
 1 

 Identifying bias in models that detect vocal fold paralysis from audio 

 recordings using explainable machine learning and clinician ratings 

 Daniel M. Low  1,2  , Vishwanatha Rao  3,4  , Gregory Randolph  4,5  , Phillip C. Song  4,5  *, 

 Satrajit S. Ghosh, PhD  1,2,5  * 

 1  Program in Speech and Hearing Bioscience and Technology,  Harvard Medical School, Boston, 

 MA, USA 

 2  McGovern Institute for Brain Research, MIT, Cambridge,  MA, USA 

 3  Department of Biomedical Engineering, Columbia University,  New York, NY, USA 

 4  Department of Otolaryngology–Head and Neck Surgery,  Massachusetts Eye and Ear Infirmary, 

 Boston, MA, USA 

 5  Department of Otolaryngology–Head and Neck Surgery,  Harvard Medical School, Boston, MA, 

 USA 

 * Equal contribution 

 Corresponding author 

 Correspondence can be addressed to Daniel M. Low, Office: 46-4033F, 43 Vassar St, 

 Cambridge, MA 02139, USA. E-mail:  dlow@g.harvard.edu  . 

 1 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 17, 2023. ; https://doi.org/10.1101/2020.11.23.20235945doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

mailto:dlow@mit.edu
https://doi.org/10.1101/2020.11.23.20235945
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2 

 Abstract 

 Introduction.  Detecting voice disorders from recordings  of voice could allow for 

 frequent, remote, and low-cost screening before costly clinical visits and a more 

 invasive laryngoscopy examination. The goals of this study were to detect unilateral 

 vocal fold paralysis (UVFP) from voice recordings using machine learning, to identify 

 which acoustic variables were important for prediction to increase trust by relating such 

 variables with known pathophysiology, and to determine model performance relative to 

 clinician performance on the same recordings. 

 Methods.  Patients with confirmed UVFP through endoscopic  examination (N=77) and 

 controls with normal voices matched for age and sex (N=77) were included. Voice 

 samples were elicited by reading the Rainbow Passage and sustaining phonation of the 

 vowel "a". The 88 extended Geneva Minimalistic Acoustic Parameter Set features were 

 extracted as inputs for four machine learning models of differing complexity. SHAP was 

 used to identify important features. 

 Results.  The highest median bootstrapped Area Under  the Receiver Operating 

 Characteristic Curve (ROC AUC) score was 0.87, which varied depending on model 

 and task, and beat the top clinician performance (range: 0.74 – 0.81). Surprisingly, 

 many UVFP recordings had higher intensity than controls, which was the most 

 important variable for prediction. This was confirmed by having clinician's rate the 

 background noise as a proxy for an increase in microphone gain, which showed to be 
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 higher for UVFP than controls. This and UVFP patients compensating their soft voices 

 with extra vocal effort in order to be heard are likely causes of a systematic bias that 

 allowed the models to detect UVFP. Interestingly, when removing all intensity variables 

 as well as those associated with intensity variables, machine learning models were able 

 to achieve similar high performance using completely different variables. 

 Conclusion.  Using the largest dataset studying UVFP  to date, we achieve high 

 performance from just a few seconds of voice recordings, surpassing expert clinicians' 

 performance. However, we uncovered bias which may occur in voice biomarker 

 research any time individuals have a soft voice. Explainable machine learning and 

 clinician ratings thus provide a mechanism to detect UVFP, uncover how acoustic 

 variables characterize a specific pathophysiology, and reveal bias. 

 Keywords:  vocal fold paralysis, acoustic analysis,  voice, speech, explainability, interpretability, 

 machine learning, bias 
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 INTRODUCTION 

 Voice recordings provide a rich source of information related to vocal tract physiology 

 and human physical and mental health. Given advances in smartphones and 

 wearables, these recordings can be made anytime and anywhere. Thus, the search for 

 disorder-specific acoustic biomarkers has been gaining momentum. Voice biomarkers 

 have been reported for detecting Parkinson's diseases  1  as well as psychiatric disorders 

 including depression, schizophrenia, and bipolar disorder (for a systematic review, see 

 Low et al, 2020  2  ). Given our scientific understanding  of the complexity of speech 

 production, multiple acoustic features have been devised for use in machine learning 

 models. 

 In Figure 1, we describe a schematic of speech production and the process of extracting 

 certain acoustic features from an audio signal (see also Quatieri, 2008  3  ). Panel (A) 

 depicts speech as the result of the neural coordination of three subsystems: the 

 respiratory system (lungs), the laryngeal system (vocal folds), and the resonatory 

 system of the vocal tract (pharynx, oral cavity, nasal cavity, articulators, and subglottal 

 effects). Speech production requires air flow from the lungs to generate sound sources 

 that are filtered by the vocal tract. Panel (B) captures the fact that environmental, 

 microphone, and digital sampling characteristics (e.g., background noise, microphone 

 gain, sampling rate) can affect acoustic features. Panel (C) Waveform of the audio 

 signal, which is the 2D representation of the contraction (positive amplitude) and 

 rarefaction (negative amplitude) of air particles. Higher amplitudes can lead to higher 
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 perceived loudness. Prosodic features arise from changes over longer segments of 

 time, which is perceived in the rhythm, stress, and intonation of speech. A segment of 

 the waveform is shown in the right panel, indicating a periodic signal from the vocal 

 folds. Panel (D) shows that for a given time window, a spectrum (right panel) can be 

 obtained through a Fast Fourier Transform (FFT) which represents the magnitude of the 

 frequencies in the signal with peaks (formants F1–F3) due to vocal tract filtering of the 

 source signal produced by the vocal folds. The spectrogram (left panel) is a 

 representation of the spectrum as it varies over time. The approximate location of the 

