the right case, with 

some irregular features highlighted by the yellow circles. 

(1 column figure, printed in color) 
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4.2 Comparison between different μFA techniques 

Example μFAgamma and μFAE2 maps computed from the standard subset, as well as 

μFAE9+DTI maps computed from the DTI subset, are depicted in Fig. 5. Aside from CSF regions, 

μFA is qualitatively consistent across the different techniques and data subsets and image quality 

is comparable between them.  
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Fig. 5. Example μFA images from one volunteer. Images were acquired using the gamma 

model with the standard subset (left), equation (2) with the standard subset (center), and equation 

(9) with MD computed from DTI using only b-values of 100 and 1000 s/mm2 (right). Comparable 

image quality is observed for the three methods. 

(2 column figure, grayscale) 
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Scatter plots and Bland-Altman plots comparing WM μFA using the three different 

estimation approaches in all volunteers are presented in Fig. 6. Strong linear correlations were 

observed in the scatter plots comparing each volume, with respective Pearson correlation 

coefficients of 0.97 (μFAgamma vs. μFAE2), 0.90 (μFAgamma vs. μFAE9+DTI), and 0.90 (μFAE2 vs. 

μFAE9+DTI). Relative to μFAgamma, the mean WM biases in the other volumes were -0.11 (μFAE2) 

and -0.02 (μFAE9+DTI). 
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Fig. 6. Voxelwise correlations between μFA estimates acquired using different techniques 

(left) and Bland-Altman plots depicting biases between the methods (right): (a) μFAgamma vs. 
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μFAE2, (b) μFAgamma vs. μFAE9+DTI, and (c) μFAE2 vs. μFAE9+DTI. The dashed red line and solid black 

line in each of the scatter plots represent the identity and regression lines, respectively. The solid 

black line in the Bland-Altman plots represents the mean bias, and the dashed grey lines 

represent the ±1.96 standard deviation lines. 

(2 column figure, printed in color) 

 

4.3 Analysis of repeatability 

Bland-Altman plots comparing the test and retest μFA volumes across all volunteers 

revealed no biases in repeat measurements (Fig. 7). The Pearson correlation coefficients 

between the test and retest μFA maps were 0.83 (μFAgamma), 0.79 (μFAE2), and 0.84 (μFAE9+DTI).  
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Fig. 7. Bland-Altman plots assessing the test-retest reliability of μFA estimates acquired 

using different techniques. The solid black line represents the mean bias, and the dashed grey 

lines represent the ±1.96 standard deviation lines. 

(1 column figure, printed in color) 
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5. Discussion 

 Microscopic anisotropy mapping has been gaining popularity in neuroimaging studies 

because it provides a marker of tissue microstructure independent of orientation dispersion. The 

aims of this work were two-fold: (1) to develop a computationally-efficient method to estimate μFA 

and determine the optimal imaging parameters (b-value and niso/nlin) needed to maximize image 

quality for a given scan time or number of acquisitions, and (2) to validate the techniques 

described in this work against the more established gamma model in a clinically-viable protocol. 

The first aim was achieved by directly estimating μA2 from the cumulant expansion of powder-

averaged LTE and STE acquisitions and then estimating the SNR of μA2 using standard error 

propagation theory. The optimal b-value of 2000 s/mm2 falls within the optimal range for DDE 

methods; Ianus et al found that b-values between 2000 and 3000 s/mm2 are optimal for single-

shell DDE estimations of μA because lower b-values result in noisy images while higher b-values 

result in large biases (Ianuş et al., 2018). The optimal niso/nlin (Slin/Siso) is somewhat intuitive as 

STE images typically have lower signal than LTE images due to the more rapid signal decrease 

with b-value. Notably, a steep drop-off in SNR with niso/nlin ratios below 1 was observed. These 

optimization findings were validated by the test-retest CoV ratio between the standard and 

suboptimal data sets agreeing with the SNR ratio predicted by equation (11). The second aim 

was achieved by acquiring all the data necessary for all the different μFA volumes in a single 

acquisition, mapping μFA from different subsets of data, and performing voxelwise comparisons 

on the maps. Notably, the direct approaches using equations (3) and (9) yielded comparable 

reliability and strong correspondence with the gamma method. 

