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Abstract. The challenges with modeling the spread of Covid-
19 are its power-type growth during the middle stages with the
exponents depending on time, and the saturation (currently) due
to the protective measures. The two-phase solution we propose
for the total number of detected cases of Covid-19 describes the
actual curves in many countries almost with the accuracy of physics
laws. Bessel functions play the key role in our approach. The
differential equations we obtain are of universal type; they can
describe general momentum and transient responses in behavioral
psychology, invasion ecology, etc. Due to a very small number of
parameters, namely, the initial transmission rate and the intensity
of the hard and soft measures, we obtain a convincing explanation
of the surprising uniformity of the curves of the spread in many
different areas. This theory can serve as a tool for forecasting
the epidemic spread and evaluating the efficiency of the protective
measures, which is very much needed for epidemics. As its practical
application, the computer programs aimed at providing projections
for late stages of Covid-19 proved to be remarkably stable in many
countries, including Western Europe, the USA and some in Asia.
We provide a projection for the saturation of the 3rd wave in the
USA: the corresponding number of total, detected or not, cases
can presumably reach then the herd immunity levels (G-strains).
This can be used to analyze the efficiency of the vaccinations.

Introduction. The evidence is strong that the exponential growth of
the total number of detected infections of Covid-19, denoted by u(t)
in this work, can be detected only during very short periods in any
countries, especially when the middle stages are considered. The cor-
responding curves are in fact of power type: u(t) ∼ Ctc in terms of the
time t from the beginning of the spread and for some C, c. Moreover,
c, C heavily depend on time; the exponent c approaches 1 near the
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turning point of the spread, and the magnitude C becomes small near
the saturation. Since the epidemic is far from over, the saturation here
is of technical nature. Generally, it is followed by a period of modest
linear-type growth of the total number of infections.

Methodologically, we consider epidemics as ”invasions”, and focus
on ”transiencies”, momentum managing the epidemic in this context,
which results in a very exact modeling of Covid-19. This is similar to
[Has]: ”The question of interest was the time course of the epidemic,
rather than the final state, which is always one where the disease dies
out”. The ”predator-pray” system for us is when the protective mea-
sures (including self-imposed ones) play the role of ”predator”, and the
”pray” is the number of infections.

This is of course different from SIR-type models, applicable mostly to
the initial periods of exponential growth and final stages of epidemics
(we are not there). The SIR model suggested in the beginning of the
20th century was a basic one. Since then, it was developed, but the
exponential growth until the herd immunity is approached remains its
key feature. As we will show, the asymptotic periodicity of Bessel
functions is absolutely relevant here; as far as we know, they were not
employed for modeling epidemics and in invasion ecology. Generally,
Bessel processes are important in the theory of stochastic processes.

Applications of our approach (and Bessel functions) in ecology, more
specifically for 2-species models, seem promising. Following [Has], the
discretization, different time-scales, and the greater number of species
(3) can be naturally added here: (basic) hypergeometric functions will
be needed for these. See also [HL, LPP]. This is beyond this work.
We also do not consider here the concept of Momentum Risk Taking
from [Ch2], somewhat similar to Kahneman’s ”thinking-fast”, which is
some behavioral counterpart of the ”transiencies” in ecology.

The most ambitious here are the expectations that the same ODE
model the processes ofmomentum decision making in our brain, but this
is well beyond the scope of this (any) research. The number of neurons
involved in the ”momentum” analysis of some event is restricted here
by the ”predator”, the expected allocation of (very limited) resources of
our brain for this particular task. The asymptotic periodicity of Bessel
functions set here some limits. Generally, it is surprising that Bessel
functions, invented by Daniel Bernoulli long ago, are not one of the
main tools in mathematical theory of epidemics, ecology, behavioral
science, and beyond. Hopefully this will change.
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MODELING THE SPREAD OF COVID-19 3

The usage of the basic and current reproduction numbers R0, R is
common for epidemics. The basic one is defined as the initial average
number of people infected by one person who contracted the virus;
see [CJLP, Co, CD, DHB, He, HL]. However it can be used only
qualitatively for Covid-19 and other epidemics of power growth: the
formula u(t) ∼ constRt for the total number of infections will stop
working very quickly and cannot be of real help for forecasting without
significant corrections.

Even R = 1.1 or so would quickly begin to contradict the actual
growth of infections of Covid-19. For instance, Robert Kox Institute
periodically provides the R-numbers for Germany frequently reaching
0.7 and 2. However this can be only short-lived.

One of the possibilities to adjust SIR to the power growth of Covid-
19 and other epidemics of non-exponential type (there were many), is
to assume that R ∼ 1 and is non-dominant, i.e. to rely on the theory of
resonances. This provides a polynomial growth of the total number of
infections. We mention this for the sake of completeness. Our approach
is different: a combination of the ”local herd immunity” with modeling
the active management.
It was already intensively discussed in the literature that the herd

immunity can influence the spread of Covid-19 well before it reaches
the levels of 60− 70%. See e.g. [BBT]. We associate the power growth
of the total number of infections with local herd immunity. It starts
working almost from the very beginning of the epidemic and really
provides the growth of power-type: u(t) ∼ tc, as we explain below.

