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 Abstract 

 Introduction.  Detecting voice disorders from voice  recordings could allow for frequent, remote, 

 and low-cost screening before costly clinical visits and a more invasive laryngoscopy 

 examination. Our goals were to detect unilateral vocal fold paralysis (UVFP) from voice 

 recordings using machine learning, to identify which acoustic variables were important for 

 prediction to increase trust, and to determine model performance relative to clinician 

 performance. 

 Methods.  Patients with confirmed UVFP through endoscopic  examination (N=77) and controls 

 with normal voices matched for age and sex (N=77) were included. Voice samples were elicited 

 by reading the Rainbow Passage and sustaining phonation of the vowel "a". Four machine 

 learning models of differing complexity were used. SHAP was used to identify important 

 features. 

 Results.  The highest median bootstrapped ROC AUC score was 0.87 and beat clinician's 

 performance (range: 0.74 – 0.81) based on the recordings. Counterintuitively, many UVFP 

 recordings had higher intensity than controls. We used clinician's ratings to provide evidence 

 that UVFP patients who tend to have weaker voices were over-projecting their voices and being 

 recorded with a higher microphone gain than controls, which allowed the models to use this 

 recording idiosyncrasy to improve classification. Interestingly, when removing all variables 

 associated with intensity variables in order to mitigate bias, the models were still able to achieve 

 similar high performance. 
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 Conclusion.  Using the largest dataset studying UVFP to date, we achieve high performance 

 from just a few seconds of voice recordings, surpassing expert clinicians' performance. We 

 uncovered bias which may occur in voice biomarker research any time individuals have a soft 

 voice. We provide a set of recommendations to avoid bias when building and evaluating 

 machine learning models for screening in laryngology. Explainable machine learning thus 

 provides a mechanism to detect UVFP, uncover how acoustic variables characterize a specific 

 pathophysiology, and reveal bias. 

 Keywords:  vocal fold paralysis, acoustic analysis,  voice, speech, explainability, interpretability, 

 machine learning, bias 
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 INTRODUCTION 

 Voice recordings provide a rich source of information related to vocal tract physiology 

 and human physical and mental health. Given advances in smartphones and 

 wearables, these recordings can be made anytime and anywhere. Thus the search for 

 disorder-specific acoustic biomarkers has been gaining momentum. Voice biomarkers 

 have been reported for detecting Parkinson's disease  (1)  as well as psychiatric 

 disorders including depression, schizophrenia, and bipolar disorder (for a systematic 

 review, see Low et al, 2020  (2)  ). Given our scientific  understanding of the complexity of 

 speech production, multiple acoustic features have been devised for use in machine 

 learning models. In Figure 1, we describe a schematic of speech production and the 

 process of extracting certain acoustic features from an audio signal (see also Quatieri, 

 2008  (3)  ). 
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 Figure 1. Schematic of speech production and the process of extracting certain acoustic features 
 from an audio signal. 
 (A) Speech is the result of the neural coordination of three subsystems: the respiratory system (lungs), 
 the laryngeal system (vocal folds), and the resonatory system of the vocal tract (pharynx, oral cavity, 
 nasal cavity, articulators, and subglottal effects). Speech production requires air flow from the lungs to 
 generate sound sources that are filtered by the vocal tract. (B) Environmental, microphone, and digital 
 sampling characteristics (e.g., background noise, microphone gain, sampling rate) can affect acoustic 
 features. (C) Waveform of the audio signal, which is the 2D representation of the contraction (positive 
 amplitude) and rarefaction (negative amplitude) of air particles. Higher amplitudes can lead to higher 
 perceived loudness. Prosodic features arise from changes over longer segments of time, which is 
 perceived in the rhythm, stress, and intonation of speech. A segment of the waveform is shown in the 
 right panel, indicating a periodic signal from the vocal folds. (D) For a given time window, a spectrum 
 (right panel) can be obtained through a Fast Fourier Transform (FFT) which represents the magnitude of 
 the frequencies in the signal with peaks (formants F1–F3) due to vocal tract filtering of the source signal 
 produced by the vocal folds. The spectrogram (left panel) is a representation of the spectrum as it varies 
 over time. The approximate location of the F0 and first formants are displayed. (E) It is possible to 
 separate source and filter components by computing the inverse FFT of the log of the magnitude of the 
 spectrum, called the cepstrum (right panel). The peak in the cepstrum reflects the periodic glottal fold 
 vibration while lower quefrency components reflect properties of the resonatory subsystem. For speech 
 recognition, Mel filters are applied to the spectrum to better approximate human hearing. A conversion of 
 the Mel-spectrum to a cepstrum using a Discrete Cosine Transform (DCT) generates mel-frequency 
 cepstral coefficients (MFCCs). Similar to the cepstrum, lower MFCCs track vocal-tract filter information. 

 Furthermore, while machine learning (ML) can be a powerful and successful approach 

 for diagnostics, they are often treated as "black-boxes". It can be difficult to determine 

 how the model is making a decision, that is, how it is combining input features from a 

 given patient to generate a prediction. This is particularly worrisome given ML 
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 algorithms can detect and associate unintended or clinically irrelevant relationships and 

 introduce bias that may be difficult to anticipate. Explainable ML refers to a series of 

 methods and quantitative analyses for uncovering and "explaining" the rationale behind 

 the decision made by complex algorithms, which is particularly critical in the high-stake 

 decisions of medicine to increase trust among clinicians and patients  (4)  . 

 There are many challenges for applying acoustic analysis to detect specific disorders. 

 Voice characteristics are highly varied and change over time. Laryngeal pathology, age, 

 gender, size, weight, general state of health, smoking/vaping, and medications can 

 impact vocal acoustic characteristics. Diseases in the larynx and phonatory system (i.e., 

 larynx, resonating structures, lungs) and/or neurological system, will also affect voice. 

 Compensatory production strategies and environmental conditions can also change the 

 vocal signal. Furthermore, because hoarseness is such a frequent occurrence and 

 specialty voice centers are rare, vocal fold disorders are often undiagnosed, 

 under-reported, or misdiagnosed  (5)  . 

 We chose vocal fold paralysis as the study cohort for several reasons. First, it is 

 clinically important. UVFP can have detrimental effects on voice and quality of life with 

 resultant morbidity related to respiration, swallowing and aspiration. Vocal fold paralysis 

 may occur due to iatrogenic injury, malignancy, idiopathic, and neurological disease. 