 F0 and first formants are displayed. Finally, panel (E) demonstrates that it is possible to 

 separate source and filter components by computing the inverse FFT of the log of the 

 magnitude of the spectrum, called the cepstrum (right panel). The peak in the cepstrum 

 reflects the periodic glottal fold vibration while lower quefrency components reflect 

 properties of the resonatory subsystem. For speech recognition, Mel filters are applied 

 to the spectrum to better approximate human hearing. A conversion of the 

 Mel-spectrum to a cepstrum using a Discrete Cosine Transform (DCT) generates 

 mel-frequency cepstral coefficients (MFCCs). Similar to the cepstrum, lower MFCCs 

 track vocal-tract filter information. Despite these advances, robust applications to detect 

 vocal fold paralysis disorders remain limited  4–9  (see  Supplementary Table S1 for a 

 summary of prior machine learning studies). 

 5 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 17, 2023. ; https://doi.org/10.1101/2020.11.23.20235945doi: medRxiv preprint 

https://www.zotero.org/google-docs/?biiKVl
https://doi.org/10.1101/2020.11.23.20235945
http://creativecommons.org/licenses/by-nc-nd/4.0/


 6 

 Figure 1. Schematic of speech production and the process of extracting certain acoustic features 
 from an audio signal.  (A) Speech production, (B) recording  characteristics, (C) waveform (f0), (D) 
 spectrogram (F1-F3, intensity), (E) mel-frequency cepstral coefficients (MFCCs). 

 Furthermore, while machine learning (ML) can be a powerful and successful approach 

 for diagnostics, they are often treated as "black-boxes". It can be difficult to determine 

 how the model is making a decision, that is, how it is combining input features from a 

 given patient to generate a prediction. This is particularly worrisome given ML 

 algorithms can detect and associate unintended or clinically irrelevant relationships and 

 introduce bias that may be difficult to anticipate. Explainable ML refers to a series of 

 methods and quantitative analyses for uncovering and "explaining" the rationale behind 

 the decision made by complex algorithms, which is particularly critical in the high-stake 

 decisions of medicine to increase trust among clinicians and patients  10  . 

 There are many challenges for applying acoustic analysis to detect specific disorders. 

 Voice characteristics are highly varied and change over time. Laryngeal pathology, age, 

 gender, size, weight, general state of health, smoking/vaping, and medications can 
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 impact vocal acoustic characteristics. Diseases in the larynx and phonatory system (i.e., 

 larynx, resonating structures, lungs) and/or neurological system, will also affect voice. 

 Compensatory production strategies and environmental conditions can also change the 

 vocal signal. Furthermore, because hoarseness is such a frequent occurrence and 

 specialty voice centers are rare, vocal fold disorders are often undiagnosed, 

 under-reported, or misdiagnosed  11  . 

 Unilateral vocal fold paralysis (UVFP) is an ideal model for demonstrating the 

 explainability of ML for several reasons. UVFP occurs when the mobility of a single 

 vocal fold is impaired as a consequence of neurological injury and diagnosis is 

 consistently verified through routine laryngoscopy; therefore, ground truth labels are 

 available. Second, the clinical signs of UVFP are well-described and acknowledged. 

 These characteristics include a weak, breathy voice quality, early vocal fatigue, reduced 

 cough strength, and aspiration with thin liquids  12,13  .  Therefore, the expected acoustic 

 differences between UVFP patients and healthy controls can be interpreted with regards 

 to perceptual symptoms and a well-understood pathophysiology. In contrast, explaining 

 important variables to predict a disorder which is hard to diagnose (e.g., has low 

 inter-rater reliability) and has an unclear pathophysiology would ironically result in a 

 poor explanation, because it would be puzzling how or even if the disorder could 

 modulate the important acoustic variables. 

 We also chose to examine UVFP because it is clinically important. Vocal fold paralysis 

 may occur due to iatrogenic injury, malignancy, idiopathic, and neurological disease, 
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 and impacts quality of life. Overall, surgical iatrogenic injury accounts for 46% of all 

 UVFP in adults and thyroid and parathyroid surgeries are responsible for 32% of 

 postsurgical UVFP  14  . There is a significant need for  a screening tool for the diagnosis 

 and tracking of UVFP because of the high impact of this condition on productivity and 

 quality of life. Screening could be done remotely and frequently, especially when 

 surgical specialists and laryngeal exams are not readily accessible due to geographical, 

 financial, and other barriers  15  . Using an explainable  ML model as a screening tool for 

 UVFP can provide greater clarity as to who most needs laryngoscopy and provides 

 insight in the key voice characteristics related to the pathophysiology  16–20  . 

 The objectives of our study were: (1) to detect UVFP using ML; (2) to evaluate the 

 effectiveness of different models in differentiating the acoustic signals between patients 

 with UVFP and patients with normal functioning vocal folds (i.e., controls); and (3) to 

 explain which features are most important to the diagnostic models and examine the 

 pathophysiological relevance. To achieve these objectives, we evaluated statistical 

 dependencies across voice features in the data, used four different classes of machine 

 learning algorithms to assess classification performance, evaluated the minimal set of 

 features necessary for detection, and identified the most important features for model 

 construction. Ultimately, we wanted to see if the most important features identified by 

 the machine learning models matched clinically-known relevant acoustic changes. 
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 MATERIALS AND METHODS 

 This study was approved by the Institutional Review Board at Massachusetts Eye and 

 Ear Infirmary and Partners Healthcare (IRB 2019002711). 