The next step is the key: the time-dependence of the exponent c
in terms of Bessel functions. Our theory was posted in the middle of
April, when the saturation of the spread was observed only in several
countries; they were mostly in phase one, in mode (A) in our terminol-
ogy. We also provided a variant for the later stages, mode (B), when
the hard measures are significantly reduced. The (B)-mode system of
ODE appeared really applicable to phase two in many countries, almost
anywhere in Western Europe. This phase is the switch to less aggressive
management due to relatively low numbers of daily infections.

For the initial growth ∼ tc of the total number of detected posi-
tive cases, our phase-two model predicts that the growth will become
eventually of type ∼ tc/2 cos(d log(t)) for some d. The passage from
the Bessel-type curves for phase 1 to those in phase 2 can be clearly
seen in many countries. Though the Bessel-type formulas alone for u(t)
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4 IVAN CHEREDNIK

worked well almost till the saturation in some countries, for instance,
during the first waves in Austria and Israel. These were the countries
where the hard measures were continued almost till the saturation.

The spread of Covid-19 in the USA was mathematically quite a chal-
lenge for us; the results of our efforts are systematically analyzed in
[Ch1]. The first wave in the USA went through several stages, more
than with any other countries we considered. Our understanding is
that it was so mostly because the hard protective measures were con-
stantly relaxed in the USA on the first signs of improvements, well
before the actual saturation. This is in contrast to Europe and several
countries in Asia. It was somewhat similar in UK, but it eventually
reached phase 2 and the saturation of the first wave.

The costs and consequences of hard measures, especially lockdowns,
are huge for any country. Moreover, the saturation due to the hard
measures is of unstable nature; the recurrence of the epidemic is quite
likely if they are reduced or abandoned. Our theory generally provides
the way to control the efficiency of protective measures, but this is
quite a challenge even if advanced mathematical means are used. See
here [FRAF].

Prior approaches. There is increasing number of works where the
power growth of the total number of infections is considered for mod-
eling Covid-19. Let us mention at least [Ch1, MBS, MH, TKH].

To begin with, in [CD] (well before Covid-19), an ambiguity with
the definition and practical calculation of R0 is mentioned: ”It is reas-
suring to know, however, that the sign of R0−1 is independent of the
decomposition used and that the prediction of exponential growth or
decay is therefore correctly made by any of the counting schemes.” This
is our impression too: the sign of R−1 is mainly used practically, not
the exact value of R (calculated by some formulas). The exponential
growth is mostly assumed in this paper, the regime where R0 is not a
strictly dominant eigenvalue, is mentioned at its end. It may results in
the power growth of the number of infections, as R ∼ 1. Let us quote:
”As far as we know, little can be said in general about the exceptional
case that R0 is not strictly dominant”.

In [MBS], the authors comment on the power growth: ”the nature
is full of surprises”. In [TKH]: ”this new contamination regime is hard
to explain by traditional models”. In our one: ”power law of epidemics
must be the starting point of any analysis if we want our mathematical
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MODELING THE SPREAD OF COVID-19 5

models to be up to date”. See also article [Ray] and works mentioned
there concerning a potential usage of small-world interaction network,
where individuals are assumed to contact (mostly) local neighbors and
have occasional long-range connections.

On the other hand, paper [BBT] and some other works suggest that
the levels of herd immunity sufficient to impact the spread of Covid-
19 can be significantly lower than the ”classical” 60% or so: as low
as 40% in some areas due to the population heterogeneity. From this
viewpoint, we make the next step in this direction, which seems quite
natural. Our starting assumption is that local herd immunity shapes the
spread from the very beginning of epidemics and reduces its exponential
growth to the power one. This is somewhat related to the small-world.

The main problem with modeling is actually not the power law of
epidemics itself, a beginning for us. This law alone is insufficient for
forecasting. The exponent c and the corresponding scaling coefficient
C heavily depend on the time passed from the beginning of the spread
of the infection. An exact mathematical model of this time-dependence
is necessary, which was proposed in [Ch1] using the Bessel functions.

We note that the approach of [MBS] to the power growth was of ex-
perimental kind. Since the corresponding exponents depend very much
on the considered periods, the data in Figure 1 in this paper and in
similar papers mainly show that the growth is no greater than poly-
nomial. The exponents c we obtain are different from their exponents.
Mathematically, the authors suggested the usage of the SEIR model
(Susceptible- Exposed- Infectious- Recovered), which does not result
in the power growth, though ”small world” is mentioned there as a
possibility.