 Overall, surgical iatrogenic injury accounts for 46% of all UVFP in adults and thyroid and 

 parathyroid surgeries are responsible for 32% of postsurgical UVFP  (6)  . There is a 

 significant need for a screening tool for the diagnosis and tracking of UVFP because of 
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 the high impact of this condition on productivity and quality of life. Screening could be 

 done remotely and frequently, especially when surgical specialists and laryngeal exams 

 are not readily accessible due to geographical, financial, and other barriers  (7)  . Using 

 an explainable ML model as a screening tool for UVFP can provide greater clarity as to 

 who most needs laryngoscopy and provides insight in the key voice characteristics 

 related to the pathophysiology  (8–12)  . The costs associated  with UVFP not only relate 

 to patient morbidity and diminished quality of life but also to the economic burden 

 placed on our healthcare system. Greater lengths of hospitalization and increased 

 hospital costs have been associated with postsurgical VFP  (13,14)  . Access to 

 specialists for diagnosis is limited and early detection and management of UVFP appear 

 to improve length of stay and surgical outcomes  (15)  . 

 Furthermore, UVFP is an ideal model for demonstrating the explainability of ML. UVFP 

 occurs when the mobility of a single vocal fold is impaired as a consequence of 

 neurological injury and diagnosis is consistently verified through routine laryngoscopy; 

 therefore, ground truth labels are available. Second, the clinical signs of UVFP are 

 well-described. These characteristics include a weak, breathy voice quality, early vocal 

 fatigue, reduced cough strength, and aspiration with thin liquids  (16,17)  . Therefore, the 

 acoustic differences between UVFP patients and healthy controls can be interpreted 

 with regards to perceptual symptoms and a well-understood pathophysiology. In 

 contrast, explaining important variables to predict a disorder which is hard to diagnose 

 (e.g., has low inter-rater reliability) and has an unclear pathophysiology would ironically 
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 9 

 result in a poor explanation, because it would be puzzling how or even if the disorder 

 could modulate the important acoustic variables. 

 There have been several studies detecting unilateral vocal fold paralysis (UVFP) using 

 machine learning  (18–26)  ; however, most have included  the disorder among a set of 

 voice disorders to be predicted. Limitations of these prior studies could be seen to fall 

 into one of following types: not reporting the performance when classifying the subset of 

 participants with UVFP out of the participants with dysphonia they were trying to detect; 

 small sample sizes given most studies contained 10 participants with UVFP or fewer 

 with one study containing 50 participants  (27)  ; a  lack of algorithmic explanations: they 

 either do not report on the relative importance of each acoustic variable, use 

 hard-to-interpret input data such as a spectrogram, or use a black-box model such as 

 neural network and do not explain it; using a single type of model or just a few features 

 which may impede high predictive performance and/or obscure a more thorough 

 explanation given a single model or few features may capture only certain aspects of 

 the task; not publicly sharing their trained models to test their generalizability to new 

 data. 

 The objectives of our study were: to detect UVFP using ML; to evaluate the 

 effectiveness of different models in differentiating the acoustic signals between patients 

 with UVFP and patients with normal functioning vocal folds (i.e., controls); to explain 

 which features are most important to the diagnostic models and examine the 

 pathophysiological relevance; and to compare performance to human clinicians 
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 evaluating audio recordings. To achieve these objectives, we evaluated four different 

 classes of machine learning algorithms to assess classification performance, obtained 

 the minimal set of features necessary for detection, and identified the most important 

 acoustic features for model construction after removing redundant features. Ultimately, 

 we wanted to see if the most important features identified by the machine learning 

 models matched clinically-known relevant acoustic changes. 

 MATERIALS AND METHODS 

 This study was approved by the Institutional Review Board at Massachusetts Eye and 

 Ear Infirmary and Partners Healthcare (IRB 2019002711). 

 Participants and voice samples 

 Through retrospective chart analysis from 2009 to 2019, a total of 1043 patient charts 

 were reviewed from a tertiary care laryngology practice who underwent endoscopic 

 evaluation and voice testing. Of those, 53 patients with confirmed UVFP were identified. 

 They had documented vocal fold paralysis by endoscopic examination and had 

 undergone acoustic analysis as part of routine clinical care. Each patient had four 

 acoustic recordings. These included three sustained vocalizations of the "a" vowel 

 sound (  ɑ in the International Phonetic Alphabet)  and  a reading of the introductory 

 paragraph of the rainbow passage  (28)  . The acoustic  recordings were all taken in an 
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 acoustically shielded room. For each of these 53 patients, a board-certified 

 otolaryngologist reviewed their clinical history, video laryngoscopy as well as their audio 

 samples to confirm that they were correctly classified to have UVFP. Voice samples 

 from an additional 24 patients were collected prospectively using a mobile software, 

 OperaVOX  TM  on an iPad, who were being treated for  UVFP. These patients also had 

 the same four acoustic recordings as the patients from retrospective chart review. This 

 combination of data collection yielded a total of 77 UVFP patients for analysis, of which 

 48 had left UVFP and 29 right UVFP. 

 All of the patients were then matched with control samples from a database of patients 

 without UVFP who had also undergone acoustic analysis. Each control was the same 

 sex and had the same smoking status as the UVFP patient and within three years of 

 age, and had documented laryngeal examinations that verified the absence of vocal fold 

 mucosal pathology. The controls were excluded if they had established laryngeal 

 surgery, vocal fold lesions, radiation, head and neck cancer, or neurological disease. 

 The controls had recorded the same four acoustic recordings as the retrospectively 

 gathered UVFP group. A board-certified otolaryngologist confirmed that the voice 

 recordings and video laryngoscopies of these controls matched normal expectancies. 

 The reading samples were divided in thirds to match the amount of vowel production 

 samples. Reading recordings were not available for three patients and three patient 

 vowel samples were removed due to containing multiple vowel productions or a cough. 

 The final dataset that was analyzed is described in Table 1. Reading+vowel refers to 

 including all samples (i.e., ~6 samples) from the same participant with the goal of either 
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 obtaining higher performance or discovering features that show variation in relation to 

 diagnosis consistently across tasks. Mean (SD) audio lengths were 6.81s (5.47) for 

 reading samples and 3.95s (1.00) for vowel samples.  The audio samples were 

 processed using OpenSmile with the eGeMAPS configuration file (article  (29)  , source 

 code  (30)  ) which applies different summarization statistics  to the time series depending 

 on the feature resulting in 88 features per sample covering information related to the 

 vocal folds (F0, jitter, shimmer), intensity (loudness, HNR), vocal tract (F1–3 frequency, 

 bandwidth, amplitude), spectral balance (alpha ratio, Hammamberg index, spectral 

 slope, MFCC 1–4, spectral flux), and prosody (voice and unvoiced segments, loudness 

 peaks per second). 

