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Abstract   

Preeclampsia is a hypertensive disorder of pregnancy, which complicates up to 15 % of 

US deliveries. It is an idiopathic disorder with complex disease genetics associated with 

several different phenotypes. We sought to determine if the genetic architecture of 

preeclampsia can be described by clusters of patients with variants in genes in shared 

protein interaction networks. We performed a case-control study using whole exome 

sequencing on early onset preeclamptic mothers with severe features and control 

mothers with uncomplicated pregnancies. The study was conducted at Women & 

Infants Hospital of Rhode Island (WIH). A total of 143 patients were enrolled, 61 women 

with early onset preeclampsia with severe features based on ACOG criteria, and 82 

control women at term, matched for race and ethnicity. The main outcomes are variants 

associated with severe preeclampsia and demonstration of the genetic architecture of 

preeclampsia. A network analysis and visualization tool, Proteinarium, was used to 

confirm there are  clusters of patients with shared gene networks associated with 

severe preeclampsia. The majority of the sequenced patients appear in two significant 

clusters.  We identified one case dominant and one control dominant cluster.  Thirteen 

genes were unique to the case dominated cluster. Among these genes, LAMB2, PTK2, 

RAC1, QSOX1, FN1, and VCAM1 have known associations with the pathogenic 

mechanisms of preeclampsia.  Using the exome-wide sequence variants, combined 

with these 13 identified network genes, we generated a polygenetic risk score for 

severe preeclampsia with an AUC of 0.57. Using bioinformatic analysis, we were able to 

identify subsets of patients with shared protein interaction networks, thus confirming our 

hypothesis about the genetic architecture of preeclampsia. The unique genes identified 
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in the cluster associated with severe preeclampsia were able to increase the predictive 

power of the polygenic risk score.  
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Introduction  

Preeclampsia is a hypertensive disorder of pregnancy. It is associated with a 

higher risk of hypertension and cardiovascular disease later in life. Women who had 

preeclampsia have a twofold increased risk of death from cardiovascular diseases 1, 2. 

There is evidence that preeclampsia originates in part from genetic causes that include 

contributions from the maternal, paternal and fetal genome 3-7. The role of genetics in 

preeclampsia is supported by family-based observations 8, 9 with more than 100 studies 

showing a 2- to 5-fold increased risk among family members of affected women 10-15. 

The heritability of preeclampsia is up to 52% 8, 16. The recurrence risk for preeclampsia in 

the daughters of either eclamptic or preeclamptic patients is 20-40% 17, 18. However, 

there is no current consensus among the published results in regards to associated 

genes and the pathogenesis of disease.      

     Genetic risk for most complex diseases involves the interaction of multiple genes in 

discrete networks and pathways 19. Although complex diseases show increased 

recurrence risk in families, they do not follow a simple Mendelian pattern of inheritance 

20. Computational methods have been used to analyze the network of genes that are 

linked to a variety of disorders like autism and to find biological subnetworks due to the 

genetic heterogeneity of the disease 21. There are several studies employing 

computational methods to identify important genes associated with hypertension. Ran et 

al analyzed protein-protein interaction (PPI) network topology and molecular connectivity 

between protein pathways to identify associations with hypertension 22. Researchers 

developed a machine-learning algorithm to predict novel hypertension associated genes 

23.     
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    We hypothesize that the genetic architecture of complex diseases like preeclampsia is 

described by clusters of patients with variants in genes in shared protein interaction 

networks. We sought to test this hypothesis using whole exome sequencing in carefully 

selected patients with severe preeclampsia. We compared variants identified in women 

with early onset, idiopathic preeclampsia with term controls without personal or family 

history of pregnancy related hypertensive disorders. We built and implemented 

Proteinarium, a multi-sample, PPI tool, to identify clusters of patients with shared PPI 

networks.   

Methods 

Study population 

     Women & Infants Hospital of Rhode Island (WIH) is the only provider of high-risk 

perinatal services in Rhode Island, northeastern Connecticut and southeastern 

Massachusetts. We used this population-based service to enroll preeclamptic mothers 

with early onset, severe features, based on ACOG criteria, as well as term mothers with 

no history of preeclampsia 24.  

      This case/control study was approved by the Institutional Review Board of WIH 

(Project ID: WIH 16-0031). Between the years 2016-2020, we reviewed the records of all 

early-onset preeclamptic mothers with severe features delivering < 34 weeks. Following 

informed consent, we asked explicit questions about preeclampsia in mother, 

grandmother, first order relatives and also paternal relatives.  Clinical history, with an 

emphasis on additional risk factors including medical illnesses and drug use was 

recorded. Hypertensive disorders include a broad range of different phenotypes. Again, 

in order to leverage the likelihood of genetic discovery associated with preeclampsia, we 
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excluded mothers with personal or family history of other hypertensive disorders. 

Controls were mothers who delivered ≥ 37 weeks’ gestation for whom the formal genetic 

interview revealed no history of preterm birth or pregnancy related hypertensive 

disorders on either the maternal or paternal side of the pedigree. A total of 143 patients 

were enrolled, 61 women with early onset preeclampsia with severe features, and 82 

control women at term, matched for race and ethnicity.  

 

Whole Exome Sequencing 

    Residual maternal whole blood was obtained from each mother and stored at -80°C. 

Samples were sent to an outside facility for whole exome sequencing that was blind to 

disease status. The library was sequenced on an Illumina HiSeq 4000 using 150 bp paired-

end protocols.  