 Participants and voice samples 

 Through retrospective chart analysis from 2009 to 2019, a total of 1043 patient charts 

 were reviewed from a tertiary care laryngology practice who underwent endoscopic 

 evaluation and voice testing. Of those, 53 patients with confirmed UVFP were identified. 

 They had documented vocal fold paralysis by endoscopic examination and had 

 undergone acoustic analysis as part of routine clinical care. Each patient had four 

 acoustic recordings. These included three sustained vocalizations of the "a" vowel 

 sound (  ɑ in the International Phonetic Alphabet)  and  a reading of the introductory 

 paragraph of the rainbow passage  21  . The acoustic recordings  were all taken in an 

 acoustically shielded room. For each of these 53 patients, a board-certified 

 otolaryngologist reviewed their clinical history, video laryngoscopy as well as their audio 

 samples to confirm that they were correctly classified to have UVFP. Voice samples 

 from an additional 24 patients were collected prospectively using a mobile software, 

 OperaVOX  TM  on an iPad, who were being treated for  UVFP. These patients also had 

 the same four acoustic recordings as the patients from retrospective chart review. This 

 combination of data collection yielded a total of 77 UVFP patients for analysis, of which 

 48 had left UVFP and 29 right UVFP. 
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 All of the patients were then matched with control samples from a database of patients 

 without UVFP who had also undergone acoustic analysis. Each control was the same 

 sex and had the same smoking status as the UVFP patient and within three years of 

 age, and had documented laryngeal examinations that verified the absence of vocal fold 

 mucosal pathology. The controls were excluded if they had established laryngeal 

 surgery, vocal fold lesions, radiation, head and neck cancer, or neurological disease. 

 The controls had recorded the same four acoustic recordings as the retrospectively 

 gathered UVFP group. A board-certified otolaryngologist confirmed that the voice 

 recordings and video laryngoscopies of these controls matched normal expectancies. 

 The reading samples were divided in thirds to match the amount of vowel production 

 samples. Reading recordings were not available for three patients and three patient 

 vowel samples were removed due to containing multiple vowel productions or a cough. 

 The final dataset that was analyzed is described in Table 1. Reading+vowel refers to 

 including all samples (i.e., ~6 samples) from the same participant with the goal of either 

 obtaining higher performance or discovering features that show variation in relation to 

 diagnosis consistently across tasks. Mean (SD) audio lengths were 6.81s (5.47) for 

 reading samples and 3.95s (1.00) for vowel samples.  The audio samples were 

 processed using OpenSmile with the eGeMAPS configuration file (article  22  , source 

 code  23  ) which applies different summarization statistics  to the time series depending on 

 the feature resulting in 88 features per sample covering information related to the vocal 

 folds (F0, jitter, shimmer), intensity (loudness, HNR), vocal tract (F1–3 frequency, 

 bandwidth, amplitude), spectral balance (alpha ratio, Hammamberg index, spectral 

 10 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 17, 2023. ; https://doi.org/10.1101/2020.11.23.20235945doi: medRxiv preprint 

https://www.zotero.org/google-docs/?XnMj7k
https://www.zotero.org/google-docs/?ByuuKu
https://doi.org/10.1101/2020.11.23.20235945
http://creativecommons.org/licenses/by-nc-nd/4.0/


 11 

 slope, MFCC 1–4, spectral flux), and prosody (voice and unvoiced segments, loudness 

 peaks per second). 

 Table 1. Sample sizes and demographic information. 

 UVFP  Controls  Total 

 N  77  77  154 

 Mean age (SD)  56.4 (18.7)  56.6 (18.8)  56.5 (18.7) 

 Sex (F/M)  39/38  39/38  78/76 

 Reading  222  231  453 

 Vowel  227  231  458 

 Reading+vowel (total)  449  462  911 

 SD: standard deviation; F: female; M: male. 

 Machine learning models of increasing complexity 

 With the goal of classifying voices recording into either UVFP or controls, we used four 

 machine learning algorithms of increasing complexity from the  scikit-learn  (v0.21.3) 

 using the  pydra-ml  (v=0.3.1) toolbox  24  (default parameters  were used unless otherwise 

 specified): 

 (1) Logistic Regression: a simple linear model that is constrained to use few features 

 due to an L1 penalty making it the simplest model (“liblinear” solver was used which is 

 ideal for smaller datasets). 
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 (2) Stochastic Gradient Descent (SGD) Classifier: it is also a linear model but tends to 

 use more features due to an elastic net penalty that was chosen making it slightly more 

 complex (the max_iter parameter was set to 5000 and early_stopping was set to True). 

 (3) Random Forest: it is an algorithm that uses simpler decision trees (i.e., weak 

 learners) on feature subsets but then averages the trees’ predictions to create a 

 stronger learner, making it harder to interpret which features are important across trees. 

 (4) Multi-Layer Perceptron: it is a neural network classifier which incorporates, in our 

 case, 100 instances of perceptrons (artificial neurons), which are connected to each 

 input feature through weights with an added ReLU activation function to capture 

 nonlinear structures in the data. It is not possible to know exactly how the hundreds of 

 internal weights interact to determine feature importance, making the model difficult to 

 interpret directly from its parameters (the max_iter parameter was set to 1000; alpha or 

 the L2 penalty parameter was set to 1). 