Paper [TKH] is based on the Poissonian small-world network. This
approach results in the linear growth (c ≃ 1) of the number of in-
fections. The linear growth is clearly present at some stages, but it
is far from linear during the first phase and closer to the saturation
everywhere. Anyway, the explanation of the linear growth and the
saturation in [TKH] is very different from what we proposed in [Ch1].

Among many confirmations of the power growth of the total number
of infections of Covid-19, the period 3/20-10/7 in India is very convinc-
ing; see Fig. 1. Here u(t) = const tc for c = 3.65 is practically exact
for the total number of detected cases in India for about 6 months (!).
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6 IVAN CHEREDNIK

In this figure, the main parameters were determined on 08/03. This
forecast was posted on 10/07; to expire on 11/06 (the maximum of
the u-function). It matched ideally the actual curve of detected cases.
As always, a linear growth is expected after the top of the Bessel-type
curve u(t), which can be seen in this graph after 11/06. In our theory,
we switch to the mode-(B) formula for the second phase.

Saturation due to hard measures. For us, the saturation, including
some modest linear growth of the total number of infection after (if) it
is reached, is a result of active protective measures, mostly hard ones.
They are imposed by authorities in charge, but self-restrictions are
equally important. The key is detection-isolation-tracing, which includes
closing the places where the spread of infection is the most likely. The
societal cost of hard measures is huge, but they proved to reduced the
spread efficiently.

It is not disputed that the saturation of the first waves of Covid-19
in many countries (almost all Western Europe) was not due to the herd
immunity. The latter probably requires about 40%-60% of all suscepti-
ble population to be infected and recovered [BBT], which was far from
these levels during the first waves. Thus, the saturation mechanisms
of SIR-type models are not applicable here, at least for the first waves.

The timing and the intensity of the second waves clearly confirm
the validity of our approach to modeling, based on the prime role of
protective measures, mostly the hard ones. Recurrence of epidemics is
quite frequent; see e.g. [HL]. However the second waves of Covid-19
begin unusually quickly, sometimes even on the top of the unfinished
first waves, as in the USA. The relaxation of hard measures closer to
the end of the first waves seems the only logical explanation for this.

The summer vacations (and closed schools) in Western Europe actu-
ally were the kind of protection similar to hard measures. At the end
of August, the second waves began almost everywhere in Europe, and
the number of new detected infections began to grow (again) in the
USA from the middle of September.

Mathematically, our exponent ”c”, which we call the initial trans-
mission rate, appeared increasing from the first to the second waves in
many countries. This parameter is one of the main on our theory; it
reflects the virus strength and the ”initial” number of contacts in the
areas. Thus, by reducing the protective measures, especially the hard
ones, c is essentially back to that in the beginning of the epidemic,
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MODELING THE SPREAD OF COVID-19 7

which a tendency to increase. The second key parameter of our theory,
the intensity a of protective measures, dropped very significantly for the
second waves.

Qualitatively the duration of the wave is 1/
√
a; quantitatively, Bessel

functions must be used here. So, mathematically, we essentially repeat
the first waves, but now with significantly lower levels of hard measures,
longer periods of intensive infections, and higher magnitudes of the
total numbers of infections.

Power Law of Epidemics. With such complex processes as epi-
demics, there can be of course multiple factors contributing to the
power growth, biological ones included [CLL]. The ”justification” from
[Ch1] goes as follows. First, we assume that infected people mostly
transmit the disease to their (susceptible) neighbors, and that the pop-
ulation is distributed uniformly. The second assumption is that the
wave of the infections expands linearly in a proper graph of contacts.
The third one, local herd immunity, is that people ”inside the infection
zone” do not transmit the disease because they are surrounded by those
already infected or recovered, i.e. the border of this zone mostly con-
tributes to the spread of this disease. This readily gives that u(t) ∼ t2

or greater (in the absence of protective measures). Indeed the lowest c
we observed was c = 2.2 (the 1st wave in the USA).

People from the infected zone do shopping, travel, visit friends. So
the higher dimensions are needed to imbed the graph of contacts into
some RN providing that the geometric distances between points repre-
senting people are essentially the numbers of links between them, i.e.
reflect the intensity of the contacts.

Upon this embedding, we assume the uniform distribution of the
points in RN representing people and the linear spread of the disease
in RN . Then, indeed, u(t) ∼ Ctc, where c is the ”dimension” of the
image of this graph, a number from 2 to N .

Next, we represent this u(t) as a solution of the differential equation
du(t)/dt = cu(t)/t. This is standard when we need to add ”exter-
nal forces”. The exponential growth is unsustainable, but the power
growth is unsustainable long term too. We ”correct” it as follows.