 

Sequence Data 

     For variant discovery we used the Gene Analysis Tool Kit (GATK) V4 to analyze the 

sequence reads 25. Haplotype caller was applied for variant detection 26. Variants were 

flagged as low quality and filtered using established metrics: if three or more variants were 

detected within 10bp; if four or more alignments mapped to different locations equally well; 

if coverage was less than ten reads; if quality score < 30; if low quality for a particular 

sequence depth (variant confidence/unfiltered depth < 1.5); and if strand bias was observed 

(Phred-scaled p-values using Fisher’s Exact Test > 200).   
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Genotype Testing 

     To identify variants that were differentially abundant between cases and controls, we 

used a Markov Chain Monte Carlo (MCMC) Fisher Exact Test to compare the frequency of 

the homozygous reference, homozygous alternative, and the heterozygous genotypes 

between cases and controls. Eigenstrat detected no significant population stratification 27. 

 

Variant Annotation 

     We applied a strict filter-based annotation using ANNOVAR 28. We identified deleterious 

variants with Polyphen 2 HDIV, SIFT and CADD 29-32. We used the following thresholds: 

Polyphen 2 HDIV prediction if a change is damaging (>=0.957), a SIFT score (<0.05), a 

CADD score >15, and minor allele frequency (MAF) <0.05 from the 1000 Genome Project 

32. 

 

Network Analysis  

     We hypothesized that the genetic architecture underlying complex disorders is best 

explained by subsets of patients with variants in shared networks and pathways sufficient 

to express the phenotype. To analyze our whole exome sequencing data, we implemented 

Proteinarium, our multi-sample PPI analysis and visualization tool 1.   We determined the 

genetic similarity between the clusters identified using separation testing.  Combining 

genome wide variants with the unique genes identified by this network analysis, we 

generated a polygenic risk score prediction model.  These analyses are explained in detail 

in the Supplementary Methods. 
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Results  

   The clinical characteristics and the race/ethnicity distribution of the patients are shown in 

Table 1. As can be seen from Table 1, gestational age at delivery, systolic blood pressure, 

frequency of proteinuria, impaired liver function, thrombocytopenia, cerebral visual 

symptoms and fetal growth retardation were all significantly different between the groups, 

which was expected by our definition of severe preeclampsia.  

     High quality sequence data with a Phred score >30 from well-balanced pools with over 

19,000,000 reads/patient, 40X average depth of coverage, with more than 80% of 

sequence reads with at least 20X coverage were observed. We identified a total of 528,630 

variants including 187,915 exonic variants. The work flow for the univariate analysis is 

shown in Figure 1. After application of the initial filters for coverage and variant 

pathogenicity, there were 8,867 predicted deleterious variants (available at 

Online_Supplemental_Table 1). Among these, 21 variants were nominally associated with 

preeclampsia by genotype testing. All were non-synonymous, exonic variants (Table 2). 

Nonetheless, none of these variants met genome-wide significance after correction for 

multiple comparison testing. 

    Proteinarium was used to identify clusters of patients with shared networks associated 

with severe preeclampsia and the resulting dendrogram is shown in Figure 2A. Out of the 

143 patients sequenced, 129 patients were assigned to two statistically significant clusters. 

(p< 0.0001). The inset in Figure 2A shows the number of cases and controls in each 

cluster. Cluster A had significantly more cases than controls, containing 47 of the 61 case 

subjects. The layered network for the case-dominated Cluster A is shown in Figure 2B. 

There are 13 genes which are unique to Cluster A highlighted in red in the layered network 
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graph. Most have defined functional roles or implications for preeclampsia, Table 3. Cluster 

B had significantly more controls than cases, including 61 of the 82 subjects. The layered 

network for Cluster B is shown in Figure 2C. The unique genes from the layered network 

graph of Cluster B, shown in blue, are listed in Supplemental Table 2. When we compared 

the sequence data of the samples not assigned to clusters with those that were assigned, 

we did not find significant differences in the average depth of coverage. Likewise, there 

were no significant differences in clinical/phenotypic characteristics when comparing the 

subjects in the significant clusters with the subjects that were not in these clusters (data not 

shown).  

     The comparison of the unique genes from the case and the control dominated clusters 

revealed a positive separation score, confirming that the layered PPI networks of these two 

patient subgroups exist in distinct areas of the interactome. We ran GO term analysis using 

DAVID software on all genes of the network from Cluster A and from Cluster B, 

Supplementary Table 3  33, 34. We found significantly enriched biological processes, 

molecular functions and cellular components based on Bonferroni corrected p-value for the 

case and control dominated networks. Prominent among the biological processes and 

molecular functions associated with preeclampsia were antigen processing and 

presentation, cellular movement (axon guidance and microtubules) and T cell receptor 

signaling.  

      We previously reported the Database for Preeclampsia (dbPEC) which archives a 

curation-based collection of genes associated with preeclampsia and their association with 

clinical features and concurrent conditions 35.  We compared the genes from our univariate 

analysis and the genes from both case and control dominated layered networks to those in 
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the database. We found two overlapping genes from the univariate gene list (TTN and 

CCL14) that were included in dbPEC. We also found three overlapping genes from the 

layered network of Cluster A (FN1, KIF2A, VCAM1). By over representation analysis, 

Cluster A is significantly enriched for genes previously shown to be associated with 

preeclampsia in dbPEC (p< 0.0033).  

 Aggregating information from an array of risk alleles and or genes, also known as a 

polygenic risk score (PRS), is a means to predict an individual’s phenotype or risk of 

disease based on their genomic profile.36 Gene-based models trained on the training set 

and tested on the test set with an LFDR threshold of 0.1 achieved the highest AUC for the 

ROC of 0.524. We hypothesized that our PPI network analysis would provide increased 

predictive power, and thus we also tested these models including the 13 unique genes 

identified in the preeclampsia dominant cluster. This resulted in an increase in the AUC to 

0.57 with a 95% confidence interval between 0.383 and 0.732.  

 

Discussion 

     Preeclampsia is a life-threatening, multi-system hypertensive disorder of pregnancy, 

which complicates up to 15 % of US deliveries 8, 36-38. The incidence is increasing38. It is 

recognized as a leading cause of maternal and fetal morbidity and mortality worldwide 36. 