 To generate independent test and train data splits, a bootstrapped group shuffle split 

 sampling scheme was used. For each iteration of bootstrapping, a random selection of 

 20% of the participants was used to create a held-out test set. The remaining 80% of 

 participants were used for training. This process was repeated 50 times, and the four 

 classifiers were fitted and tested for each test/train split. The Area Under the Receiver 

 Operating Characteristic Curve  (ROC AUC; perfect classification = 1; chance = 0.5) 

 was computed to evaluate the performance of the models on each iteration, resulting in 

 a distribution of 50 ROC AUC scores for each classifier. For each iteration, each 
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 classifier was trained with randomized patient/control labelings to generate a null 

 distribution of ROC AUC scores (i.e., a permutation test). Each model's performance 

 was statistically compared to other models and to the null distributions using an 

 empirical p-value, a common and effective measure for evaluating classifier 

 performance (see Definition 1 in Ojala & Garriga, 2010  25  ). The significance level was set 

 to alpha = 0.05. 

 Assessing feature importance 

 Kernel SHAP (SHapley Additive exPlanations) was used to determine which acoustic 

 features were most important for each model to detect UVFP. This method is model 

 agnostic in that it can take any trained target model (even “black box” neural networks) 

 and compute feature importance  26  . It does so by performing  regression with L1 penalty 

 between different sets of input features and a single prediction made by the target 

 model. It then uses the coefficients of the additional regression model as a measure of 

 feature importance for a single prediction. We took the average of the absolute SHAP 

 values across all test predictions (positive and negative values are both important for 

 classification). We then weighted the average values by the model’s median 

 performance since an important feature for a bad model could be a less important 

 feature for a good model and vice versa. Since we trained each model 50 times (i.e., 

 one for each bootstrapping split), we computed the mean SHAP values across splits for 

 each model. This pipeline (i.e., machine learning models, bootstrapping scheme, SHAP 

 analysis) was done using the  pydra-ml  package. 
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 Reducing redundant features for more explainable models 

 Highly correlated features (i.e., multicollinearity) can influence model generation and 

 interpretation. Two models may obtain similar performance while using different features 

 or placing different weights on the same features (i.e., underspecification). This makes it 

 difficult to compare algorithmic explanations across models. For instance, mean F1 

 frequency may be less important to a given model because the model uses mean F2 

 frequency which happens to capture very similar information in a particular dataset, 

 whereas a different model may use F1 instead of F2 or use both but assign less 

 importance to each. To enforce models to use the same features that capture very 

 similar information and be able to compare feature importance across models, we kept 

 a single feature out of the sets of features that share similar information above a given 

 threshold. We used a custom algorithm we call Independence Factor (see "Reducing 

 redundant features for more explainable models" section in Supplementary Materials). 

 We use distance correlation (dcor) because, unlike Pearson r or Spearman rho, it can 

 capture nonmonotonic relationships. 

 Clinician ratings 

 One otorhinolaryngologist and two speech-language pathologists rated each audio 

 recording of the reading task (one per participant, not split in three) for the following 

 variables, in order: background noise (None, Some, High); UVFP (yes, no), background 
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 noise [1,2,3], CAPE-V severity (0 to 100), CAPE-V roughness (0 to 100), CAPE-V 

 breathiness (0 to 100), CAPE-V strain (0 to 100), CAPE-V pitch (0 to 100), CAPE-V 

 loudness (0 to 100; estimated loudness as if the rater were in the recording room), 

 recording loudness (low, medium, high; loudness of the recording). Inter-rater 

 agreement was assessed using intra-class correlation for all numerical variables and 

 Light's k for the binary presence of UVFP using the R package  irr  . The entire reading 

 task was provided instead of the task split in three to make assignment easier for 

 clinicians. The reading task was chosen over the sustained vowel because we expected 

 it to be easier to detect UVFP. 

 RESULTS 

 Performance of models using acoustic features and clinician ratings 

 Given dependent features provide similar information (see Supplementary Figures S1, 

 S2, S3, S4, S5, S6, S7, S8, and S9) and distort feature importance analyses, we then 

 tested performance after removing redundant features using the Independence Factor 

 method previously described. Supplementary Figure S10 shows performance for 

 different feature set sizes with increasing amounts of redundant features. From this 

 analysis, we selected the feature-set size that resulted in best performance using the 

 least amount of features for subsequent analyses: 39 features (reading), 13 (vowel), 19 

 (reading+vowel). After removing related features (i.e., reducing multicollinearity) from 

 the original 88 features, similar performance was obtained (median ROC AUC = 

 15 
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 0.84–0.87) using fewer features. Supplementary Materials "Feature selection" section 

 describes an analysis of how this method compares to removing features across each 

 train set (see Sup. Mat. Table S2). 

 Performance was found to be high across most models both with and without redundant 

 features. The bootstrapped ROC AUC distributions and permutation tests for the 

 reduced (parsimonious) models using the non-redundant feature set are shown in 

 Figure 2. The figure reports a one tailed statistical comparison (row > column) of models 

 using an empirical p-value, which represents the fraction of column-model scores where 

 the row-model classifier had a higher mean performance (e.g., a p-value of 0.02 

 indicates that the mean score of a row model is higher than 98% of column-model 

 scores). Table 2 shows performance using all features and a subset of features selected 

 by either removing redundant features while maintaining performance (as in 

 Supplementary Figure S10) or using the top 5 most important features. 
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 Figure 2. Model performance comparison using a permutation test. (A)  Scores from models trained 
 on true labels (blue) and trained on permuted labels (orange) over bootstrapping splits.  (B)  Statistical 
 comparison between models (annotation = p-value, highlighted = significant results). 
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 Table 2. Model performance. 

