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Abstract: 9 

Understanding changes in infectiousness during COVID-19 infections is critical to assess the 10 

effectiveness of public health measures such as contact tracing. Data from known source-11 

recipient pairs can be used to estimate the average infectiousness profile of infected 12 

individuals, and to evaluate the proportion of presymptomatic transmissions. Here, we infer 13 

the infectiousness profile of COVID-19 infections using a mechanistic approach, and show 14 

that this method provides an improved fit to data from source-recipient pairs compared to 15 

previous studies. Our results indicate a higher proportion of presymptomatic transmissions 16 

than previously thought, with many transmissions occurring shortly before symptom onset. 17 

High infectiousness immediately prior to symptom onset highlights the importance of contact 18 

tracing, even if contacts from a short time window before symptom onset alone are traced. 19 

 20 

 21 

 22 
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 2 

Main text: 1 

The precise proportion of SARS-CoV-2 transmissions arising from non-symptomatic (either 2 

presymptomatic or asymptomatic) infectors remains uncertain (1, 2). Statistical models can 3 

be used to assess the relative contributions of presymptomatic and symptomatic transmission 4 

using data from known source-recipient transmission pairs (3–6). The distributions of three 5 

important epidemiological time periods – the generation time (i.e., the difference between the 6 

infection times of the source and recipient) (3, 4, 7, 8), the time from onset of symptoms to 7 

transmission (TOST) (4, 9, 10), and the serial interval (i.e., the difference between the 8 

symptom onset times of the source and recipient) (4, 11) – can also be inferred. The 9 

generation time and TOST distributions also indicate the average infectiousness profile of a 10 

host at each time since infection and time since symptom onset, respectively (9, 12). This is 11 

important for assessing the effectiveness of public health measures such as contact tracing (3) 12 

and for deciding the duration of quarantine/isolation periods (13). Estimates of the generation 13 

time distribution of SARS-CoV-2 obtained from transmission pair data have typically 14 

involved an assumption that the infectiousness of a host is independent of their symptom 15 

status (3, 7, 8, 14, 15). However, such an assumption may both be unjustified (15, 16) and 16 

lead to a poor fit to data (4). 17 

 18 

Here, we develop a mechanistic approach for inference from transmission pair data. Our 19 

method provides an improved fit to data from SARS-CoV-2 transmission pairs compared to 20 

previously used approaches, namely: (i) a model assuming that transmission and symptoms 21 

are independent (3, 7, 8, 14), and (ii) a previous statistical method in which this assumption is 22 

relaxed (4). We use the fitted models to infer the distributions of epidemiological time 23 

intervals and the contribution of presymptomatic infectious individuals to transmission. 24 

According to our best-fitting model, we find that the predicted proportion of presymptomatic 25 
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 3 

transmissions is higher than estimated using standard approaches, with a substantial 1 

proportion of transmissions occurring in a short time window prior to symptom onset. 2 

Finally, we consider the implications of our results for contact tracing. 3 

 4 

Transmission pair data (Fig. 1A) generally comprise symptom onset dates for known source-5 

recipient pairs. These data may be supplemented with partial information about infection 6 

times, consisting of a range of possible exposure dates for the source and/or recipient (3). 7 

While the serial interval for each pair can be calculated directly from the data (with some 8 

uncertainty, given the unknown precise times of symptom appearance on the onset dates 9 

(17)), other time intervals, including the generation time and TOST (which is negative for 10 

presymptomatic transmissions), are unobserved. In almost all previous approaches that have 11 

been used to estimate the generation time distribution of SARS-CoV-2 from transmission 12 

pair data (Fig. 1B, left panel), the infectiousness of the source at a given time since infection 13 

is assumed to be independent of their incubation period (3, 7, 8, 14). In contrast, in our 14 

mechanistic approach (Fig. 1B, right panel), which is based on compartmental modelling, 15 

each infected host passes through three stages of infection – latent (E), presymptomatic 16 

infectious (P), and symptomatic infectious (I). Infectiousness is assumed to be constant 17 

during each stage but may vary between presymptomatic and symptomatic infectious hosts. 18 
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 4 

1 

Fig. 1. Schematic illustrating time intervals in data from source-recipient pairs and approaches for 2 

inference from transmission pair data. A. Important epidemiological time periods in transmission pair data, 3 

with time intervals that are not observed directly in grey. B. Assumptions made about the relationship between 4 

infectiousness and symptoms within individuals. In standard approaches (left panel), the infectiousness of a host 5 

at a given time since infection is independent of their incubation period. In our approach (right panel), we 6 

assume that individuals are not infectious during the latent (E) period, and that infectiousness may vary between 7 

the presymptomatic infectious (P) and symptomatic infectious (I) periods, for example due to changing 8 

behaviour in response to symptoms (18). 9 

 10 

We considered four different models of infectiousness: 11 
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 5 