Preeclampsia is characterized by varying degrees of maternal symptoms including elevated 

blood pressure, proteinuria and fetal growth restriction 39. Many clinicians believe that 

preeclampsia, severe preeclampsia, and early vs late preeclampsia are different disorders 

40-42. Previously, using bioinformatic methods, we showed that there are discrete gene sets 

associated with these different phenotypes of preeclampsia 35.  
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   We performed whole exome sequencing on women with idiopathic early-onset 

preeclampsia with severe features and singleton births <34 weeks’ gestation and 

compared them to term controls with no family history of preeclampsia. We developed 

Proteinarium, a multi-sample, PPI analysis and visualization tool, to identify clusters of 

patients with shared protein-protein interaction networks 43. Using seed genes from each 

patient, Proteinarium built individual networks based on the STRING database. The 

similarities between individual PPI networks were evaluated using a distance metric for 

clustering the samples. We identified a single, significant cluster with a predominance of 

cases with early-onset, severe features of preeclampsia. We also identified a single 

control-dominated cluster.  The separation test of the unique genes from case and 

control dominated clusters confirmed that the two subnetworks forming clusters A and B 

exist in the different regions of the interactome. These results support our hypothesis 

that the genetic architecture of complex diseases is characterized by clusters of patients 

that have variants in shared gene networks and provide insights into the genetics of 

severe preeclampsia. 

     Several of the unique genes from the case dominated network have very plausible 

mechanistic connections to preeclampsia. Laminin β2 (LAMB2) is a glomerular 

basement membrane (GBM) component, required for proper functioning of the 

glomerular filtration barrier. It has a role in proteinuria 44 and serum laminin levels in 

preeclamptic patients are significantly higher than those in normal pregnancy 45. 

Hypoxia-induced upregulation of Quiescin Sulfhydryl Oxidase 1 (QSOX1) and an 

elevation in intracellular H2O2 leads to increased apoptosis in the placentae of 

pregnancies complicated by preeclampsia 46. QSOX1 protein is found in circulating 
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extracellular vesicles of both preeclampsia and healthy pregnant women 47. Fibronectin 1 

(FN1) might promote the development of preeclampsia by modulating differentiation of 

human extravillous trophoblasts, as well as formation of focal adhesions 48-50. Vascular 

Cell Adhesion Molecule 1 (VCAM1) is involved in cellular adhesion and serum 

concentrations of sVCAM-1 are significantly elevated in both mild and severe 

preeclampsia 51. Invasion of maternal decidua and uterine spiral arteries by extravillous 

trophoblasts is required for establishment of normal placenta. Human trophoblast 

migration requires Rac Family Small GTPase 1 (RAC1) and Cell Division Cycle 42 

(CDC42) 52. Lower levels were found in preeclampsia samples than in normal term 

pregnancy samples, and decline significantly in severe preeclampsia 53. Protein tyrosine 

kinase 2 (PTK2) (focal adhesion kinase) is differentially expressed in preeclampsia and 

reported as among the promising biomarkers for preeclampsia 54. In the case-dominated 

subnetwork we observed Kinesin Family Member 2A (KIF2A) which is upregulated in the 

preeclamptic placenta 4.  Up-regulated genes in the preeclampsia placenta have been 

shown to be associated with the regulation of diverse cellular processes, including matrix 

degradation, trophoblast cell invasion, migration and proliferation 4. 

     There have been several sequencing efforts including whole genome, whole exome 

and targeted sequencing on an array of preeclampsia phenotypes from diverse 

populations 37, 55-64. There is no consensus among the published results in regards to 

associated genes and variants. Since preeclampsia is a complex, polygenic disease, the 

lack of a consensus among these univariate comparisons might be expected in these 

early-stage studies. Among the 20 genes identified in our univariate analysis, only Titin 

(TTN) was identified in prior studies 55, 59. Protein-altering mutations in TTN have been 
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identified in patients with cardiomyopathy and women with preeclampsia are more likely 

to carry TTN mutations associated with idiopathic cardiomyopathy and peripartum 

cardiomyopathy 59. Additioinally, we found 2 genes, Major Histocompatibility Complex, 

Class II, DQ Alpha 1 (HLA-DQA1) and Inositol 1,4,5-Trisphosphate Receptor Type 1 

(ITPR1) that were reported in previous studies of preeclampsia 56, 62. None of these 

overlapping genes were among the unique genes identified in the shared layered 

networks. Likewise, no overlapping variants or genes were found in a recent genome-

wide association meta-analysis study investigating genetic predispositions associated 

with preeclampsia 37. 

    Our analysis allowed us to identify clusters of patients with shared PPI networks 

associated with severe preeclampsia.  Within the significant clusters, there were unique 

imputed genes (RAC1, KIF5B, PTK2, KIF5A, FN1, QSOX1, ARF4, VCAM1, CDC42, 

KIF2A) that were not among the top 60 seed genes selected by genotype testing. 

Nonetheless, our approach allowed us to identify these influential genes in the 

mechanism(s) underlying preeclampsia that would not otherwise have been identified by 

whole genome univariate variant analysis.   

      We also examined the unique proteins of the network of the control dominated 

cluster. Proteins in this network are associated with the ubiquitination process. They may 

serve a role that confer resilience against preeclampsia 65, 66. Although there are studies 

showing a relationship with hypertension - ubiquitination process and pregnancy, this still 

needs further investigation 66.   

     Whole exome sequencing, combined with a novel, multi-sample network analysis, 

and careful phenotyping contributed to our discovery despite the relatively modest size of 
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our study. Concepts developed from network theory suggest that related diseases 

involve proteins in similar neighborhoods of the interactome 67. Based on these 

concepts, we hypothesized that the genetic architecture of preeclampsia is described by 

subgroups of patients with variants in shared genes in specific networks and pathways.  