 Features  LogisticRegression  MLP  RandomForest  SGD 

 Reading  88  .87 (.78–.93; .50)  .87 (.80–.93; .50)  .87 (.76–.91; .49)  .83 (.76–.89; .50) 

 Vowel  88  .84 (.77–.89; .50)  .86 (.79–.91; .50)  .86 (.79–.91; .51)  .80 (.72–.87; .50) 

 Reading+Vowel  88  .84 (.76–.91; .50)  .86 (.74–.92; .48)  .85 (.77–.92; .49)  .79 (.72–.86; .51) 

 Reading  39  .84 (.76–.92; .50)  .83 (.76–.91; .50)  .87 (.77–.91; .51)  .78 (.71–.86; .51) 

 Vowel  13  .80 (.70–.90; .50)  .81 (.74–.91; .50)  .84 (.75–.90; .52)  .74 (.58–.87; .51) 

 Reading+Vowel  19  .79 (.70–.84; .50)  .82 (.75–.88; .51)  .84 (.77–.91; .51)  .70 (.61–.77; .52) 

 Reading  Top 5  .81 (.73–.89; .50)  .86 (.78–.92; .47)  .85 (.77–.90; .50)  .75 (.56–.87; .57) 

 Vowel  Top 5  .78 (.67–.87; .50)  .82 (.74–.92; .53)  .81 (.72–.87; .50)  .72 (.57–.82; .49) 

 Reading+Vowel  Top 5  .80 (.70–.86; .50)  .82 (.74–.88; .50)  .81 (.74–.89; .53)  .72 (.55–.83; .52) 

 Reading  88 - Top 5  .85 (.76–.92; .50)  .87 (.77–.92; .49)  .85 (.77–.90; .52)  .82 (.71–.89; .51) 

 Vowel  88 - Top 5  .84 (.75–.93; .50)  .86 (.72–.93; .51)  .84 (.74–.94; .52)  .80 (.70–.90; .48) 

 Reading+Vowel  88 - Top 5  .84 (.74–.89; .50)  .85 (.76–.91; .50)  .85 (.76–.91; .50)  .79 (.71–.87; .50) 

 Performance of models using either all 88 features, non-redundant features (39, 13, 19), top five most 
 important features, all 88 features minus top 5 most important features, and clinician ratings of CAPE-V 
 and noise (i.e., background noise) and loudness (i.e., loudness of the recording). Median ROC AUC score 
 from 50 bootstrapping splits (90% confidence interval; median score of null model). For full distributions of 
 scores see Figure S10 in Supplementary Materials. Removing features is a post-hoc analysis because 
 features were selected based on observing performance on the test sets, and therefore performance 
 might be slightly overly optimistic and would need to be tested on an independent test set for further 
 validation. MLP: Multi-Layer Perceptron; SGD: Stochastic Gradient Descent Classifier. 

 How important are the most important features? 
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 Studies tend to report and describe the top N features, but it is not clear what 

 performance the model would obtain for those features when used alone since 

 measurement is usually based on models that use additional features with multiple 

 interactions. In contrast, in our study we ran models on the top 5 features together 

 (Table 2), which allowed us to actually demonstrate their predictive capability. The lower 

 performance of these top 5 features relative to a richer feature set helps demonstrate 

 that model performance is dependent on interactions across multiple additional 

 features. We also ran models without top 5 features to demonstrate that leaving 

 features that are redundant with these top features results in almost equivalent high 

 performance to using all 88 features since the redundant features share information. 

 Given 24 UVFP patients were recorded with a different device, we trained models 

 without their samples to make sure these differences in recordings were not driving 

 performance. There was a small drop in performance, which could be due to a bias (the 

 full, original model using information of the recording device), but could also be due to 

 removing training samples. The drop in performance is not large enough to suspect that 

 differences in recording are driving the full original model's performance (see Sup. Mat. 

 Table S3, Table S4, and analysis in Supplementary section "Performance removing 

 participants that used other recording system"). 

 Assessing feature importance 

 Figure 3 reports feature importance using SHAP for all models. For further description 

 of features and the chosen classification of features, see Eyben et al. (2015)  22  and Low 
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 et al. (2020)  2  . When reviewing important features, it is key to note that any of the 

 features with which it is codependent could be a reasonable important feature (see 

 clusters of redundant features in Supplementary Figures S1-S9). To understand the role 

 of the most important features we ran a post-hoc analysis with the top 5 features for 

 each data type (reading, vowel, reading+vowel), performance is shown in Table 2 and 

 we further display the distribution of each top feature and its individual performance in 

 Figure 4. Figure 5 reports similarity between top 5 features and all original 88 

 eGeMAPS features. Features that have a high dcor or distance correlation (i.e., cluster) 

 with top 5 features were not used in models to avoid redundancy, but still share similar 

 information and can therefore be considered important features as well. 

 Hierarchically-clustered heatmaps for other data types (vowel, reading, both) and 

 groups (UVFP patients, controls, both) are displayed in Supplementary Figures S1, S2, 

 S3, S4, S5, S6, S7, S8, and S9. 
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 Figure 3. Feature importance parallel coordinate plot.  Rank reads from bottom (most important) to top 
 (least important). Mean rank is weighted by performance of each model to avoid a lower performing 
 model biasing the mean rank 
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 Figure. 4. Distributions for top 5 features and corresponding performance for single features. 
 Logistic Regression with L1 penalty was used.  No single  feature is enough to dissociate groups with high 
 performance. Null models' median performance was 0.5. 
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 Figure 5. Feature redundancy with top 5 features highlighted.  Top 5 features are highlighted in bold 
 and their rank is displayed. Squares are clusters of redundant features. Computed with all participants on 
 the reading task. 
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 Clinician ratings 

 The median ROC AUC for humans was 0.78 (min. = 0.74 to max. = 0.81) meaning the 

 machine learning models performed better than the highest performing clinician. 

 Interestingly, using the average clinician's CAPE-V ratings within machine learning 

 models was able to obtain a maximum median ROC AUC of 0.84 (0.71– 0.94) with the 

 Random Forest model (Table 3). Using clinicians' perceptual ratings of background 

 noise and recording loudness achieved a maximum median ROC AUC of 0.77 (.61– 

 .87). 