 The μFA imaging techniques proposed in this work are suitable for clinical use due to the 

relatively minimalistic acquisition protocols needed to estimate μA2 and μFA. Using equation (2) 

or (9), μFA, isotropic kurtosis, and anisotropic kurtosis can be estimated from as few as 4 powder-

averaged signals, with at least one acquisition being an STE acquisition and another being an 

LTE acquisition. Furthermore, μFA computation time in the standard subset only took 
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approximately 2 minutes using the regression approach in the standard subset, versus 

approximately 120 minutes when using the gamma model, evidence. To demonstrate an even 

faster protocol than the standard protocol used for comparisons in this work, a further reduced 

subset of the data (16 LTE directions at b = 2000 s/mm2 and 3, 3, and 18 STE acquisitions at b = 

100, 1000, and 2000 s/mm2, respectively) was used to estimate μFA, μA2, and the linear kurtosis 

using a joint non-linear least squares fit, shown in Fig. 8. Note that post-processing was performed 

on this subset after separating it from the rest of the data. This protocol would require only 3.3 

mins of scan time and demonstrates that the linear kurtosis can be estimated from a set of data 

containing only one LTE shell when D is assumed to be the same between LTE and STE 

acquisitions.  

 

 

Fig. 8. Example μFA, μA2, and linear and isotropic variance maps acquired using equation 

2 in a subsampled data set: The acquisition comprised of 16 LTE directions at b = 2000 s/mm2 

and 3, 3, and 18 STE directions at b = 100, 1000, and 2000 s/mm2, respectively. This direction 

scheme corresponds to a total scan time of approximately 3.3 min with 220 mm x 220 mm x 96 

mm coverage at an isotropic 2 mm resolution. All images were normalized to a maximum pixel 

value of 1. 

(2 column figure, grayscale) 

 

In this study, biases were observed in the μFA WM maps relative to the measurements 

produced by the gamma model. The μFAE2 metric had a large mean bias of -0.11 compared to 
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μFAgamma, while the μFAE9+DTI metric was biased against μFAgamma by a modest -0.02. We suspect 

that the most likely causes of this discrepancy between the techniques are the differences 

between the models used to fit the data: the implementation of the gamma model used in this 

work utilizes a soft Heaviside function to constrain the fit to more heavily use the lower b-values, 

similar to the DTI fit for D in μFAE9+DTI. Accordingly, strong correspondence was observed between 

μFAgamma and μFAE9+DTI. Using a full kurtosis fit to estimate D resulted in lower μFA values in the 

μFAE2 volume, which reveals a potential bias in the other two methods that results in physically 

implausible μFA values that are greater than 1 (see Fig. 7). That said, μFA computed from the 

equation (2) approach could also be biased to lower values because the cumulant expansions of 

the powder-averaged signals were limited to the second order (equations (4) and (5)), ignoring 

the effects of higher order terms. A previous study that used DDE to estimate μA at a single b-

value in six different microstructural models (Ianuş et al., 2018) reported an underestimation of 

the metric when acquired at a single b-shell; to remove this bias, the use of a multiple b-shell 

approach to remove higher order cumulant terms can be considered.  

Qualitatively, the biases between the different volumes did not have a significant impact 

on the images as contrast between structures or regions and image quality appeared similar in 

all the maps. Additionally, voxel-wise comparisons between the maps showed strong linear 

relationships in WM regions, evidence that the biases between the different techniques are likely 

scalar or constant. We propose that each of the techniques described in this work may be suitable 

for use in clinic or research under the caveat that studies assessing multiple patients or assessing 

patients longitudinally should use the same protocol and technique to avoid biases.  

 There are several limitations potentially affecting the accuracy of this study. The STE 

sequence used in this work utilizes different gradient waveforms in each diffusion-encoding 

direction, probing each at slightly different diffusion times and over different trajectories in q-

space. Given the small microstructural length scales in WM (<10 μm), the long diffusion time 

regime is likely an appropriate assumption for all 3 waveforms. However, it may be worthwhile to 
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investigate the individual waveforms separately in phantoms or in vivo acquisitions, or to swap 

the gradients (e.g. Gx with Gy) to test for inconsistencies in resulting images.  

Another limitation is the protocol optimization cohort of volunteers, which contained 4 

people, all under the age of 25. Water diffusion anisotropy has been shown to decrease with aging 

(Hsu et al., 2010; Sullivan and Pfefferbaum, 2006) and thus this cohort represents a group in 

which μA and μFA in brain tissue could be expected to be higher, on average, than in older 

subjects. Nevertheless, the resulting optimal b-value of 2000 s/mm2 is consistent with the values 

used in previous studies that used single-shell DDE acquisitions and those that used multi-shell 

nonconventional protocols.  