 Table 1. Sample sizes and demographic information 

 UVFP  Controls  Total 

 N  77  77  154 

 Mean age (SD)  56.4 (18.7)  56.6 (18.8)  56.5 (18.7) 

 Sex (F/M)  39/38  39/38  78/76 

 Reading  222  231  453 

 Vowel  227  231  458 

 Reading+vowel (total)  449  462  911 

 SD: standard deviation; F: female; M: male. 

 Machine learning models of increasing complexity 

 With the goal of classifying voices recording into either UVFP or controls, we used four 

 machine learning algorithms of increasing complexity from the  scikit-learn  (v0.21.3) 
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 using the  pydra-ml  (v=0.3.1) toolbox  (31)  (default parameters were used unless 

 otherwise specified): 

 (1) Logistic Regression: a simple linear model that is constrained to use few features 

 due to an L1 penalty making it the simplest model (“liblinear” solver was used which is 

 ideal for smaller datasets). 

 (2) Stochastic Gradient Descent (SGD) Classifier: it is also a linear model but tends to 

 use more features due to an elastic net penalty that was chosen making it slightly more 

 complex (the max_iter parameter was set to 5000 and early_stopping was set to True). 

 (3) Random Forest: it is an algorithm that uses simpler decision trees (i.e., weak 

 learners) on feature subsets but then averages the trees’ predictions to create a 

 stronger learner, making it harder to interpret which features are important across trees. 

 (4) Multi-Layer Perceptron: it is a neural network classifier which incorporates, in our 

 case, 100 instances of perceptrons (artificial neurons), which are connected to each 

 input feature through weights with an added ReLU activation function to capture 

 nonlinear relationships in the data. It is not possible to know exactly how the hundreds 

 of internal weights interact to determine feature importance, making the model difficult 

 to interpret directly from its parameters (the max_iter parameter was set to 1000; alpha 

 or the L2 penalty parameter was set to 1). 

 To generate independent test and train data splits, a bootstrapped group shuffle split 

 sampling scheme was used. For each iteration of bootstrapping, a random selection of 
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 20% of the participants, balanced between the two groups, was used to create a 

 held-out test set. The remaining 80% of participants were used for training. This process 

 was repeated 50 times, and the four classifiers were fitted and tested for each test/train 

 split. The Area Under the Receiver Operating Characteristic Curve  (ROC AUC; perfect 

 classification = 1; chance = 0.5) was computed to evaluate the performance of the 

 models on each iteration, resulting in a distribution of 50 ROC AUC scores for each 

 classifier. For each iteration, each classifier was trained with randomized patient/control 

 labelings to generate a null distribution of ROC AUC scores (i.e., a permutation test). 

 Each model's performance was statistically compared to other models and to the null 

 distributions using an empirical p-value, a common and effective measure for evaluating 

 classifier performance (see Definition 1 in  (32)  ).  The significance level was set to alpha 

 = 0.05. 

 Assessing feature importance 

 Kernel SHAP (SHapley Additive exPlanations) was used to determine which acoustic 

 features were most important for each model to detect UVFP. This method is model 

 agnostic in that it can take any trained target model (even “black box” neural networks) 

 and compute feature importance  (33)  . It does so by  performing regression with L1 

 penalty between different sets of input features and a single prediction made by the 

 target model. It then uses the coefficients of the additional regression model as a 

 measure of feature importance for a single prediction. We took the average of the 

 absolute SHAP values across all test predictions (positive and negative values are both 
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 important for classification). We then weighted the average values by the model’s 

 median performance since an important feature for a bad model could be a less 

 important feature for a good model and vice versa. Since we trained each model 50 

 times (i.e., one for each bootstrapping split), we computed the mean SHAP values 

 across splits for each model. This pipeline (i.e., machine learning models, bootstrapping 

 scheme, SHAP analysis) was done using the  pydra-ml  package. 

 Reducing multicollinearity to do explainability analysis using 

 Independence Factor 

 Highly correlated features (i.e., multicollinearity) can influence model generation and 

 interpretation. Two models may obtain similar performance while using different features 

 or placing different weights on the same features (i.e., underspecification  (34,35)  ) . This 

 makes it difficult to compare algorithmic explanations across models. For instance, 

 mean F1 frequency may be less important to a given model because the model uses 

 mean F2 frequency which happens to capture very similar information in a particular 

 dataset (i.e., has a high correlation), whereas a different model may use F1 instead of 

 F2 or use both but assign less importance to each and still obtain the same 

 performance. To enforce models to use the same features that capture very similar 

 information and be able to compare feature importance across models, we kept a single 

 feature out of the sets of features that share similar information above a given threshold. 
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 We used a custom algorithm we call Independence Factor whereby for each 

 feature in alphabetical (i.e., arbitrary) order, we removed features that show strong 

 dependence above a given threshold. The step was repeated for remaining features. 

 We use distance correlation from the Python  dcor  package  because, unlike Pearson  r  or 

 Spearman  rho  , it can capture non-monotonic relationships  (36,37)  . We used the 

 following threshold values for the distance correlation [1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 

 0.3, 0.2] to compute the Independence Factor, which removed increasingly more 

 features (i.e., 1.0 keeps all features and 0.2 removes features that have a distance 

 correlation above 0.2). We chose the feature size which contains at least one model 

 that scores within three percentage points of the performance using all features, with 

 the goal of obtaining a more parsimonious model for subsequent explanation while 

 maintaining high accuracy. Thus, removing redundant features makes the models 

 easier to interpret for clinical relevance. To visualize the original redundancy across 

 features, we computed clustermaps using  seaborn  package  performing hierarchical 

 clustering with the average-linkage method and Euclidean distance. This was performed 

 on the pairwise distance correlation, computed separately on data from UVFP, controls, 

 UVFP+controls and on reading, vowel, and reading+vowel. 