We identified a significant subgroup of cases with shared PPI networks associated with 

severe preeclampsia. We believe that the careful phenotyping resulted in the high 

percentage of subjects being successfully assigned to significant clusters and the ability 

to observe distinct separation between the case and control dominated clusters.  

 We used the Identified genes and their associated variants to generate a polygenic risk 

score. Of greatest importance, the unique genes in the case dominant cluster enhanced the 

predicted power of our polygenic risk score.  These results compare favorably with results 

of others employing a similar approach 68. The recent meta-analysis of GWAS studies 

generated a polygenic risk score from different genomic elements with an odds ratio of 1.25 

in prediction of preeclampsia 37.    

 
Strengths and Limitations 
 
     While we were not expecting each patient to appear in a significant cluster and our 

study included only a modest sample size, we identified a significant subgroup of 

patients with shared PPI networks associated with severe preeclampsia.  In order to 

leverage the likelihood of genetics discovery, we focused exclusively on women with 

severe, early-onset preeclampsia. Our analysis was restricted to evaluation of genetic 

variants in the maternal genome only. Future studies including fetal and/or paternal data 

will enhance the likelihood of genetic discovery.   
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Conclusion 

Using our unique network analysis, we were able to identify subsets of patients 

with shared networks, thus confirming our hypothesis about the genetic architecture of 

preeclampsia. Strict phenotyping of both cases and controls improved the likelihood of 

identifying these otherwise difficult to find genetic associations. Our network analysis 

identified genes which were imputed from the interactome and these imputed genes 

provide insights for severe preeclampsia that may otherwise have not been identified. 

As such, these are important candidates to include in meta-analyses of genetic 

associations with preeclampsia. Inclusion of the unique genes identified in cluster 

associated with severe preeclampsia increased the predictive power of the polygenic 

risk score. These results provide promise  to further our understanding the mechanism 

underlying complex diseases like preeclampsia.  

 

Acknowledgements 

We thank the Kilguss Research Core at Women & Infants Hospital and The Center for 

Computation and Visualization (CCV) at Brown University. 

Sources of Funding 

This work was supported by grants from the National Institutes of Health 

5P20GM109035-05 and 5P20GM121298-05. 

Disclosures 

None 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 22, 2021. ; https://doi.org/10.1101/2020.11.23.20236885doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.23.20236885


 

 16 

 

 

 

 

 

 

  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 22, 2021. ; https://doi.org/10.1101/2020.11.23.20236885doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.23.20236885


 

 17 

References 

1. Bokslag A, van Weissenbruch M, Mol BW, and de Groot CJ, Preeclampsia; short and 
long-term consequences for mother and neonate. Early Hum Dev, 2016. 102: p. 47-50. 
doi: 10.1016/j.earlhumdev.2016.09.007 

2. Neerukonda S, Shariati F, Hart T, Stewart M, Elkayam U, and Qamruddin S, 
Cardiovascular effects of preeclampsia. Curr Opin Cardiol, 2020. 35(4): p. 357-359. doi: 
10.1097/HCO.0000000000000756 

3. Cnattingius S, Reilly M, Pawitan Y, and Lichtenstein P, Maternal and fetal genetic 
factors account for most of familial aggregation of preeclampsia: a population-based 
Swedish cohort study. Am J Med Genet A, 2004. 130A(4): p. 365-71. doi: 
10.1002/ajmg.a.30257 

4. Kobayashi H, The Impact of Maternal-Fetal Genetic Conflict Situations on the 
Pathogenesis of Preeclampsia. Biochem Genet, 2015. 53(9-10): p. 223-34. doi: 
10.1007/s10528-015-9684-y 

5. Nilsson E, Salonen Ros H, Cnattingius S, and Lichtenstein P, The importance of genetic 
and environmental effects for pre-eclampsia and gestational hypertension: a family study. 
BJOG, 2004. 111(3): p. 200-6. doi: 10.1111/j.1471-0528.2004.00042x.x 

6. Than NG, Romero R, Tarca AL, Kekesi KA, Xu Y, Xu Z, Juhasz K, Bhatti G, Leavitt RJ, 
Gelencser Z, et al., Integrated Systems Biology Approach Identifies Novel Maternal and 
Placental Pathways of Preeclampsia. Front Immunol, 2018. 9: p. 1661. doi: 
10.3389/fimmu.2018.01661 

7. Zusterzeel PL, te Morsche R, Raijmakers MT, Roes EM, Peters WH, and Steegers EA, 
Paternal contribution to the risk for pre-eclampsia. J Med Genet, 2002. 39(1): p. 44-5. 
doi: 10.1136/jmg.39.1.44 

8. Chappell S and Morgan L, Searching for genetic clues to the causes of pre-eclampsia. 
Clin Sci (Lond), 2006. 110(4): p. 443-58. doi: 10.1042/CS20050323 

9. Nejatizadeh A, Stobdan T, Malhotra N, and Pasha MA, The genetic aspects of pre-
eclampsia: achievements and limitations. Biochem Genet, 2008. 46(7-8): p. 451-79. doi: 
10.1007/s10528-008-9163-9 

10. Arngrimsson R, Bjornsson S, Geirsson RT, Bjornsson H, Walker JJ, and Snaedal G, 
Genetic and familial predisposition to eclampsia and pre-eclampsia in a defined 
population. Br J Obstet Gynaecol, 1990. 97(9): p. 762-9. doi:  

11. Chesley LC, Annitto JE, and Cosgrove RA, The familial factor in toxemia of pregnancy. 
Obstet Gynecol, 1968. 32(3): p. 303-11. doi:  