The main ODE. Combining the initial power growth of the total
number of detected infections u(t) with the impact of protective mea-
sures we obtain the following two systems of differential equations:
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8 IVAN CHEREDNIK

{du(t)

dt
= c

u(t)

t
− p(t),

dp(t)

dt
= a u(t)

}
;(1) {du(t)

dt
= c

u(t)

t
− p(t)

t
,
dp(t)

dt
=

b

t
u(t)

}
.(2)

Here t is the time from the beginning of the intensive growth of
infections, not always the very beginning of the spread of Covid-19 but
sufficiently close to it. System (1) describes the impact of hard measures
under the most aggressive response. The second describes the impact
of the soft measures: wearing the protective masks and social distancing
are the key. We called these modes (A) and (B) in [Ch1, Ch3].

When a = 0, d = 0, we obtain the power growth u(t) ∼ Ctc; so c can
be measured experimentally during the initial stages of Covid-19 and
is supposed to be the same for (1) and (2). Mostly it was in the range
2.2 ≤ c ≤ 2.8 (wave 1), but reached c = 4.5, 5.5 in Brazil and India.

There is a variant of these systems, when the second equation in
(1) is replaced by that from (2), called the transitional (AB)-mode in
[Ch1]. It modeled reasonably the spread in the USA, UK, and Brazil,
but the usage of (1) and (2) in our two-phase solution appeared sufficient
for many countries without mode (AB).

The protection function p(t) for (1) is basically the number of pre-

vented infections. More exactly, p(t) =
∑

i(t − ti) ≃ a
∫ t

0
u(τ) dτ ,

where the sum is over all infected individual isolated at the moments
0 < ti < t for some constant a, the intensity of ”isolations”. We as-
sume that if not isolated, this group of people would contribute p(t) to
du(t)/dt, i.e. the transmission rate is taken 1 for them. For (2), p(t) ∼
(the number of infected people wearing the masks before t), and, simi-
larly, for the social distancing and other (self-)restrictions.

Related processes. Both systems are actually from [Ch2], where
they were used to describe the dynamic of the (relative) stock prices
p(t) under news driven momentum trading. The function u(t) there was
the news propagation triggered by some event. It is of power growth in
terms of time t passed from the event, but the exponent c is generally
smaller than 1, especially when the ”positions” are short term.

The arguments there were from behavioral finance. This is actually
related; the behavioral aspects of epidemics are of obvious importance
[St]. However financial news fades, and this happens quickly; this is
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MODELING THE SPREAD OF COVID-19 9

very different for the spread of epidemics. System 1 described in [Ch2]
profit taking in stock markets; the second one modeled the ”usual”
news-driven investing.

As a matter of fact, these two systems are of very general nature.
For instance, they are supposed to occur in any momentum risk taking.
This concept, MRT for short, is from [Ch2]; it is somewhat similar to
Kahneman’s ”thinking-fast” [Ka]. Managing epidemics on the basis of
the current data is very much momentum. As in stock markets, the
change of data can be random (and can be ignored as such), or it can
be a start of a new tendency. Generally, it is risky not react promptly
to each and every piece.

It was expected in [Ch2, Ch1], though without biological evidence,
that both systems of equations may describe real neural processes in
our brain. Here u(t) is the number of neurons involved in the analysis
of a particular event at the moment t, counted from the event, and
p(t) is the expected importance of this event vs. other ones and the
corresponding expected brain resources needed for its analysis. I.e.
p(t) is basically the expected allocation of resources, which are very
limited in our brain. We do not know much about the ways our brain
work, but the confirmation of the power laws and related saturations
are solid in the stock markets and, as we demonstrate, in epidemics.

We note that a significant part of [Ch2] is devoted to the discretiza-
tion. Decision-making always requires some action potentials, i.e. it is
discrete by its nature. With epidemics, this seems not really neces-
sary; the usage of ODE worked very well so far, though potentially the
discretization can become important for our approach too.

Two-phase solution. The solutions of (1) and (2) we need are

u1,2(t) = t(c+1)/2J± c−1
2
(
√
at),

uB(t) = tc/2 cos(d log(Max(1, t))).

Here Jα(x) =
∑∞

m=0
(−1)m(x/2)2m+α

m!Γ(m+α+1)
are Bessel functions of the first kind;

[Wa] (Ch.3, S 3.1). The function uB is for d=
√
b−c2/4 > 0; it will be

used to model later stages of Covid-19.
Our two-phase solution is the usage of a proper linear combination of

u1,2 for phase 1, till the saturation, and then the usage of uB for phase
2. It proved to be quite exact for modeling the curves of total numbers
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Figure 1. India: 3/20-10/7, c=5.75, a=0.035, C=0.55.

of detected infections of Covid-19. For t ≈ 0: u1(t) ≈ tc and u2(t) is
approximately ∼ t. I.e. u1 dominates; it is the key for forecasting.

The second fundamental solution of system 2 is with sin instead
of cos. When the protective measures are modest, mathematically
when D = c2/2 − b > 0, the leading fundamental solution is tr with

r = c/2 +
√
D, i.e. it diminishes from r = c in the beginning of the

spread to r = c/2 and then remains unchanged. This is of importance,
but we will not touch the range D > 0 in this work.