 Performance using most important and least important features 

 Studies tend to report and describe the top N features, but it is not clear what 

 performance the model would obtain for those features when used alone since 
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 measurement is usually based on models that use additional features with multiple 

 interactions. We will report performance using only top 5 features as well as 

 performance without top 5 features to provide a more realistic evaluation of their 

 importance. 

 Performance using cepstral peak prominence 

 To evaluate whether results are sensitive to choice of features, we use a different set of 

 features derived from cepstral peak prominence (CPP) given it has been shown to be a 

 good measure of breathiness and dysphonia  (38,39)  .  We match the summary statistics 

 across the audio recording that eGeMAPS uses: CPP mean, CPP coefficient of 

 variation (standard deviation normalized by the mean), CPP 20th percentile and CPP 

 80th percentile. We use our custom Python adaptation of MatLab's COVAREP 

 implementation. 

 Clinician ratings 

 One otorhinolaryngologist and two speech-language pathologists rated each audio 

 recording of the reading task (one per participant, not split in three) for the following 

 variables (and possible responses), in order: background noise (None, Some, High); 

 UVFP (yes, no), background noise [1,2,3], CAPE-V severity (0 to 100), CAPE-V 

 roughness (0 to 100), CAPE-V breathiness (0 to 100), CAPE-V strain (0 to 100), 

 CAPE-V pitch (0 to 100), CAPE-V loudness (0 to 100; estimated loudness as if the rater 

 were in the recording room), recording loudness (low, medium, high; loudness of the 
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 recording). Inter-rater agreement was assessed using intra-class correlation for all 

 numerical variables and Light's k for the binary presence of UVFP  (40)  using the R 

 package  irr  (41)  . The entire reading task was provided  instead of the task split in three 

 to make assignment easier for clinicians. The reading task was chosen over the 

 sustained vowel because we expected it to be easier for clinicians to detect UVFP. 

 RESULTS 

 Performance of models using acoustic features 

 In Table 2, we report performance for models using all features, models after removing 

 redundant features, models using only top 5 features (to understand their unique role in 

 performance), models using all 88 features without 5 features (to understand whether 

 the top 5 features are necessary for high performance), and models using a different 

 feature set based on CPP. Performance was found to be high across most models 

 except CPP-based models. Given dependent features provide similar information (see 

 Supplementary Figures S1, S2, S3, S4, S5, S6, S7, S8, and S9) and distort feature 

 importance analyses, we then tested performance after removing redundant features 

 using the Independence Factor method previously described. Supplementary Figure 

 S10 shows performance for different feature set sizes with increasing amounts of 

 redundant features. From this analysis, we selected the feature-set size that resulted in 

 best performance using the least amount of features for subsequent analyses: 39 

 features (reading), 13 (vowel), 19 (reading+vowel). After removing related features (i.e., 
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 reducing multicollinearity) from the original 88 features, similar performance was 

 obtained (median ROC AUC = 0.84–0.87) using fewer features. Supplementary 

 Materials "Feature selection" section describes an analysis of how this method 

 compares to removing features across each train set (see Sup. Mat. Table S1). 
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 Table 2. Model performance 

 Features  LogisticRegression  MLP  RandomForest  SGD 

 Reading  88  .87 (.78–.93; .50)  .87 (.80–.93; .50)  .87 (.76–.91; .49)  .83 (.76–.89; .50) 

 Vowel  88  .84 (.77–.89; .50)  .86 (.79–.91; .50)  .86 (.79–.91; .51)  .80 (.72–.87; .50) 

 Reading+Vowel  88  .84 (.76–.91; .50)  .86 (.74–.92; .48)  .85 (.77–.92; .49)  .79 (.72–.86; .51) 

 Reading  39  .84 (.76–.92; .50)  .83 (.76–.91; .50)  .87 (.77–.91; .51)  .78 (.71–.86; .51) 

 Vowel  13  .80 (.70–.90; .50)  .81 (.74–.91; .50)  .84 (.75–.90; .52)  .74 (.58–.87; .51) 

 Reading+Vowel  19  .79 (.70–.84; .50)  .82 (.75–.88; .51)  .84 (.77–.91; .51)  .70 (.61–.77; .52) 

 Reading  Top 5  .81 (.73–.89; .50)  .86 (.78–.92; .47)  .85 (.77–.90; .50)  .75 (.56–.87; .57) 

 Vowel  Top 5  .78 (.67–.87; .50)  .82 (.74–.92; .53)  .81 (.72–.87; .50)  .72 (.57–.82; .49) 

 Reading+Vowel  Top 5  .80 (.70–.86; .50)  .82 (.74–.88; .50)  .81 (.74–.89; .53)  .72 (.55–.83; .52) 

 Reading  88 - Top 5  .85 (.76–.92; .50)  .87 (.77–.92; .49)  .85 (.77–.90; .52)  .82 (.71–.89; .51) 

 Vowel  88 - Top 5  .84 (.75–.93; .50)  .86 (.72–.93; .51)  .84 (.74–.94; .52)  .80 (.70–.90; .48) 

 Reading+Vowel  88 - Top 5  .84 (.74–.89; .50)  .85 (.76–.91; .50)  .85 (.76–.91; .50)  .79 (.71–.87; .50) 

 Reading  CPP 4  .77 (.69–.81; .50)  .76 (.69–.82; .50)  .73 (.66–.8; .52)  .74 (.33–.81; .50) 

 Vowel  CPP 4  .81 (.75–.87; .50)  .80 (.74–.87; .49)  .77 (.70–.81; .51)  .76 (.32–.86; .50) 

 Reading+Vowel  CPP 4  .73 (.69–.78; .50)  .77 (.72–.81; .50)  .75 (.69–.79; .53)  .70 (.50–.76; .50) 

 Performance of models using either all 88 features, non-redundant features (39, 13, 19), top five most 
 important features, all 88 features minus top 5 most important features using eGeMAPS features. We 
 then compared this to a different feature set based on CPP. Median ROC AUC score from 50 
 bootstrapping splits (90% confidence interval; median score of null model trained on permuted labels). 
 For full distributions of scores see Figure S10 in Supplementary Materials. Removing features is a 
 post-hoc analysis because features were selected based on observing performance on the test sets, and 
 therefore performance might be slightly overly optimistic and would need to be tested on an independent 
 test set for further validation. MLP: Multi-Layer Perceptron; SGD: Stochastic Gradient Descent Classifier; 
 CPP: Cepstral Peak Prominence. 
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 The bootstrapped ROC AUC distributions and permutation tests for the reduced 

 (parsimonious) models using the non-redundant feature set are shown in Figure 2. The 

 figure reports a one tailed statistical comparison (row > column) of models using an 

 empirical p-value, which represents the fraction of column-model scores where the 

 row-model classifier had a higher mean performance (e.g., a p-value of 0.02 indicates 

 that the mean score of a row model is higher than 98% of column-model scores). 
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 Figure 2. Model performance comparison using a permutation test using non-redudant features. 
 (A)  Scores from models trained on true labels (blue)  and trained on permuted labels (orange) over 
 bootstrapping splits.  (B)  Statistical comparison between  models (annotation = p-value, highlighted = 
 significant results). 