 Table 3. Performance using clinician ratings as variables for machine learning models 

 Features  LogisticRegression  MLP  RandomForest  SGD 

 CAPE-V  6  .80 (.69–.88)  .81 (.71– .90)  .84 (.71– .94)  .80 (.48– .91) 

 Noise+loudness  2  .76  (.59 –.86)  .77 (.61– .87)  .74 (.63 –.81)  .68 (.43– .81) 

 In Figures 6 and 7 we report the inter-rater reliability (Flight's kappa and ICC) along with 

 the distribution of the ratings. Common cutoffs for inter-rater agreement are poor for 

 values less than .40, fair for values between .40 and .59, good for values between .60 

 and .74, and excellent for values between .75 and 1.0. Background noise had poor 

 reliability across rater, UVFP and recording loudness had fair reliability (see Figure 6) 

 and CAPE-V-inspired ratings scored good to excellent except for pitch which was fair 

 (see Figure 7). 
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 Figure 6. Clinician ratings for unilateral vocal fold paralysis (UVFP), background noise, and 
 recording loudness indicating likely bias  . Error bars  indicate maximum and minimum count across the 
 three raters. The disproportionate amount of UVFP samples rated as having high background noise and 
 high loudness indicates likely bias, where the gain might have been raised for some UVFP patients and 
 they may have phonated more intensely. kappa: Light's kappa; ICC: intra-class correlation coefficient. 
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 Figure 7. Distribution of average clinician ratings on audio recordings of read speech based on 
 CAPE-V criteria.  The average across raters was taken for each recording. ICC: intra-class correlation 
 coefficient. 

 Bias mitigation: removing intensity-related features 

 In Table 4, we show results after removing all intensity variables as well as variables that have a 
 distance correlation (dcor) with any of them >= 0.3 and 0.4. 
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 Table 4. Performance after removing features associated to intensity features 

 Features  LogisticRegression  MLP  RandomForest  SGD 

 dcor<0.4  44  .87 (.80–.92)  .88 (.81–.95)  .84 (.77–.92)  .81 (.75–.89) 

 dcor<0.3  29  .80 (.74–.87)  .83 (.76–.89)  .85 (.77–.90)  .75 (.68–.82) 

 Discussion 

 This study achieves high performance in detecting UVFP from healthy voices which 

 could have several clinical applications: (1) postoperative screening for thyroid 

 surgery-related UVFP since after thyroid surgery, UVFP is common, occurring in up to 5 

 to 10% of cases  27  . Furthermore, laryngoscopy  is not readily available to all 

 postoperative populations and symptomatic changes are notoriously variable. An 

 ML-based screening could help identify patients needing further workup and treatment, 

 and earlier diagnosis is essential to optimize long-term outcomes  28,29  . (2) Monitoring 

 voice during speech therapy and after surgical treatment for confirmed UVFP to 

 measure when and if the patient's voice is approximating a healthy voice. (3) 

 Preoperative screening prior to surgeries that are at high risk for developing UVFP such 

 as thyroid, head and neck, cardiac, thoracic, esophageal, and cervical spine operations. 

 We achieve robust classification performance and associate this performance with 

 relevant acoustic features. Critically, we demonstrate that interpreting performance 
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 accuracy has to be contextualized with respect to the type of the ML model used and 

 the voice-eliciting task. 

 The need for automated assessments of vocal fold paralysis 

 We chose vocal fold paralysis as the study cohort for several reasons. The acoustic 

 changes associated with vocal fold paralysis are relatively reliable and consistent. 

 Application of objective acoustic measurements towards differentiating between voice 

 conditions have been limited  4–9  (see Supplementary  Table S1 for a summary of prior 

 machine learning studies). Our study expands on prior studies which have used 

 pre-existing commercial databases, smaller sample sizes, fewer features, and/or 

 methods for model evaluation that can be biased in small datasets given the test sets 

 may not be representative (for a discussion on bootstrapping for clinical datasets, see 

 5  2  ). As a clinical entity, UVFP can have detrimental effects on voice, vocation, and 

 quality of life, with resultant morbidity related to respiration, swallowing and aspiration. 

 The costs associated with UVFP not only relate to patient morbidity and diminished 

 quality of life but also to the economic burden placed on our healthcare system. Greater 

 lengths of hospitalization and increased hospital costs have been associated with 

 postsurgical VFP  27,30  . Access to specialists for diagnosis is limited and early detection 

 and management of UVFP appear to improve length of stay and surgical outcomes  31  . 
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 Explaining acoustic features relevant to detecting vocal fold paralysis 

 Objective acoustic measurement changes associated with vocal fold paralysis have 

 been described and these changes include reduced loudness and maximum phonation 

 time, higher perturbation measurements such as jitter and shimmer, and increased 

 signal to noise ratio  13,32,33  ; however these were  univariate models, and we have 

 demonstrated that using single variables does not seem to provide high predictive 

 performance. While other multivariate machine learning models have been used (see 

 Supplementary Table S1), these used few features and small or undefined samples and 

 only report feature importance results for one model; therefore it is not clear whether the 

 important features reported would hold using larger feature sets or how other models 

 would perform. Using a much larger initial set of acoustic features for analysis, we 

 demonstrate that several machine learning algorithms of increasing complexity (using 

 more parameters) successfully identify vocal fold paralysis from healthy voices. We also 

 report that these models can use different features to achieve similar performance. 