12. Cincotta RB and Brennecke SP, Family history of pre-eclampsia as a predictor for pre-
eclampsia in primigravidas. Int J Gynaecol Obstet, 1998. 60(1): p. 23-7. doi:  

13. Mutze S, Rudnik-Schoneborn S, Zerres K, and Rath W, Genes and the preeclampsia 
syndrome. J Perinat Med, 2008. 36(1): p. 38-58. doi: 10.1515/JPM.2008.004 

14. Sutherland A, Cooper DW, Howie PW, Liston WA, and MacGillivray I, The indicence of 
severe pre-eclampsia amongst mothers and mothers-in-law of pre-eclamptics and 
controls. Br J Obstet Gynaecol, 1981. 88(8): p. 785-91. doi: 10.1111/j.1471-
0528.1981.tb01304.x 

15. Ward K, Genetic factors in common obstetric disorders. Clin Obstet Gynecol, 2008. 
51(1): p. 74-83. doi: 10.1097/GRF.0b013e3181616545 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 22, 2021. ; https://doi.org/10.1101/2020.11.23.20236885doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.23.20236885


 

 18 

16. Salonen Ros H, Lichtenstein P, Lipworth L, and Cnattingius S, Genetic effects on the 
liability of developing pre-eclampsia and gestational hypertension. Am J Med Genet, 
2000. 91(4): p. 256-60. doi:  

17. Genc MR and Schantz-Dunn J, The role of gene-environment interaction in predicting 
adverse pregnancy outcome. Best Pract Res Clin Obstet Gynaecol, 2007. 21(3): p. 491-
504. doi: 10.1016/j.bpobgyn.2007.01.009 

18. Serrano NC, Immunology and genetic of preeclampsia. Clin Dev Immunol, 2006. 13(2-
4): p. 197-201. doi: 10.1080/17402520600876903 

19. Loscalzo J, Kohane I, and Barabasi AL, Human disease classification in the postgenomic 
era: a complex systems approach to human pathobiology. Mol Syst Biol, 2007. 3: p. 124. 
doi: 10.1038/msb4100163 

20. Smith GD and Ebrahim S, 'Mendelian randomization': can genetic epidemiology 
contribute to understanding environmental determinants of disease? Int J Epidemiol, 
2003. 32(1): p. 1-22. doi: 10.1093/ije/dyg070 

21. Wall DP, Esteban FJ, Deluca TF, Huyck M, Monaghan T, Velez de Mendizabal N, Goni 
J, and Kohane IS, Comparative analysis of neurological disorders focuses genome-wide 
search for autism genes. Genomics, 2009. 93(2): p. 120-9. doi: 
10.1016/j.ygeno.2008.09.015 

22. Ran J, Li H, Fu J, Liu L, Xing Y, Li X, Shen H, Chen Y, Jiang X, Li Y, et al., 
Construction and analysis of the protein-protein interaction network related to essential 
hypertension. BMC Syst Biol, 2013. 7: p. 32. doi: 10.1186/1752-0509-7-32 

23. Li YH, Zhang GG, and Wang N, Systematic Characterization and Prediction of Human 
Hypertension Genes. Hypertension, 2017. 69(2): p. 349-355. doi: 
10.1161/HYPERTENSIONAHA.116.08573 

24. American College of Obstetricians and Gynecologists (ACOG).  [cited October 8, 2020; 
Available from: www.acog.org. 

25. Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, Levy-Moonshine A, 
Jordan T, Shakir K, Roazen D, Thibault J, et al., From FastQ data to high confidence 
variant calls: the Genome Analysis Toolkit best practices pipeline. Curr Protoc 
Bioinformatics, 2013. 43: p. 11 10 1-11 10 33. doi: 10.1002/0471250953.bi1110s43 

26. Poplin R, Ruano-Rubio V, DePristo MA, Fennell TJ, Carneiro MO, Van der Auwera GA, 
Kling DE, Gauthier LD, Levy-Moonshine A, Roazen D, et al., Scaling accurate genetic 
variant discovery to tens of thousands of samples. bioRxiv, 2018: p. 201178. doi: 
10.1101/201178 

27. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, and Reich D, Principal 
components analysis corrects for stratification in genome-wide association studies. Nat 
Genet, 2006. 38(8): p. 904-9. doi: 10.1038/ng1847 

28. Wang K, Li M, and Hakonarson H, ANNOVAR: functional annotation of genetic 
variants from high-throughput sequencing data. Nucleic Acids Res, 2010. 38(16): p. 
e164. doi: 10.1093/nar/gkq603 

29. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov 
AS, and Sunyaev SR, A method and server for predicting damaging missense mutations. 
Nat Methods, 2010. 7(4): p. 248-9. doi: 10.1038/nmeth0410-248 

30. Ng PC and Henikoff S, SIFT: Predicting amino acid changes that affect protein function. 
Nucleic Acids Res, 2003. 31(13): p. 3812-4. doi: 10.1093/nar/gkg509 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 22, 2021. ; https://doi.org/10.1101/2020.11.23.20236885doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.23.20236885


 

 19 

31. Kircher M, Witten DM, Jain P, O'Roak BJ, Cooper GM, and Shendure J, A general 
framework for estimating the relative pathogenicity of human genetic variants. Nat 
Genet, 2014. 46(3): p. 310-5. doi: 10.1038/ng.2892 

32. Genomes Project C, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, Korbel 
JO, Marchini JL, McCarthy S, McVean GA, et al., A global reference for human genetic 
variation. Nature, 2015. 526(7571): p. 68-74. doi: 10.1038/nature15393 

33. Huang da W, Sherman BT, and Lempicki RA, Systematic and integrative analysis of 
large gene lists using DAVID bioinformatics resources. Nat Protoc, 2009. 4(1): p. 44-57. 
doi: 10.1038/nprot.2008.211 