India: 3/20-10/07-11/20. The starting number of detected cases was
191, which was subtracted. The power function 0.0125(t + 0.07)3.65

is a very good approximation for than 5 months; see Fig. 1. This
is of course a very convincing argument in favor of the power law of
epidemics, but this can be seen in any countries. For India, the power-
growth period is longest we observed, which can be linked to a relatively
low level of the active management and self-imposed restrictions (for a
country with such a population) during the first phase. Of course the
density of the population and the general number of contacts are very
significant factors in India and anywhere.

In this graph, the main parameters were determined around 08/03.
Though, generally, the parameters determined before the turning point
must be considered conditional The forecast posted on 10/07 was that
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MODELING THE SPREAD OF COVID-19 11

the curve of the total number of detected infections would reach its
technical saturation on November 6 with the number 8.25M of the
cases. It matched the actual number of cases almost ideally.

As always, a linear-type growth (mode (B)) is expected after the
top of the Bessel-type curve u(t), which can be seen in the graph.
This is described by uB. For forecasting, our computer programs are
used for phase 2. The parameters of uB must be adjusted constantly
because no country is really isolated during an epidemic, and since
the management of the epidemic, including the self-imposed protection
measures, becomes less aggressive at this stage.

Here y =cases/10K; similarly, y is the total number of cases divided
by proper powers of 10 in the other charts we will consider. Say, divided
by 100K for the USA. The x-axis is always time in days from the
beginning of the curve. The red-blue-black dots give the corresponding
actual total numbers of the detected cases. The u-function for India is:

u(t) = 0.55 tc/2+0.5
(
Jc/2−0.5(

√
at)+0.2J0.5−c/2(

√
at)

)
,

where c= 5.75, a = 0.035. There was no clear phase 2 till the middle
of November there, so we provide only u(t).

Italy: 2/22-5/22. Figure 2. The starting point was 2/22, when the
total number of infections was 17; we subtract this initial value when
calculating our dots, the total numbers of detected infections. One has:

u1,2(t) = 0.8 t(c+1)/2J± c−1
2
(
√
at), u(t) = u1(t)− u2(t), and

uB(t) =2.85 tc/2 cos(d log(Max(1, t))), c=2.6, a=0.2, d=0.5.

We use here both fundamental solutions u1,2(t) of system (1).

Germany: 3/07-5/22. See Figure 3. We began with the initial num-
ber of total infections 684 (subtracted). This was approximately the
moment when a systematic management began. One has:

u(t) =1.3 (t(c+1)/2(J+ c−1
2

− 0.7J− c−1
2
)(
√
at) for c=2.6,

uB(t) =2.95 tc/2 cos(d log(Max(1, t))), a=0.35, d=0.56.

Japan: 3/20- 5/22. See Figure 4. There was some prior stage; we
subtract 950, the total number of infections on March 20. The curve for
Japan is not too smooth, which is not unusual. However it is managed
well by our 2-phase solution :
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Figure 2. Italy: c=2.6, a=0.2, d=0.5.
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Figure 3. Germany: c=2.6, a=0.35, d=0.56.
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Figure 4. Japan: u = 1.5t1.8(J0.8 − 0.4J−0.8)(t
√
0.3).

u(t) =1.5 t(c+1)/2(J+ c−1
2

− 0.4J− c−1
2
(
√
at), c=2.6,

uB(t) =3.15 tc/2 cos(d log(Max(1, t))), a=0.3, d=0.6.

The Netherlands: 03/13-5/22. See Figure 5. The number of the total
case was 383 on 3/13, the beginning of the intensive spread from our
perspective. The usage of the dominant u1 appeared sufficient:

u(t) = 0.5 t(c+1)/2J c−1
2
(
√
at), c=2.4, a=0.2,

uB(t) =0.86 tc/2 cos(d log(Max(1, t))), d=0.54.

UK: 03/16-06/13. This country was a challenge for us, though it
”eventually” managed to reach phase 2. The u-function here is with
the same a, c as for the Netherlands. Actually the red dots are modeled
better with the transitional (AB)-mode. However, we prefer to stick
to the ”original” u(t) determined for the period till April 15. The two-
phase solution is a combination of two phases separated by a linear
period, about 10 days. See Figure 6. The parameter d = 0.465 is
different from that for the Netherlands (0.54). This can be expected;
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Figure 5. The Netherlands: u = 0.5t1.7J0.7(t
√
0.2).

2 4 2.2

u(t)=u1(t)

UK: 03/16-06/13

4 t       cos(0.465 log(t))
c/2

Figure 6. UK: u = 2.2t1.7J0.7(t
√
0.2).
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the process toward the saturation of phase 2 was slower for UK:

u(t) = 2.2 t(c+1)/2 J c−1
2
(
√
at), c=2.4, a=0.2,

uB(t) =4 tc/2 cos(d log(Max(1, t))), d=0.465.