 Different models emphasize different features not simply because of its relevance to a 

 disorder, but because of the mathematics associated with the model  34,35  . The variability 

 of the ranking of features used by our individual models also illustrates the potential 

 danger of using the single highest performing model, which is commonly seen in 

 published literature. 

 Instead of simply reporting the important features from the highest performing model, 

 we analyzed the models to find common features. Some of the most important features 
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 across models were: intensity (especially equivalent sound pressure level which was 

 redundant with multiple loudness features and seems to be due to some patients trying 

 to use more breath for projection), Mel Frequency Cepstral Coefficients (especially the 

 first coefficient, which captures spectral envelope or slope), mean F0 semitones (given 

 F0 originates from vocal-fold oscillation, a vocal-fold paralysis is expected to alter F0), 

 mean F1 amplitude and frequency (influenced by how the vocal tract filters F0 and the 

 shape of the glottal pulse which would be affected by UVFP), and voiced and unvoiced 

 segments (prosodic and speech articulation features which may be altered due to 

 changes in the periodicity of F0). Shimmer variability was important just for reading, and 

 it captures variability in glottal pulses and pressure patterns which ultimately affect F0. 

 When we removed these top 5 features from the full feature set, performance is 

 practically equivalent to using 88 features, as expected, since there are features that 

 are redundant with these top 5 features. Therefore, it is not that only these 5 specific 

 features drive performance, but rather the information they contain, which in this dataset 

 is also captured by other features as shown in Figure 5. 

 These acoustic features corroborate our clinical understanding of glottal incompetence 

 from UVFP and with common patient complaints of reduced loudness, vocal instability, 

 hoarseness, and rough voice. Uncovering and understanding the basic mechanisms 

 and features that models use to generate predictions and outcomes are important as 

 these tools become part of the clinical decision making process. 
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 Identifying and addressing bias 

 Equivalent Sound Level was higher in UVFP patients than controls. This is 

 counter-intuitive because UVFP patients are known to have softer voices as already 

 described; however, clinicians rated most UVFP samples as being louder than controls. 

 The bias discovered was likely due to increasing the gain on the microphone for some 

 UVFP patients, which would explain the increased background noise in UVFP patients' 

 recordings. A second source of bias may have occurred from requesting UVFP patients 

 to speak louder in order to meet the minimum intensity threshold on the recording 

 softwares Computerized Speech Lab™ and OperaVOX, or patients could have tried this 

 on their own knowing they were being recorded. This behavioral compensation is likely 

 to occur in biomarker research when the participant has a soft voice, especially in 

 retrospective studies like ours where the study goal is not known at the time of 

 recording or when certain software properties lead individuals with weak voices to 

 speak louder. Even though the current models perform better than the clinicians, a 

 systematic comparison would require more clinician and model assessments across 

 datasets where the model's training is done on a single dataset. It is possible such a 

 model might learn intrinsic characteristics of a dataset that do not generalize as well as 

 clinical expertise. Having said this, this procedure would help us understand the extent 

 to which UVFP detection is generalizable from acoustic data alone. 

 As a post hoc analysis, we address bias by mitigating its effect: we removed variables 

 associated to intensity variables. The models were able to obtain similar performance 
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 using a very different set of features. It is possible that these remaining features better 

 reflect pathophysiology but further studies should address their generalizability. 

 Comparing tasks, model complexity, and feature set sizes 

 In addition to getting a better understanding of features, we explored performance in the 

 context of different vocal tasks. Participants carried out two different tasks to elicit voice, 

 reading  , which captures more complex speech dynamics,  and  sustaining vowels  , which 

 is a simpler measure of vocalization and the respiratory subsystem. Overall, these 

 dynamics from the speech task may have improved model performance as was 

 observed. Comparing simpler and more complex models is important because simpler 

 models such as Logistic Regression could be preferred because they tend to generalize 

 better given they are less at risk for overfitting the training set and they are more 

 interpretable and thus biases can be assessed more directly  36  . 

 By removing redundant features, we can concentrate on finding the most useful 

 features for further analysis. Performance decreased only slightly while we made 

 models more parsimonious and explainable. Performance using the top 5 features 

 dropped performance in most cases, with the exception of samples from the reading 

 task which obtained an AUC of 0.85 using just the 5 features (see Figure 4). Using the 

 individual features from within these top 5 one at a time (univariate models) reduced 

 performance significantly to 0.55-0.71. This indicates the need for these models to 

 combine multiple features to achieve high performance and any model evaluation 
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 should not focus on only the common or top features without testing their predictive 

 performance. 

 Limitations and future directions 

 We cannot determine how the bias will affect the model's performance on future 

 samples, but it will likely underperform in samples where gain cannot be changed and 

 where participants are instructed to not overproject their voice; however, it is possible 

 the model underperforms for other reasons including dataset shift (e.g., the distribution 

 of voice characteristics or demographics is different in a new sample). It is not clear 

 whether these models could detect UVFP from other voice disorders or just healthier 

 voices; however, a model that generalizes well in classifying UVFP from controls could 

 be used to monitor UVFP patients remotely and affordably during treatment or detect 

 risk for UVFP when it is the most likely cause (e.g., dysphonia after thyroid surgery). 