34. Huang da W, Sherman BT, and Lempicki RA, Bioinformatics enrichment tools: paths 
toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res, 
2009. 37(1): p. 1-13. doi: 10.1093/nar/gkn923 

35. Triche EW, Uzun A, DeWan AT, Kurihara I, Liu J, Occhiogrosso R, Shen B, Parker J, 
and Padbury JF, Bioinformatic approach to the genetics of preeclampsia. Obstet Gynecol, 
2014. 123(6): p. 1155-61. doi: 10.1097/AOG.0000000000000293 

36. Valenzuela FJ, Perez-Sepulveda A, Torres MJ, Correa P, Repetto GM, and Illanes SE, 
Pathogenesis of preeclampsia: the genetic component. J Pregnancy, 2012. 2012: p. 
632732. doi: 10.1155/2012/632732 

37. Steinthorsdottir V, McGinnis R, Williams NO, Stefansdottir L, Thorleifsson G, Shooter 
S, Fadista J, Sigurdsson JK, Auro KM, Berezina G, et al., Genetic predisposition to 
hypertension is associated with preeclampsia in European and Central Asian women. Nat 
Commun, 2020. 11(1): p. 5976. doi: 10.1038/s41467-020-19733-6 

38. Bornstein EE, Y.; Chervenak,F.A.;Grünebaum, A., Concerning trends in maternal risk 
factors in the United States: 1989–2018. EClinicalMedicine, 2020. 29-30. doi:  

39. Jebbink J, Wolters A, Fernando F, Afink G, van der Post J, and Ris-Stalpers C, Molecular 
genetics of preeclampsia and HELLP syndrome - a review. Biochim Biophys Acta, 2012. 
1822(12): p. 1960-9. doi: 10.1016/j.bbadis.2012.08.004 

40. Carreiras M, Montagnani S, and Layrisse Z, Preeclampsia: a multifactorial disease 
resulting from the interaction of the feto-maternal HLA genotype and HCMV infection. 
Am J Reprod Immunol, 2002. 48(3): p. 176-83. doi: 10.1034/j.1600-0897.2002.01076.x 

41. Raymond D and Peterson E, A critical review of early-onset and late-onset preeclampsia. 
Obstet Gynecol Surv, 2011. 66(8): p. 497-506. doi: 10.1097/OGX.0b013e3182331028 

42. American College of O, Gynecologists, and Task Force on Hypertension in P, 
Hypertension in pregnancy. Report of the American College of Obstetricians and 
Gynecologists' Task Force on Hypertension in Pregnancy. Obstet Gynecol, 2013. 122(5): 
p. 1122-31. doi: 10.1097/01.AOG.0000437382.03963.88 

43. Armanious D, Schuster J, Tollefson GA, Agudelo A, DeWan AT, Istrail S, Padbury J, 
and Uzun A, Proteinarium: Multi-sample protein-protein interaction analysis and 
visualization tool. Genomics, 2020. doi: 10.1016/j.ygeno.2020.07.028 

44. Zhang A and Huang S, Progress in pathogenesis of proteinuria. Int J Nephrol, 2012. 
2012: p. 314251. doi: 10.1155/2012/314251 

45. Furuhashi N, Kimura H, Nagae H, Yajima A, Kimura C, and Saito T, Serum laminin 
levels in normal pregnancy and preeclampsia. Gynecol Obstet Invest, 1993. 36(3): p. 
172-5. doi: 10.1159/000292620 

46. Li J, Tong C, Xu P, Wang L, Han TL, Wen L, Luo X, Tan B, Zhu F, Gui S, et al., 
QSOX1 regulates trophoblastic apoptosis in preeclampsia through hydrogen peroxide 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 22, 2021. ; https://doi.org/10.1101/2020.11.23.20236885doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.23.20236885


 

 20 

production. J Matern Fetal Neonatal Med, 2019. 32(22): p. 3708-3715. doi: 
10.1080/14767058.2018.1471459 

47. Tan KH, Tan SS, Sze SK, Lee WK, Ng MJ, and Lim SK, Plasma biomarker discovery in 
preeclampsia using a novel differential isolation technology for circulating extracellular 
vesicles. Am J Obstet Gynecol, 2014. 211(4): p. 380 e1-13. doi: 
10.1016/j.ajog.2014.03.038 

48. Brubaker DB, Ross MG, and Marinoff D, The function of elevated plasma fibronectin in 
preeclampsia. Am J Obstet Gynecol, 1992. 166(2): p. 526-31. doi: 10.1016/0002-
9378(92)91663-u 

49. Zhao M, Li L, Yang X, Cui J, and Li H, FN1, FOS, and ITGA5 induce preeclampsia: 
Abnormal expression and methylation. Hypertens Pregnancy, 2017. 36(4): p. 302-309. 
doi: 10.1080/10641955.2017.1385795 

50. Auer J, Camoin L, Guillonneau F, Rigourd V, Chelbi ST, Leduc M, Laparre J, Mignot 
TM, and Vaiman D, Serum profile in preeclampsia and intra-uterine growth restriction 
revealed by iTRAQ technology. J Proteomics, 2010. 73(5): p. 1004-17. doi: 
10.1016/j.jprot.2009.12.014 

51. Kim SY, Ryu HM, Yang JH, Kim MY, Ahn HK, Lim HJ, Shin JS, Woo HJ, Park SY, 
Kim YM, et al., Maternal serum levels of VCAM-1, ICAM-1 and E-selectin in 
preeclampsia. J Korean Med Sci, 2004. 19(5): p. 688-92. doi: 
10.3346/jkms.2004.19.5.688 

52. Grewal S, Carver JG, Ridley AJ, and Mardon HJ, Implantation of the human embryo 
requires Rac1-dependent endometrial stromal cell migration. Proc Natl Acad Sci U S A, 
2008. 105(42): p. 16189-94. doi: 10.1073/pnas.0806219105 