 Given 24 UVFP patients were recorded with a different device, an iPad, we trained 

 models without their samples to make sure these differences in recordings were not 

 driving performance. There was a small drop in performance, which could be due to a 

 bias (the full, original model using information of the recording device), but could also be 
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 due to removing training samples. The drop in performance is not large enough to 

 suspect that differences in recording are driving the full original model's performance 

 (see Sup. Mat. Table S2, Table S3, and analysis in Supplementary section 

 "Performance removing participants that used other recording system"). 

 Assessing feature importance 

 Figure 3 reports feature importance using SHAP for all models. For the reading-based 

 models, all models tend to use the same top 5 features except SGD, which also has the 

 lowest performance. For further description of features and the chosen classification of 

 features, see Eyben et al. (2015)  (29)  and Low et al. (2020)  (2)  . When reviewing 

 important features, it is key to note that any of the features with which it is codependent 

 or associated could be a reasonable important feature (see clusters of redundant 

 features in Supplementary Figures S1-S9). We further display the distribution of each 

 top feature and its individual performance in Figure 4. Figure 5 reports similarity 

 between top 5 features and all original 88 eGeMAPS features. Features that have a 

 high dcor or distance correlation (i.e., cluster) with top 5 features were not used in 

 models to avoid redundancy, but still share similar information and can therefore be 

 considered important features as well. Hierarchically-clustered heatmaps for other data 

 types (vowel, reading, both) and groups (UVFP patients, controls, both) are displayed in 

 Supplementary Figures S1, S2, S3, S4, S5, S6, S7, S8, and S9. 
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 Figure 3. Feature importance parallel coordinate plot.  Rank reads from bottom (most important) to top 
 (least important). Mean rank is weighted by performance of each model to avoid a lower performing model 
 biasing the mean rank. 
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 Figure. 4. Distributions for top 5 features and corresponding performance for single features.  Logistic 
 Regression with L1 penalty was used.  No single feature is enough to dissociate groups with high 
 performance. Null models' median performance was 0.5. 
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 Figure 5. Feature redundancy with top 5 features highlighted.  Top 5 features are highlighted in bold and 
 their rank is displayed. Squares are clusters of redundant features. Computed with all participants on the 
 reading task. 
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 Clinician ratings 

 The median ROC AUC for humans was 0.78 (min. = 0.74 to max. = 0.81) meaning the 

 machine learning models performed better than the highest performing clinician. 

 Interestingly, using the average clinician's CAPE-V ratings within machine learning models 

 was able to obtain a maximum median ROC AUC of 0.84 (0.72–0.92) with the Random 

 Forest model (Table 3). Using clinicians' perceptual ratings of background noise and 

 recording loudness achieved a maximum median ROC AUC of 0.77 (.63– .87). 

 Table 3. Performance using clinician ratings as variables for machine learning models 

 Features  LogisticRegression  MLP  RandomForest  SGD 

 CAPE-V  6  .80 (.69–.88;  .50  )  .81 (.71–.90; .50)  .84 (.72–.92; .49)  .77 (.45–.92; .51) 

 Noise+ 
 loudness  2  .76 (.59–.86; .50)  .77 (.63–.87; .50)  .73 (.62–.83; .52)  .64 (.45–.78; .50) 

 In Figures 6 and 7 we report the inter-rater reliability (Flight's kappa and ICC) along with 

 the distribution of the ratings. Common cutoffs for inter-rater agreement are poor for values 

 less than .40, fair for values between .40 and .59, good for values between .60 and .74, 

 and excellent for values between .75 and 1.0  (42)  .  Background noise had poor reliability 

 across rater, UVFP and recording loudness had fair reliability (see Figure 6) and 

 CAPE-V-inspired ratings scored good to excellent except for pitch which was fair (see 

 Figure 7). 
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 Figure 6. Descriptive statistics and inter-rater reliability of clinician ratings for unilateral vocal fold 
 paralysis (UVFP), background noise, and recording loudness indicating likely bias  . Error bars indicate 
 maximum and minimum count across the three raters. The disproportionate amount of UVFP samples rated 
 as having high background noise and high loudness indicates likely bias, where the gain might have been 
 raised for some UVFP patients and they may have phonated more intensely. kappa: Light's kappa; ICC: 
 intra-class correlation coefficient. 
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 Figure 7. How clinicians rate the audio recordings of read speech: descriptive statistics and 
 inter-rater reliability of average clinician ratings.  The average across raters was taken for each recording. 
 ICC: intra-class correlation coefficient. 

 Bias mitigation: removing intensity-related features 

 In Table 4, we show results after removing all intensity variables as well as variables that have a 

 distance correlation (dcor) with any of them >= 0.3 and 0.4 based on the read speech audio 

 recording samples. Models have comparable performance to models with potential intensity-related 

 bias using less related features. 
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 Table 4. Performance keeping features least associated to intensity features 

 Features  LogisticRegression  MLP  RandomForest  SGD 

 dcor<0.4  44  .87 (.8–.92; .50)  .89 (.81–.95; .52)  .85 (.77–.9; .50)  .81 (.76–.89; .50) 

 dcor<0.3  29  .8 (.74–.87; .50)  .83 (.75–.88; .47)  .84 (.8–.89; .47)  .76 (.64–.83; .48) 

 Discussion 

 This study achieves high performance in detecting UVFP from healthy voices using a few 

 seconds of audio recordings and surpassing clinician evaluations. As a result of performing 

 the explainability analysis, we discovered a likely bias: intensity features were higher for 

 UVFP patients than controls on average (Figure 4) when UVFP patients should have 

 weaker voices. There are two likely causes. One is that the software that had been used 

 prompted users to speak louder if they had a weak voice in order to achieve an audible 

 recording. A second cause was supported by clinicians' ratings: clinicians rated UVFP 

 patients as having louder recordings and more background noise than controls on average 

 –when they should have similar levels–, which are proxies for microphone gain having 

 been increased. This would have helped models improve performance using 

 characteristics stemming from the recording idiosyncrasies instead of from 

 pathophysiology. However, we removed features correlating with the clearly biased 

 features and still achieved high performance. 