 Larger sample sizes with curated examinations can help increase diverse 

 representation across voice quality and thereby potentially reduce bias in classifier 

 performance. Additional datasets will also help confirm the generalizability of these 

 findings beyond the cross-validation approach used here. Our choice of a standardized 

 feature set worked well in this setting, but may fail to work for differential voice disorder 

 diagnosis or when generalizing to larger datasets, which may bring in additional sources 

 of variance unaccounted for in this dataset. With the availability of more data, additional 

 features could be extracted that better capture changes in coordination (e.g., 

 XCORR  37  ), vocal fold characteristics (e.g., cepstral peak prominence  38  ) or speech rate 
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 (i.e., given UVFP patients may speak slower). While our feature importance evaluation 

 method, SHAP, shows a certain amount of robustness across models, alternative 

 model-agnostic feature-importance methods (e.g., LIME, permutation importance) as 

 well as model-specific methods (coefficient values for linear models, mean decrease in 

 impurity for Random Forest) could be compared. Model understandability –how easily 

 are the explanations understood by a speech scientist or clinician– could be assessed 

 rigorously. Finally, debiasing the models by removing features correlated with the biased 

 ones was attempted although it is not clear how exactly intensity may influence certain 

 features; we assume if intensity is influencing a variable, it generally should create 

 some considerable association which we discarded using dcor. Therefore, the effect of 

 the bias can be assessed by testing the model's generalizability to new unbiased 

 datasets. 

 Conclusion 

 Using the largest UVFP dataset to date, our study demonstrates the importance of 

 checking for biases using explainable machine learning and clinician perceptual ratings. 

 We also demonstrate the feasibility and value of testing multiple ML algorithms on data 

 obtained from different voice tasks to better understand the process that models use to 

 predict vocal changes associated with laryngeal disease, since analyzing a single 

 algorithm will result in a biased view of how predictions are achieved. During this 

 process, we discovered a likely bias resulting from the soft voice that characterizes 
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 many UVFP patients: the microphone gain was likely raised, possibly generating higher 

 background noise and patients were prompted by the software used to speak louder. 

 Interestingly, we found that removing all variables that were clearly related to intensity 

 resulted in similar high performance: the model may be using information more related 

 to pathophysiology and therefore future studies could determine whether this model 

 generalizes better.  Deciphering how these models work, being able to understand 

 strengths and weaknesses of different algorithms, and making sure the training sets are 

 representative of the intended uses are all aspects of ML that clinicians need to 

 understand prior to application. We believe that establishing reliable ML tools should 

 involve 1) controlling audio recording, 2) providing instructions so participants do not 

 overproject their voice, 3) controlling recording software so a minimum threshold is not 

 needed, 4) identifying appropriate methods for feature extraction and performance 

 evaluation (e.g., bootstrapping), 5) explaining feature importance which may require 

 addressing redundancy across features (i.e., multicollinearity), and 6) applying multiple 

 models of varying complexity to understand how much feature importance can vary to 

 then make inferences from the features that are important  across  models. Finally, if bias 

 is encountered, attempt to reduce it. With these considerations, ML applications could 

 aid in vocal fold paralysis diagnosis, allowing for the potential development of in-home 

 screening assessments and continuous pre- and post-treatment monitoring. 

 Acknowledgments 
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 Supplementary Table legends 

 Table S1.  Prior studies on voice disorders. N: sample  size; MEEI: Kay Electronics 

 Mass. Eye and Ear Infirmary (MEEI) CD-ROM dataset; UVFP: Unilateral Vocal Fold 

 Paralysis; SD: standard deviation; f0: fundamental frequency. 

 Table S2.  Comparison of selecting features on the  entire dataset (useful for 

 explainability) versus selecting on 50 bootstrap (80–20) train splits. Original total 

 features are 88. CI = Confidence Interval. 

 Table S3.  Performance of models without 24 patients  recorded on iPad. Median ROC 

 AUC score from 50 bootstrapping splits (90% confidence interval; median score of null 

 model). The control group represents 60% of the training samples. MLP: Multi-Layer 

 Perceptron; SGD: Stochastic Gradient Descent Classifier. 

 Table S4.  False negative rate (FNR) of training on  one recording device and testing on 

 24 UVFP patients that used iPad. FNR is generally quite low. Performance can also be 

 influenced by having a smaller training set in order to balance the classes. 

 Supplementary Figure legends 
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 Figure S1.  All participants, reading task: Visualization of features with shared 

 information using pairwise distance correlation across the 88 eGeMAPs features. 

 Squares are clusters of redundant features. 

 Figure S2.  All participants, vowel task: Visualization  of features with shared information 

 using pairwise distance correlation across the 88 eGeMAPs features. Squares are 

 clusters of redundant features. 

 Figure S3.  All participants, reading+vowel tasks:  Visualization of features with shared 

 information using pairwise distance correlation across the 88 features. Squares are 

 clusters of redundant features. 

 Figure S4.  Patients, reading task: Visualization of  features with shared information 

 using pairwise distance correlation across the 88 eGeMAPs features. Squares are 

 clusters of redundant features. 

 Figure S5.  Patients, vowel task: Visualization of  features with shared information using 

 pairwise distance correlation across the 88 eGeMAPs features. Squares are clusters of 

 redundant features. 

 Figure S6.  Patients, reading+vowel tasks: Visualization  of features with shared 

 information using pairwise distance correlation across the 88 eGeMAPs features. 

 Squares are clusters of redundant features. 

 Figure S7.  Controls, reading task: Visualization of  features with shared information 

 using pairwise distance correlation across the 88 eGeMAPs features. Squares are 

 clusters of redundant features. 
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 Figure S8.  Controls, vowel task: Visualization of features with shared information using 

 pairwise distance correlation across the 88 eGeMAPs features extracted. Squares are 

 clusters of redundant features. 

 Figure S9.  Controls, reading+vowel tasks: Visualization  of features with shared 

 information using pairwise distance correlation across the 88 features. Squares are 

 clusters of redundant features. 

 Figure S10.  Performance as a function of feature set  size using Independence Factor 

 method for reducing feature redundancy. The feature sets remove features with 

 distance correlation ≥ 0.2 up to 1.0 (i.e., keeping all features) in increments of 0.1. 
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