1. Our mechanistic approach, with the relative infectiousness levels for presymptomatic 1 

(P) and symptomatic (I) infectious hosts estimated from the transmission pair data 2 

(the “variable infectiousness model”). 3 

2. Our mechanistic approach, with identical infectiousness levels for presymptomatic 4 

(P) and symptomatic (I) infectious hosts (the “constant infectiousness model”). 5 

3. The best-fitting model from (4) (the “Ferretti model”). 6 

4. The standard approach (3, 8) in which infectiousness is independent of symptom 7 

status (the “independent transmission and symptoms model”). 8 

Following (4), we fitted each model to data from 191 SARS-CoV-2 transmission pairs 9 

obtained by combining five different datasets (3, 9, 19–21). To account for uncertainty in the 10 

precise times of symptom appearance within the day of onset for the source and recipient 11 

(22), we used data augmentation Markov chain Monte Carlo (MCMC). The best fit to the 12 

data was obtained using our mechanistic approach in which infectiousness varies between 13 

presymptomatic infectious and symptomatic hosts (the variable infectiousness model; ΔAIC 14 

= 0). The constant infectiousness model gave the next best fit (ΔAIC = 4.5), followed by the 15 

Ferretti model (ΔAIC = 8.3). Finally, the standard assumption of independent transmission 16 

and symptoms led to a significantly worse fit compared to the other models (ΔAIC = 44.6). 17 

 18 

For each model, we calculated the predicted distributions of the generation time (Fig. 2A), 19 

TOST (Fig. 2B) and serial interval (Fig. 2C) under the set of model parameters that gave the 20 

best fit to the data. The empirical serial interval distribution is also plotted in Fig. 2C, for 21 

visual confirmation of the goodness of fit of the different models. We found that the 22 

variability in the generation time between individuals was lower for the independent 23 

transmission and symptoms model compared to the other three models (Fig. 2A). On the 24 

other hand, the TOST distribution was most concentrated around the time of symptom onset 25 
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 6 

for the best-fitting variable infectiousness model, and least concentrated for the independent 1 

transmission and symptoms model (Fig. 2B). In our best-fitting model, infectiousness was 2 

found to decrease immediately after onset, likely due to behavioural factors that reduce the 3 

transmission risk following symptom onset (18). 4 

5 

Fig. 2. Distributions of epidemiological time intervals estimated by fitting different models to data from 6 

191 SARS-CoV-2 transmission pairs. A. Generation time, indicating the relative expected infectiousness of a 7 

host at each time since infection. B. Time from onset of symptoms to transmission (TOST), indicating the 8 

relative expected infectiousness of a host at each time since symptom onset. C. Serial interval, indicating the 9 

periods between sources and recipients developing symptoms. In panel C, the empirical serial interval 10 

distribution from the transmission pair data is shown as grey bars. In addition, discretised versions of the serial 11 

interval distributions, calculated using the method in (23), are shown in the Supplementary Materials (Fig. S1). 12 

In all panels, lines represent: variable infectiousness model (blue), constant infectiousness model (red), Ferretti 13 

model (orange), and independent transmission and symptoms model (purple). 14 

 15 

Using the posterior distributions of model parameters that were obtained when we fitted the 16 

models to data, we calculated the posterior distribution of the proportion of transmissions 17 

occurring prior to symptom onset for each model (Fig. 3A). The median (95% CI) 18 

presymptomatic proportion was 0.65 (0.53-0.76), 0.56 (0.50-0.62), 0.55 (0.48-0.62), and 0.49 19 

(0.43-0.56) under the variable infectiousness model, constant infectiousness model, Ferretti 20 
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 7 

model, and independent transmission and symptoms model, respectively. Our central 1 

estimate of 65% of transmissions occurring prior to symptom onset using our best-fitting 2 

model is higher than estimated in previous studies that have fitted statistical models of 3 

infectiousness using transmission pair data (3, 4, 9) – for example, estimates of 37% and 55% 4 

were obtained under an assumption of independent transmission and symptoms in (3). 5 

6 

Fig. 3. The contribution of non-symptomatic infectious individuals to transmission. A. Violin plots 7 

indicating posterior distributions for the proportion of transmissions occurring prior to symptom onset for 8 

individuals who develop symptoms (i.e., neglecting transmissions from individuals who remain asymptomatic 9 

throughout infection) for the different models. B. Posterior distributions of the total proportion of non-10 

symptomatic transmissions, accounting for transmissions from asymptomatic infectious individuals, for the 11 

different models. In both panels, violins represent: variable infectiousness model (blue), constant infectiousness 12 

model (red), Ferretti model (orange), and independent transmission and symptoms model (purple). 13 