Further waves. The mathematical similarity of the second and 3rd
waves to the first waves is very remarkable, a strong confirmation of
our approach. The parameters a, c, b though change, which is generally
in a quite understandable way. We begin with the 2nd wave in the
USA, which developed on the top of the unfinished 1st wave there.

The USA: 06/16 - 9/12. The two-phase solution worked well at least
till the middle of September (2020) for the second wave in the USA.
The accuracy is comparable with what we had above for the first waves
in Japan, Italy, Germany, the Netherlands and UK. Upon subtracting
2.1M , the second phase matched well the following functions:

u(t) =3.4 t(c+1)/2(J+ c−1
2

+ 0.6J− c−1
2
(
√
at), c=2.65,

uB(t) =4.1 tc/2 cos(d log(Max(1, t))), a=0.06, d=0.435.

We note that the initial transmission rate was c = 2.2 for the USA
during the first wave. The parameters c, C and 0.6 in the first formula
were determined for the period marked by red dots; the black dots form
a control period. See Figure 7. The projected saturation for uB is given
by the formula tend = exp

(
1
d
tan−1( c

2d
)
)
. Numerically, tend = 17.8463,

which is 178 days from 06/16: December 11, 2020. Though this did
not materialize since the USA entered the 3rd wave in the middle of
September.

USA: the 3rd wave. This wave is on the top of unfinished 2nd wave, so
we subtract the starting total number of infections, which was about
6.9M on 9/24, when we begin our analysis. The red dots used to
determine the parameters of u(t) was 11/17, when the 3rd wave in
the USA still did not reach the turning point; so any projections were
preliminary at that moment. The control period (black dots) was till
12/13. The match was very good. See Fig. 8. The provisional formula
for u(t) is as follows for the 3rd wave:

u(t) =5.5 t(c+1)/2(J+ c−1
2

+ 0.65J− c−1
2
(
√
at), for c=2.85, a=0.02.

This is conditional, but the new c clearly increased from c = 2.65 for
the 2nd wave in a way similar to the passage from the 1st wave to the
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Figure 7. 2-phase solution for the 2nd wave in the USA.
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Figure 8. The 3rd wave in the USA.

2nd. The parameter a significantly dropped from a = 0.06 for the 2nd
wave: it became almost 3 times smaller. Recall, that a = 0.06, which
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Figure 9. The 3rd wave in the USA.

is about 1/3rd of a = 0.2 for the first wave, so the same tendency
persists; qualitatively, the duration of phase 1 is ∼ 1√

a
.

The projection was 03/05 for the top (the saturation of the 1st phase)
with the total number of detected infections about 28M. See Fig. 9.

The Netherlands: the 2nd wave. The second waves were quite uniform
in Western Europe. The Netherlands is convenient to demonstrate the
evolution of our parameters, because the corresponding u-function does
no involve too much the second, non-dominating, Bessel-type solution.
Generally, both are present.

Our reults were of course preliminary, but the similarity of Fig. 10
and Fig 5 was obvious. The qualitative similarity of the 1st, the 2nd
wave, and probably even the 3rd one in the USA is remarkable as well.

The parameter c significantly increased in the Netherlands: from 2.4
(the 1st wave) to 3.4 (the 2nd). The intensity of the hard measures
understandably dropped: from 0.2 to 0.085. Such increases are actu-
ally common for the second waves in Europe. The parameter d = 0.43
diminished from 0.54, but this was somewhat early to estimate in the
middle of November; the projection worked well till the beginning of
December. Later, almost all Western Europe switched to a linear-type
growth of the total number of detected infections, with some potential
of forming the 3rd waves there on top of the unfinished 2nd waves. The
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impact of protective measures became less stable, which can be par-
tially due to the holiday season and the new strain of Covid-19 detected
in some countries. Anyway, the intensity parameters a diminished ev-
erywhere in Europe and the USA vs. those for the 1st waves.

For the second wave in the Netherlands, one has:

u(t) =0.7 t(c+1)/2(J+ c−1
2
(
√
at), c=3.4,

uB(t) =1.65 tc/2 cos(d log(Max(1, t))), a=0.085, d=0.43.

In Europe and the USA, there can be of course significant fluctua-
tions of the spread during the winter. Some hard measures were re-
introduced in October-January, so our approach is supposed to work.
The vaccination is a (very) hard measure too, which makes us closer
to the herd immunity (for these particular strains). The self-imposed
restrictions are of course of obvious importance here; their reduction
can be one of the reasons for the increase of the initial transmission
coefficients c during the 2nd waves vs. those for wave one.

Needless to say, that the evaluation of the efficiency of the vacci-
nation does require exact mathematical forecasting tools, which our
theory provides. The protective measures are and always were a very
efficient way to fight epidemics. Unless the vaccination can stop the
spread of an epidemic almost completely, mathematically, it can be
considered as part of the aggressive epidemic management.