53. Fan M, Xu Y, Hong F, Gao X, Xin G, Hong H, Dong L, and Zhao X, Rac1/beta-Catenin 
Signalling Pathway Contributes to Trophoblast Cell Invasion by Targeting Snail and 
MMP9. Cell Physiol Biochem, 2016. 38(4): p. 1319-32. doi: 10.1159/000443076 

54. Sado T, Naruse K, Noguchi T, Haruta S, Yoshida S, Tanase Y, Kitanaka T, Oi H, and 
Kobayashi H, Inflammatory pattern recognition receptors and their ligands: factors 
contributing to the pathogenesis of preeclampsia. Inflamm Res, 2011. 60(6): p. 509-20. 
doi: 10.1007/s00011-011-0319-4 

55. Zhang L, Cao Z, Feng F, Xu YN, Li L, and Gao H, A maternal GOT1 novel variant 
associated with early-onset severe preeclampsia identified by whole-exome sequencing. 
BMC Med Genet, 2020. 21(1): p. 49. doi: 10.1186/s12881-020-0989-2 

56. Hansen AT, Bernth Jensen JM, Hvas AM, and Christiansen M, The genetic component of 
preeclampsia: A whole-exome sequencing study. PLoS One, 2018. 13(5): p. e0197217. 
doi: 10.1371/journal.pone.0197217 

57. Melton PE, Johnson MP, Gokhale-Agashe D, Rea AJ, Ariff A, Cadby G, Peralta JM, 
McNab TJ, Allcock RJ, Abraham LJ, et al., Whole-exome sequencing in multiplex 
preeclampsia families identifies novel candidate susceptibility genes. J Hypertens, 2019. 
37(5): p. 997-1011. doi: 10.1097/HJH.0000000000002023 

58. Kaartokallio T, Wang J, Heinonen S, Kajantie E, Kivinen K, Pouta A, Gerdhem P, Jiao 
H, Kere J, and Laivuori H, Exome sequencing in pooled DNA samples to identify 
maternal pre-eclampsia risk variants. Sci Rep, 2016. 6: p. 29085. doi: 10.1038/srep29085 

59. Gammill HS, Chettier R, Brewer A, Roberts JM, Shree R, Tsigas E, and Ward K, 
Cardiomyopathy and Preeclampsia. Circulation, 2018. 138(21): p. 2359-2366. doi: 
10.1161/CIRCULATIONAHA.117.031527 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 22, 2021. ; https://doi.org/10.1101/2020.11.23.20236885doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.23.20236885


 

 21 

60. Glotov AS, Kazakov SV, Vashukova ES, Pakin VS, Danilova MM, Nasykhova YA, 
Masharsky AE, Mozgovaya EV, Eremeeva DR, Zainullina MS, et al., Targeted 
sequencing analysis of ACVR2A gene identifies novel risk variants associated with 
preeclampsia. J Matern Fetal Neonatal Med, 2019. 32(17): p. 2790-2796. doi: 
10.1080/14767058.2018.1449204 

61. Soellner L, Kopp KM, Mutze S, Meyer R, Begemann M, Rudnik S, Rath W, Eggermann 
T, and Zerres K, NLRP genes and their role in preeclampsia and multi-locus imprinting 
disorders. J Perinat Med, 2018. 46(2): p. 169-173. doi: 10.1515/jpm-2016-0405 

62. Emmery J, Hachmon R, Pyo CW, Nelson WC, Geraghty DE, Andersen AM, Melbye M, 
and Hviid TV, Maternal and fetal human leukocyte antigen class Ia and II alleles in 
severe preeclampsia and eclampsia. Genes Immun, 2016. 17(4): p. 251-60. doi: 
10.1038/gene.2016.20 

63. Johnson MP, Brennecke SP, East CE, Goring HH, Kent JW, Jr., Dyer TD, Said JM, 
Roten LT, Iversen AC, Abraham LJ, et al., Genome-wide association scan identifies a 
risk locus for preeclampsia on 2q14, near the inhibin, beta B gene. PLoS One, 2012. 7(3): 
p. e33666. doi: 10.1371/journal.pone.0033666 

64. Thomsen LC, McCarthy NS, Melton PE, Cadby G, Austgulen R, Nygard OK, Johnson 
MP, Brennecke S, Moses EK, Bjorge L, et al., The antihypertensive MTHFR gene 
polymorphism rs17367504-G is a possible novel protective locus for preeclampsia. J 
Hypertens, 2017. 35(1): p. 132-139. doi: 10.1097/HJH.0000000000001131 

65. Berryman K, Buhimschi CS, Zhao G, Axe M, Locke M, and Buhimschi IA, Proteasome 
Levels and Activity in Pregnancies Complicated by Severe Preeclampsia and Hemolysis, 
Elevated Liver Enzymes, and Thrombocytopenia (HELLP) Syndrome. Hypertension, 
2019. 73(6): p. 1308-1318. doi: 10.1161/HYPERTENSIONAHA.118.12437 

66. Fredrickson EK and Gardner RG, Selective destruction of abnormal proteins by 
ubiquitin-mediated protein quality control degradation. Semin Cell Dev Biol, 2012. 
23(5): p. 530-7. doi: 10.1016/j.semcdb.2011.12.006 

67. Menche J, Sharma A, Kitsak M, Ghiassian SD, Vidal M, Loscalzo J, and Barabasi AL, 
Disease networks. Uncovering disease-disease relationships through the incomplete 
interactome. Science, 2015. 347(6224): p. 1257601. doi: 10.1126/science.1257601 

68. Fabbri C, Kasper S, Kautzky A, Zohar J, Souery D, Montgomery S, Albani D, Forloni G, 
Ferentinos P, Rujescu D, et al., A polygenic predictor of treatment-resistant depression 
using whole exome sequencing and genome-wide genotyping. Transl Psychiatry, 2020. 
10(1): p. 50. doi: 10.1038/s41398-020-0738-5 

 

 

Figure Legends 

 

Figure 1. Figure shows the univariate work flow for analysis of the whole exome 

sequencing results.  
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Figure 2. A) Dendrogram shows statistically significant (p <0.05) clusters of patients. 