 Our study expands on prior studies which have used pre-existing commercial databases, 

 smaller sample sizes, fewer features, and/or methods for model evaluation that can be 
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 biased in small datasets given the test sets may not be representative (for a discussion on 

 bootstrapping for clinical datasets, see Figure 5  (2)  ). Critically, we provide a roadmap for 

 evaluating models more thoroughly including quantitatively explaining models and 

 checking the robustness of the models to different choices of speech-eliciting tasks, 

 algorithms, and feature sets. All of this should increase trust when no bias is found and 

 when explanations are robust across models and make sense to experts. Such a model 

 could fulfill several clinical needs: (1) postoperative screening for thyroid surgery-related 

 UVFP since after thyroid surgery, UVFP is common, occurring in up to 5 to 10% of cases  27  . 

 Furthermore, laryngoscopy  is not readily available to all postoperative populations and 

 symptomatic changes are notoriously variable. An ML-based screening could help identify 

 patients needing further workup and treatment, and earlier diagnosis is essential to 

 optimize long-term outcomes  28,29  . (2) Monitoring  voice during speech therapy and after 

 surgical treatment for confirmed UVFP to measure when and if the patient's voice is 

 approximating a healthy voice. (3) Preoperative screening prior to surgeries that are at 

 high risk for developing UVFP such as thyroid, head and neck, cardiac, thoracic, 

 esophageal, and cervical spine operations. 

 In Table 5 we summarize several key recommendations to avoid bias when building and 

 explaining machine learning tools for laryngology, although more could be added, and we 

 expand upon how we dealt with some of these steps in the following sections. 
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 Table 5. Recommendations to avoid bias for explainable machine learning models that use 
 audio recordings for screening in laryngology 
 Recommendations  Description 
 Before data collection  - Pre-register hypotheses as to which variables should be important for 

 predicting the target group 
 During recording  - In a  controlled  setting: models could use any unintended differences between 

 groups to improve classification; therefore, it is important to make sure 
 microphone gain, background noise, instructions are consistent across 
 participants and reflect how recordings will be done once deployed. 
 - In a  remote  setting: we would want models to work on people's mobile devices 
 outside the clinic. Since we cannot fully control the recording procedure, we 
 should make sure there are no biases affecting one group more than another, 
 test pilot instructions, and collect much more data to weaken the effect of 
 individual recording idiosyncrasies. 
 - Perform pilot studies to do an initial quality control 
 - Collect representative samples so models generalize to different protected 
 groups (e.g., ages, genders, races) or provide appropriate warnings. 
 - Providing instructions so participants do not overproject their voice and control 
 recording procedure so a minimum loudness threshold is not needed 

 During training and 
 evaluation 

 - Train multiple machine learning models of different complexity: two models may 
 perform similarly but use input variables in different ways. If after training a 
 model we only explain one of them, we might have biased conclusions of what 
 variables characterize the disorder. 
 - Avoid overfitting (i.e., finding patterns that do not generalize to new samples). 
 Simple held-out test sets (e..g, of 20%) may not be representative of the 
 population or the dataset, and therefore resampling methods (cross-validation, 
 bootstrapping) are better. If performing hyperparameter tuning, nested 
 resampling is needed to avoid overfitting  (2)  . Avoid feature selection and 
 dimensionality reduction using information from the test set/s. 
 - Report performance on most and remaining important features 

 During explainability 
 analyses 

 - Reduce multicollinearity through LASSO, leave-one-feature-out (LOFO), 
 obtaining one variable from the correlated variables through dimensionality 
 reduction (without using the test set which could lead to overfitting), and/or the 
 method we present here, Independence Factor. 
 - Make conclusions from the features that are robustly important  across  models; 
 here we take the average importance rank weighted by model performance. 
 - Evaluate potential bias: do important features match hypotheses? Do they 
 dissociate groups in the expected direction? Do certain recording conditions 
 perform better than others and were these done for only one group? Does the 
 model work worse for certain races or age groups? Several metrics can evaluate 
 this (e.g., see packages AIF360, fairlearn, and EqualityML). 
 - Use expert ratings to evaluate any potential sources of bias. 
 - Understandability: are the explanations understandable for the engineer, the 
 clinician, and/or the patient? 

 If bias is detected  - Use bias mitigation strategies either during pre-processing (removing variables 
 generating the bias along with variables correlated with these ones), training 
 (adversarial debiasing, prejudice remover), or evaluation (equalized odds, reject 
 option classification). See packages AIF360, fairlearn, and EqualityML. 

 After deployment  - Continuous assessment: we need to review predictions and re-assess accuracy 
 once deployed as new environments and populations could change performance 
 (i.e., dataset shift  (43)  ). 
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 Explaining acoustic features relevant to detecting vocal fold paralysis 

 Objective acoustic measurement changes associated with vocal fold paralysis have been 

 described and these changes include reduced loudness and maximum phonation time, 

 higher perturbation measurements such as jitter and shimmer, and increased signal to 

 noise ratio  (17,44,45)  ; however these were univariate  models, and we have demonstrated 

 that using single variables does not seem to provide high predictive performance. While 

 other multivariate machine learning models have been used, these used few features and 

 small or undefined samples and only report feature importance results for one model; 

 therefore it is not clear whether the important features reported would hold using larger 

 feature sets or how other models would perform. Using a much larger initial set of acoustic 

 features for analysis, we demonstrate that several machine learning algorithms of 

 increasing complexity (using more parameters) identify vocal fold paralysis from healthy 

 voices. We also report that these models can use different features to achieve similar 

 performance. Different models emphasize different features not simply because of its 

 relevance to a disorder, but because of the mathematics associated with the model (e.g., 

 containing different degrees of interaction effects, regularization, or propensity to 

 underfitting or overfitting)  (46)  . The variability  of the ranking of features used by our 

 individual models also illustrates the potential danger of using the single highest 

 performing model, which is commonly seen in published literature. 