Auto-forecasting. We mostly did this for the USA and Western Eu-
rope, but any countries can be ”processed” during their second phases
(any waves); currently, there is no software for the 1st phases, i.e. that
for the Bessel-type modeling.

Auto-forecasting for USA. We will provide the automated forecast
for 50 states was based on the period 03/17-05/27; the data were from
https://github.com/nytimes/covid-19-data . Every state was pro-
cessed individually with the interaction; see [Ch1]. Our approach to
incorporating the interaction is of independent interest: we allow the
curves for individual states to become decreasing as far as the total sum
increases, which is motivated by physics.

Our program focuses on the last 20 days; however, the match with
the total number of detected infections appeared perfect almost from
03/17 and remained so for further auto-forecasts for a sufficiently long
period; see Figure 11.
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Figure 10. The 2nd wave in the Netherlands.
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Figure 11. USA, the sum of the curves for individual states.

Such a high level of stability is actually rare in any forecasting, which
made the chances good to reach the saturation around 9/19, the pro-
jection based on Fig. 11. The saturation does not mean the end of the
spread; normally, it is followed by a period of modest linear growth of
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Figure 12. A sample auto-forecast for Europe as of 7/14.

the total number of infections. No country is isolated and new clusters
of infection are always possible.

However, the hard measures were significantly reduced in the USA at
the end of May practically in all 50 states. As a result, the number of
states that reached phase 2 dropped from about 22 at 5/27 to 8 at 7/12.
Then, in the second half of June, the USA entered the second wave.
The program was quite stable for the 2nd phase of the 2nd wave in the
USA ... before it entered the 3rd wave in the middle of September.

Auto-forecasting for Europe. The situation was quite stable in Eu-
rope in summer. We provide a sample forecast our automated system
produced for Western Europe till the end of July, to be exact, for the
following 45 countries: Albania, Andorra, Austria, Belgium, Bosnia and

Herzegovina, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Esto-

nia, Faeroe Islands, Finland, France, Germany, Gibraltar, Greece, Guernsey,

Hungary, Iceland, Ireland, Isle of Man, Italy, Jersey, Kosovo, Latvia, Liecht-

enstein, Lithuania, Luxembourg, Macedonia, Malta, Monaco, Montenegro,

Netherlands, Norway, Poland, Portugal, Romania, San Marino, Serbia, Slo-

vakia, Slovenia, Sweden, Switzerland, Vatican. See Figure 12.
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Here and above the main source of Covid-19 data we used was:
https://ourworldindata.org/coronavirus. The ”curve average” is
the maximum and the corresponding value of the average of 9 last
curves uB(t) for the sums of the curves of total cases and the forecast
curves over the countries above. I.e. it is the moving average. The
9-day average is the simple average of the corresponding maxima.

As of July 8, the following countries had clear second phases: Al-

bania, Bosnia and Herzegovina, Bulgaria, Croatia, Czech Republic, Greece,

Kosovo, Luxembourg, Macedonia, Montenegro, Romania, Serbia, Slovakia,

Slovenia. The forecasts were sufficiently stable, though Sweden, Poland,
Portugal and some other countries did not reach phase 2 at that time.
Such stability changed this fall due to the end of the vacation periods
and the beginning of the school year.

Conclusion. Modeling Covid-19 appeared quite a challenge for ex-
isting mathematical methods, which are mostly based on the SID ap-
proach, suggested in the beginning of the 20th century. The following
features of Covid-19 obviously require new methods.

(1) The growth of the curves of total numbers of detected infections
is mostly of power-type for Covid-19, where the initial exponent dimin-
ishes over time. (2) The saturation of the first, second and 3rd waves,
when present, was (so far) mostly because of the protective measures,
not due to the herd immunity. The range and intensity of the pro-
tective measures used to fight Covid-19 are exceptional. These two
features are not really new but were not systematically studied. The
number of works discussing the power-type growth of the total number
of infections for Covid-19 remains small.

Our theory seems the first one when the power growth of the spread
and the active epidemic management are considered the major factor.
It results in differential equations depending only on the initial trans-
mission rate and the intensities of the hard and soft measure. This
parameters make perfect sense theoretically and practically, and can
be measured reliably during relatively early stages of an epidemic.

The actual curves of the total numbers of detected cases in many
countries are described uniformly and with surprisingly high accuracy
by our curves, which combine the Bessel-type components for phase
1, the key in our approach, and those for phase 2. Importantly, the
saturation due to the active management is of unstable nature; its
modeling and forecasting requires sharp mathematical tools.
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Methods. The starting point of our approach to modeling the total
number of infections during epidemics is the power growth hypothesis,
which has solid confirmations, practically in all countries for Covid-19.
We attribute it, the power law of epidemics, to the principle of local herd
immunity.