Case dominated cluster (Cluster A) and control dominated cluster (Cluster B) are 

presented by dashed lines. Cases are represented in red and controls are represented in 

blue color. B) Layered network graphs for the case dominated cluster A are presented. 

Unique genes of cluster A are in red color. C) Layered network graphs for the control 

dominated cluster B are presented.  Unique genes of cluster B are in blue color. 

 

 

Supplemental Table 1. Unique genes from control dominated cluster (Cluster B). *Genes 

alphabetically ordered. 

Supplemental Table 2. Significantly enriched biological processes, molecular functions 

and cellular components based on Bonferroni corrected p-value for case and control 

dominated networks. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 22, 2021. ; https://doi.org/10.1101/2020.11.23.20236885doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.23.20236885


 

 23 

Table 1. Clinical characteristics of patients. Mean + SD. 
 

 

 

 

 

 

 

 

 

 

Categories case (n=61) control (n=82) 
Gestational age of delivery and life style 

Age (mean) 29.1 ± 5.0 29.4 ± 5.3 
Grava (mean) 2.1 ± 1.2 2.5 ± 1.6 
Job strenuous (%) 26.2% 28.0% 
Obesity (%) 31.1% 23.1% 

Race/Ethnicity 
African_American (%) 9.8% 4.8% 
Asian (%) 3.2% 3.6% 
Caucasian (%) 55.7% 56.1% 
Hispanic (%) 22.9% 28.0% 
Native_American (%) 1.6% 1.2% 
Other_Racial_ID (%) 6.5% 6.1% 

Abnormal laboratory values 
Systolic_bp (mean, mmHg) 170.8 ± 14.4 117.6 ± 9.6 
Proteinuria (%) 65.5% 0.00% 
Impaired_liver_function (%) 55.7% 2.4% 
Thrombocytopenia (%) 14.7% 0.0% 
Cerebral_visual_symptoms (%) 55.7% 0.0% 
Fetal Gorth Restriction (FGR) (%) 29.5% 2.4% 

Preterm delivery 
Preterm_delivery_before_34_weeks_for_sPEC (%) 55.7% 0.0% 
Preterm_delivery_before_37_weeks (%) 60.6% 3.6% 
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Table 2. Pathogenic, nominally significant (based on genotype testing, p <0.05) gene variants 

identified by univariate analysis. Genomic positions are based on Human Feb. 2009 

(GRCh37/hg19) Assembly.  

Chr Pos Gene 
HGNC 

ID SNP 
p 

value 
Polyphen
2_HDIV SIFT CADD 

1 97770920 DPYD 3012 rs1801160 0.032 0.998 0 23.5 
1 104117921 AMY2B 478 rs140978983 0.035 1 0 26.1 
1 109446750 GPSM2 29501 rs61754640 0.022 0.994 0.02 19.3 
1 226125385 LEFTY2 3122 rs2295418 0.022 1 0 16.6 
2 69177269 GKN2 24588 rs62133344 0.036 1 0 18.5 
2 70504399 PCYOX1 20588 rs34041544 0.030 1 0.01 26.4 
2 179486345 TTN 12403 rs114331773 0.017 1 0 15.7 
2 179666982 TTN 12403 rs35683768 0.022 0.999 0 15.7 
6 76024704 FILIP1 21015 rs62415695 0.009 1 0.01 15.4 
6 84904604 CEP162 21107 rs17790493 0.024 1 0 15.9 
7 103130222 RELN 9957 rs73714410 0.034 0.972 0.02 27.9 

12 124221796 ATP6V0A2 18481 rs74922060 0.010 1 0.03 23.0 
13 113750905 MCF2L 14576 rs140657264 0.024 0.999 0 26.6 
16 29825022 PRRT2 30500 rs76335820 0.043 0.995 0.02 18.4 
17 34311387 CCL14 10612 rs16971802 0.047 0.974 0.02 16.2 
17 37321347 ARL5C 31111 rs9912267 0.028 1 0 18.6 
18 28604374 DSC3 3037 rs35630063 0.021 1 0 21.1 
19 56249615 NLRP9 22941 rs80009430 0.012 1 0 16.0 
20 3641868 GFRA4 13821 rs146579049 0.017 1 0 18.3 
20 36954724 BPI 1095 rs5743523 0.008 0.998 0.02 15.5 
22 31494813 SMTN 11126 rs80055673 0.011 1 0.03 18.7 
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 Table 3. Unique genes from case dominated cluster (Cluster A). *Genes alphabetically 
ordered. 
 

Gene Name Gene* HGNC id Cluster Imputed 
Apolipoprotein A5 APOA5 17288 A No 

ADP ribosylation factor 4 ARF4 655 A Yes 
Cell division cycle 42 CDC42 1736 A Yes 

Fibronectin 1 FN1 3778 A Yes 
Kinesin family member 1A KIF1A 888 A No 
Kinesin family member 2A KIF2A 6318 A Yes 
Kinesin family member 5A KIF5A 6323 A Yes 
Kinesin family member 5B KIF5B 6324 A Yes 

Laminin subunit beta 2 LAMB2 6487 A No 
Protein tyrosine kinase 2 PTK2 9611 A Yes 

Quiescin sulfhydryl oxidase 1 QSOX1 9756 A Yes 
Rac family small gtpase 1 RAC1 9801 A Yes 

Vascular cell adhesion molecule 1 VCAM1 12663 A Yes 
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