 Instead of simply reporting the important features from the highest performing model, we 

 analyzed the models to find common features. Some of the most important features across 
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 models were: intensity (especially equivalent sound pressure level which was redundant 

 with multiple loudness features and seems to be due to some patients trying to use more 

 breath for projection or being recorded with a higher microphone gain), Mel Frequency 

 Cepstral Coefficients (especially the first coefficient, which captures spectral envelope or 

 slope), mean F0 semitones (given F0 originates from vocal-fold oscillation, a vocal-fold 

 paralysis is expected to alter F0), mean F1 amplitude and frequency (influenced by how 

 the vocal tract filters F0 and the shape of the glottal pulse which would be affected by 

 UVFP), and voiced and unvoiced segments (prosodic and speech articulation features 

 which may be altered due to changes in the periodicity of F0). Shimmer variability was 

 important just for reading, and it captures variability in glottal pulses and pressure patterns 

 which ultimately affect F0. When we removed these top 5 features from the full feature set, 

 performance is practically equivalent to using 88 features, as expected, since there are 

 features that are redundant with these top 5 features. Therefore, it is not that only these 5 

 specific features drive performance, but rather the information they contain, which in this 

 dataset is also captured by other features as shown in Figure 5. 

 These acoustic features corroborate our clinical understanding of glottal incompetence 

 from UVFP and with common patient complaints of reduced loudness, vocal instability, 

 hoarseness, and rough voice. Uncovering and understanding the basic mechanisms and 

 features that models use to generate predictions and outcomes are important as these 

 tools become part of the clinical decision making process. 
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 Identifying and addressing bias 

 Equivalent Sound Level was higher in UVFP patients than controls. This is counter-intuitive 

 because UVFP patients are known to have softer voices as already described; however, 

 clinicians rated most UVFP samples as being louder than controls. The bias discovered 

 was likely due to increasing the gain on the microphone for some UVFP patients, which 

 would explain the increased background noise in UVFP patients' recordings. A second 

 source of bias may have occurred from requesting UVFP patients to speak louder in order 

 to meet the minimum intensity threshold on the recording softwares Computerized Speech 

 Lab™ and OperaVOX, or patients could have tried this on their own knowing they were 

 being recorded. This behavioral compensation is likely to occur in biomarker research 

 when the participant has a soft voice, especially in retrospective studies like ours where 

 the study goal is not known at the time of recording or when certain software properties 

 lead individuals with weak voices to speak louder. Even though the current models perform 

 better than the clinicians, a systematic comparison would require more clinician and model 

 assessments across datasets. It is likely a model trained on a single dataset might learn 

 intrinsic characteristics of that dataset that do not generalize as well as clinical expertise 

 might. 

 Having said this, this line of research would help us understand the extent to which UVFP 

 detection is generalizable from acoustic data alone. Finding an objective measure of 

 hoarseness is important given a "normal voice" is a fundamentally subjective classification 
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 that is not well defined  (47,48)  and varies with training  (49,50)  , which may result in low 

 reliability of evaluation of disordered voices among clinical rating scales  (51)  . 

 As a post hoc analysis, we address bias by trying to mitigate its effect: we removed 

 variables associated to intensity variables. After removing these features, the models were 

 able to obtain similar performance using a very different set of features. It is possible that 

 these remaining features better reflect pathophysiology or that the features extracted are 

 still influenced by intensity, but further studies should address their generalizability or their 

 relation to intensity variation. 

 Evaluating the sensitivity to tasks, model complexity, and features used 

 In addition to getting a better understanding of features, we explored performance in the 

 context of different vocal tasks. Participants carried out two different tasks to elicit voice, 

 reading  , which captures more complex speech dynamics, and  sustaining vowels  , which is 

 a simpler measure of vocalization and the respiratory subsystem. Overall, these dynamics 

 from the speech task may have improved model performance as was observed. 

 Comparing simpler and more complex models is important because simpler models such 

 as Logistic Regression could be preferred because they tend to generalize better given 

 they are less at risk for overfitting the training set and they are more interpretable and thus 

 biases can be assessed more directly  (52)  . 

 By removing redundant features, we can concentrate on finding the most useful features 

 for further analysis. Performance decreased only slightly while we made models more 
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 parsimonious and explainable. This approach is key given the curse of dimensionality in 

 machine learning that may make models unnecessarily complex and harder to generalize 

 (35)  . 

 Often studies will report the top N features but not how predictive they are in isolation. In 

 our study we ran models on the top 5 features together (Table 2). The lower performance 

 of these top 5 features relative to a richer feature set helps demonstrate that model 

 performance is dependent on interactions across multiple additional features (with the 

 exception of samples from the reading task which obtained an AUC of 0.86 using just the 5 

 features). We also ran models without top 5 features to demonstrate that leaving features 

 that are redundant with these top features results in almost equivalent high performance to 

 using all 88 features since the redundant features share information. Furthermore, when 

 training models on the individual features from within these top 5 one at a time, the 

 performance was reduced considerably with scores from 0.55 to 0.71. This indicates the 

 need for these models to combine multiple features to achieve high performance and any 

 model evaluation should not focus on only the common or top features without testing their 

 predictive performance. 

 Limitations and future directions 

 We cannot determine how the bias will affect the model's performance on future samples, 

 but it will likely underperform in samples where gain cannot be changed and where 

 participants are instructed to not overproject their voice; however, it is possible the model 

 could underperform for other reasons including dataset shift (e.g., the distribution of voice 
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 characteristics or demographics is different in a new sample). It is not clear whether these 

 models could detect UVFP from other voice disorders or just healthier voices; however, a 

 model that generalizes well in classifying UVFP from controls could be used to monitor 

 UVFP patients remotely and affordably during treatment or detect risk for UVFP when it is 

 the most likely cause (e.g., dysphonia after thyroid surgery). Larger sample sizes with 

 curated examinations can help increase diverse representation across voice quality and 

 thereby potentially reduce bias in classifier performance. We did not analyze potential 

 racial bias given this data was not extracted from the chart review. Our choice of a 

 standardized feature set worked well in this setting, but may fail to work for differential 

 voice disorder diagnosis or when generalizing to larger datasets, which may bring in 

 additional sources of variance unaccounted for in this dataset. With the availability of more 

 data, additional features could be extracted that better capture changes in coordination 

 (e.g., XCORR  (53)  ) or speech rate (i.e., given UVFP  patients may speak slower). 