The saturation of the corresponding waves of the spread of Covid-19
was (so far) mainly to the protective measures. The role of protective
measures is of course not unique for Covid-19, but their range and
intensity reached unprecedented levels. Our model connects this kind
of saturation with the asymptotic periodicity of Bessel functions, one
of the deepest results in their theory. This is very different from the
classical approaches based of SID, SIR, SIER models and some their
variants, and in the neighboring segments of ecology: invasion and
interaction between species.

Due to a very limited number of parameters, actually 3 for our two-
phase solution, our model is much more rigid than in any other ones.
These parameters are reliable and can be determined at relatively early
stages of an epidemic. They can somewhat change in time, but not too
much, especially after the turning point of an epidemic.

We obtain a very good match practically for the whole periods of the
first waves of Covid-19 in many countries; it is actually surprising for
such stochastic processes as epidemics.

Since our theory was created in the middle of April, which was mostly
in the middle of the 1st waves of Covid-19, we had a unique opportunity
to test our theory and determine these parameters during relatively
early stages of Covid-19 and then to test the theory extensively for
sufficiently long control periods.

Our usage of control periods is similar to routine testing the qual-
ity of the models used for forecasting share-prices in stock markets,
where no approach can be accepted without real-time runs and care-
fully crafted historic experiments that exclude any ”usage of future”
as far as possible. This kind of ”discipline” is not present in forecast-
ing the epidemics, at least by now. The results of checking our theory
during the control periods, including automated forecasting programs
we developed, is an important part of papers [Ch1, Ch3].

Summary. We demonstrate that Bessel-type functions describe very
well long periods of the growth of the total number of detected cases
in many countries. Mathematically, we successfully model the passage
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from ∼ tc, describing the initial growth of the number of cases, to ∼ t
near the turning point, and then almost all the way to the saturation of
the current wave. Here c is the initial transmission rate, which can be
captured at relatively early stages of Covid-19. Our functions are so-
lutions of ODE describing the active epidemic management, especially
the impact of hard measures.

The saturation due to active protection measures is of unstable na-
ture. Its forecasting requires an exact mathematical theory, which we
provide. There will be an endless discussion of the efficiency of dif-
ferent measures and different management approaches until verifiable
trustworthy mathematical models and the corresponding software are
developed and implemented practically.

The verification of any models, including this one, does require al-
gorithms that can be used by anyone, not only by their creators, the
ultimate test of their validity. This is one of the reasons we wrote our
own programs; they are posted in [Ch1, Ch3] and can be used by any-
one for any countries and regions, though only for the late stages of
Covid-19 so far (mode (B)).

The new theory seems a solid basis for reaching the next level, which
is forecasting. It already describes the curves of total numbers of de-
tected infections with high accuracy and with surprisingly high level
of stability of the auto-projections for later stages, but forecasting is
always a challenge. The small number of the parameter we employ
explains well the uniformity of the curves of total numbers of detected
infections of Covid-19 in many countries, as well as mathematical sim-
ilarity of the first and the second waves.

These parameters are: (1) the initial transmission rate c, which can
be seen at relatively early stages of the spread, (2) the intensity of
hard measures a, which become sufficiently stable near the turning
point, and (3) the intensity b of the measures (mostly soft) during the
second phase, toward the saturation. The intensity of the measures is
of course more time-dependent, but a appeared sufficiently stable for
long periods. Concerning b, it must be adjusted constantly at the later
stages, because no country is really isolated and the management of
the epidemic, including the self-imposed protection measures, becomes
less aggressive at these stages.

The scaling coefficient of u(t) is adjusted to match the real numbers
of cases. The coefficient of u2 is actually of importance, but it is mostly
used to capture some ”effects of the second order” and does not seem
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critical for forecasting; the dominant Bessel-type solution u1 is expected
to be sufficient for this.

The fact that we were able to describe such complex stochastic pro-
cesses as epidemics only with 3 parameters seems a real discovery. The
confirmations are solid, but it will take time to understand the scope
of this new theory and to begin using it practically.

Needless to say that the vaccinations will make us closer to the herd
immunity, at least for the current strains of Covid-19. There are many
challenges here [AVTC], and anyway the control of the efficiency of
the vaccination absolutely requires exact mathematical tools. In our
approach, this means measuring its impact on the parameters, c, a, b.

The 3rd waves can be hopefully the last for these particular combina-
tion of strains. With all possible reservations, the projection from Fig.
9 for the USA is that the top will be March 5, 2021 with about 21M of
the total detected cases from 09/24 (on top of 6.9M initial cases). The
total number of all cases, detected or not, is of course much greater; the
impact of herd immunity can be expected at such levels (for the current
G-strains). Hopefully, the vaccination can make the total number of
detected infections significantly smaller than 28M from this projection;
this is a (very) hard protective measure from our perspective.
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