A relatively low number of LTE directions were acquired at b = 2000 s/mm2 in the optimized 

noisy and standard denoised subsets, which may have slightly reduced the accuracy of the 

measurements by introducing a directional dependence to the powder-averaged signal (Nilsson 

et al., 2020). This would not have affected comparisons between μFAE2 and μFAgamma, but the 

μFAE9+DTI volume was computed with more STE acquisitions at b = 2000 s/mm2, which may have 

slightly advantaged measurements from that volume against the others, particularly in the test-

retest analysis. 

6. Conclusion 

In conclusion, we have demonstrated an optimized model-free technique that enabled full-

brain mapping of μA and μFA in a clinically relevant 3.3 min scan time at 3T. Two implementations 

of the proposed direct approach were validated against the gamma model, and an approach to 

determine the optimal maximum b-value and ratio of STE to LTE acquisitions was proposed and 

validated. Compared to other μFA techniques involving the use of nonconventional pulse 

sequences, the direct method requires fewer b-shells (and, thus, fewer total directions) and 

significantly less computation. Though additional work is necessary to establish the roles of μA 

and μFA imaging in clinical settings, the ability to rapidly probe these measurements in vivo opens 

the door for exploration into their abilities to assess neurodegeneration and other pathologies. 
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Appendix: Signal to noise ratio of μA2 estimation 

The variance of μA2 (σ2
μA2), assuming equal noise in STE and LTE images and that there 

is no covariance between the two acquisition types, can be approximated using the error 

propagation equation. Propagating error from equation (8) yields: 
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where σ is the noise in an STE or LTE diffusion-weighted MR image, b is the b-value, nlin is the 

number of LTE directions acquired, niso is the number of STE averages acquired, and Slin and Siso 

are the mean signals in LTE and STE acquisitions, respectively. The SNR of a μA2 image or 

volume (SNRμA2) can be estimated as the μA2 metric divided by its standard deviation:  
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Substituting equations (8) and (A.1) into (A.2) yields equation (11): 
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To determine the optimal ratio of niso/nlin as a function of the mean LTE and STE signal at a single 

b-value, we can express equation (A3) in terms of only niso and nlin, replacing most other terms 

with the constant C. We can also confine the total number of acquisitions to an integer value, T, 

and replace niso with T-nlin to reduce the number of unknown variables in the formula. The resulting 

expression is:   

 

𝜇𝐴2

𝜎𝜇𝐴2
=

𝐶√𝑛𝑙𝑖𝑛(𝑇 − 𝑛𝑙𝑖𝑛)

√𝑛𝑙𝑖𝑛𝑆𝑙𝑖𝑛
2 + (𝑇 − 𝑛𝑙𝑖𝑛)𝑆𝑖𝑠𝑜

2

           (𝐴. 3) 

 

 The maxima and minima of equation (A.3) can be calculated by solving for the roots of the 

derivative of the SNR equation: 

 

𝑑 (
𝜇𝐴2

𝜎𝜇𝐴2
)

𝑑𝑛𝑙𝑖𝑛
= 𝐶

(

 
𝑇 − 2𝑛𝑙𝑖𝑛

2√𝑛𝑙𝑖𝑛(𝑇 − 𝑛𝑙𝑖𝑛)√𝑆𝑖𝑠𝑜
2 (𝑇 − 𝑛𝑙𝑖𝑛) + 𝑆𝑙𝑖𝑛

2 𝑛𝑙𝑖𝑛

−
√𝑛𝑙𝑖𝑛(𝑇 − 𝑛𝑙𝑖𝑛)(𝑆𝑙𝑖𝑛

2 − 𝑆𝑖𝑠𝑜
2 )

2(𝑆𝑖𝑠𝑜
2 (𝑇 − 𝑛𝑙𝑖𝑛) + 𝑆𝑙𝑖𝑛

2 𝑛𝑙𝑖𝑛)
3
2
)

      (𝐴. 4) 

 

 The roots of (A.4) are nlin = TSiso/(Siso - Slin) and nlin = TSiso/(Siso + Slin), the prior of which is 

not realizable because nlin would be negative if Siso < Slin. Rearranging the latter yields the optimal 

ratio of STE to LTE acquisitions: 

 

𝑛𝑙𝑖𝑛 =
𝑇𝑆𝑖𝑠𝑜

𝑆𝑖𝑠𝑜 + 𝑆𝑙𝑖𝑛
=
(𝑛𝑙𝑖𝑛 + 𝑛𝑖𝑠𝑜)𝑆𝑖𝑠𝑜
𝑆𝑖𝑠𝑜 + 𝑆𝑙𝑖𝑛

 

𝑛𝑖𝑠𝑜
𝑛𝑙𝑖𝑛

=
𝑆𝑙𝑖𝑛
𝑆𝑖𝑠𝑜
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