 Furthermore, while our feature importance evaluation method, SHAP, shows a certain 

 amount of robustness across models, alternative model-agnostic feature-importance 

 methods (e.g., LOFO, permutation importance) as well as model-specific methods 

 (coefficient values for linear models, mean decrease in impurity for Random Forest) could 

 be compared. Model understandability –how easily are the explanations understood by a 

 speech scientist or a clinician– could be assessed rigorously  (54)  . Finally, debiasing the 

 models by removing features correlated with the biased ones was attempted although it is 

 not clear how exactly intensity may influence certain features; we assume if intensity is 

 influencing a variable, it generally should create some considerable association which we 
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 discarded using dcor. Therefore, the effect of the bias can be assessed by testing the 

 model's generalizability to new unbiased datasets. 

 Conclusion 

 Using the largest UVFP dataset to date, our study demonstrates the importance of 

 checking for biases using explainable machine learning and clinician perceptual ratings. In 

 order to first explain models, we tackle multicollinearity (i.e., redundant or highly correlated 

 independent variables), which biases feature importance, using a custom method called 

 Independence Factor that selects one out of a set of associated features without losing 

 predictive performance. We then compare how results change across different 

 speech-eliciting tasks, training algorithms, features, features set sizes, and highest and 

 lowest performing features to better understand the process that models use to predict 

 vocal changes associated with laryngeal disease, since analyzing a single model will result 

 in a biased view of how predictions are achieved. During this process, we discovered a 

 likely bias resulting from the weak or underprojected voice that characterizes many UVFP 

 patients: patients were prompted by the recording software to speak louder and the 

 microphone gain was likely raised selectively for these patients with weaker voices, 

 possibly generating higher background noise which was detected through clinician's 

 ratings; therefore the models picked up on the acoustic correlates of this increased 

 intensity, which would impede generalization under different recording procedures. 
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 Interestingly, we found that removing all variables that were clearly related to intensity 

 resulted in similar high performance. In this case, the model may be using information 

 more related to pathophysiology, which would need to be further confirmed by future 

 unbiased samples. Machine learning models tended to surpass clinician's evaluation of the 

 same audio recordings. Interestingly, using clinician's voice quality ratings on the 

 recordings in machine learning models performed better than their binary evaluation on 

 whether recordings contained a sample of UVFP voice or not. 

 We hope to promote moving beyond using a single model and only reporting top features 

 to a better explanation of how these models work as well as being able to understand 

 variance across modeling and evaluation choices. We believe these are all aspects of 

 machine learning that clinicians need to understand prior to using such applications. 

 With these considerations along with the recommendations we make, machine learning 

 applications could aid in laryngology screening, allowing for the potential development of 

 in-home screening assessments and continuous pre- and post-treatment monitoring. 
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 Figure 1. Schematic of speech production and the process of extracting certain acoustic features 
 from an audio signal. 
 (A) Speech is the result of the neural coordination of three subsystems: the respiratory system (lungs), the 
 laryngeal system (vocal folds), and the resonatory system of the vocal tract (pharynx, oral cavity, nasal 
 cavity, articulators, and subglottal effects). Speech production requires air flow from the lungs to generate 
 sound sources that are filtered by the vocal tract. (B) Environmental, microphone, and digital sampling 
 characteristics (e.g., background noise, microphone gain, sampling rate) can affect acoustic features. (C) 
 Waveform of the audio signal, which is the 2D representation of the contraction (positive amplitude) and 
 rarefaction (negative amplitude) of air particles. Higher amplitudes can lead to higher perceived loudness. 
 Prosodic features arise from changes over longer segments of time, which is perceived in the rhythm, stress, 
 and intonation of speech. A segment of the waveform is shown in the right panel, indicating a periodic signal 
 from the vocal folds. (D) For a given time window, a spectrum (right panel) can be obtained through a Fast 
 Fourier Transform (FFT) which represents the magnitude of the frequencies in the signal with peaks 
 (formants F1–F3) due to vocal tract filtering of the source signal produced by the vocal folds. The 
 spectrogram (left panel) is a representation of the spectrum as it varies over time. The approximate location 
 of the F0 and first formants are displayed. (E) It is possible to separate source and filter components by 
 computing the inverse FFT of the log of the magnitude of the spectrum, called the cepstrum (right panel). 
 The peak in the cepstrum reflects the periodic glottal fold vibration while lower quefrency components reflect 
 properties of the resonatory subsystem. For speech recognition, Mel filters are applied to the spectrum to 
 better approximate human hearing. A conversion of the Mel-spectrum to a cepstrum using a Discrete Cosine 
 Transform (DCT) generates mel-frequency cepstral coefficients (MFCCs). Similar to the cepstrum, lower 
 MFCCs track vocal-tract filter information. 

 Figure 2. Model performance comparison using a permutation test using non-redudant features. (A) 
 Scores from models trained on true labels (blue) and trained on permuted labels (orange) over bootstrapping 
 splits.  (B)  Statistical comparison between models  (annotation = p-value, highlighted = significant results). 

 Figure 3. Feature importance parallel coordinate plot.  Rank reads from bottom (most important) to top 
 (least important). Mean rank is weighted by performance of each model to avoid a lower performing model 
 biasing the mean rank. 

 Figure. 4. Distributions for top 5 features and corresponding performance for single features.  Logistic 
 Regression with L1 penalty was used.  No single feature  is enough to dissociate groups with high 
 performance. Null models' median performance was 0.5. 

 Figure 5. Feature redundancy with top 5 features highlighted.  Top 5 features are highlighted in bold and 
 their rank is displayed. Squares are clusters of redundant features. Computed with all participants on the 
 reading task. 

 Figure 6. Descriptive statistics and inter-rater reliability of clinician ratings for unilateral vocal fold 
 paralysis (UVFP), background noise, and recording loudness indicating likely bias  . Error bars indicate 
 maximum and minimum count across the three raters. The disproportionate amount of UVFP samples rated 
 as having high background noise and high loudness indicates likely bias, where the gain might have been 
 raised for some UVFP patients and they may have phonated more intensely. kappa: Light's kappa; ICC: 
 intra-class correlation coefficient. 
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 Figure 7. How clinicians rate the audio recordings of read speech: descriptive statistics and 
 inter-rater reliability of average clinician ratings.  The average across raters was taken for each recording. 
 ICC: intra-class correlation coefficient. 
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