 14 

The estimates in Fig. 3A describe the proportion of transmissions that occur prior to symptom 15 

onset, and therefore apply only to individuals who go on to develop symptoms. However, 16 

these estimates can be combined with the results of a previous study (1) in which the extent 17 

of asymptomatic transmission (i.e., transmissions from individuals who never display 18 

symptoms) was characterised (Fig. S2), to obtain estimates for the total proportion of non-19 
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 8 

symptomatic (i.e., either presymptomatic or asymptomatic) transmissions in an entire 1 

population of hosts for the different models (Fig. 3B). Again, the non-symptomatic 2 

proportion was highest for the variable infectiousness model, and lowest for the independent 3 

transmission and symptoms model. 4 

 5 

Finally, we considered the implications of these results for contact tracing (Fig. 4). In Fig. 6 

4A, we show the proportion of infectious contacts of hosts who go on to develop symptoms 7 

that are identified if contacts are traced up to different times before the symptom onset time 8 

of the index case (i.e., for different contact elicitation windows). Long duration contact 9 

elicitation windows are impractical and place significant strain on contact tracing systems, 10 

leading to contact elicitation windows of two days being used in countries such as the UK 11 

(24) and USA (25). In the best-fitting variable infectiousness model, 84% of infectious 12 

contacts are estimated to be identified when tracing up to 2 days before symptom onset (Fig. 13 

4A, blue dashed). This is due to the clustering of transmission events around the symptom 14 

onset time (cf. Fig. 2B) and compares to a lower estimate of only 74% if the standard 15 

assumption of independence between transmission and symptoms is made (Fig. 4A, purple). 16 

We also explored the effect of the timing of isolation of infected individuals identified 17 

through contact tracing, and estimated the reduction in onwards transmissions from infected 18 

contacts if contact tracing is conducted quickly (Fig. 4B). Compared to the best-fitting 19 

variable infectiousness model, the standard independent transmission and symptoms model 20 

estimated a similar reduction in transmission when a host was isolated within 4 days of 21 

exposure, but under-predicted the efficacy of isolation later in infection. We assumed that 22 

contact identification and isolation is perfectly effective in this analysis, but we also explored 23 

the sensitivity of our results to this assumption in the Supplementary Materials. In each case 24 
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 9 

that we considered, under the best-fitting model a two-day contact elicitation window is more 1 

effective than estimated using existing approaches (Fig. S3). 2 

3 

Fig. 4. Implications for contact tracing. A. Effect of the contact elicitation window: the proportion of 4 

infectious contacts found for different times up to which contacts are traced before the symptom onset time of 5 

the index case. B. Effect of the timing of isolation: the proportion of onward transmissions prevented through 6 

isolation, for different time periods between exposure and isolation. In both panels, lines represent: variable 7 

infectiousness model (blue dashed), constant infectiousness model (red), Ferretti model (orange), and 8 

independent transmission and symptoms model (purple). 9 

 10 

As we have shown, our mechanistic approach provides an improved fit to transmission pair 11 

data, and predicts a higher proportion of transmissions occurring in a short time window 12 

before symptom onset, compared to previous approaches. These conclusions are robust to the 13 

exact incubation period distribution that we assumed (26) when fitting the different models to 14 

transmission pair data (Fig. S4). Our best-fitting model outperforms a model predicated on a 15 

critical assumption – that infectiousness is independent of symptom status – which underlies 16 

most previous studies in which the generation time distribution of COVID-19 is estimated (3, 17 

7, 8, 14). That assumption neglects potential relationships between symptoms and viral 18 
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 10 

shedding, as well as behavioural changes in response to symptom onset (18). Some 1 

alternative assumptions have also been considered when fitting to transmission pair data, 2 

such as the possibility that infectiousness depends only on the time since symptom onset, 3 

independent of the time of infection (4, 27). If the serial interval is always positive, which is 4 

not always the case for COVID-19 (11), this is equivalent to assuming that the serial interval 5 

and generation time distributions are identical (15, 23, 28). In a previous study (4), another 6 

model (the Ferretti model) was developed in which a host’s infectiousness could depend on 7 

both the time since infection and the time since symptom onset, and was found to outperform 8 

models in which their infectiousness depends on either one of these two times alone. 9 

However, as we have demonstrated, our mechanistic approach provides an improved fit to 10 

data compared to the statistical Ferretti model. In addition, our method has the advantage of 11 

being useful for parameterising population-scale compartmental epidemic forecasting 12 

models, since the time periods in our approach correspond naturally to compartments (29). 13 

 14 

In summary, using a mechanistic approach to infer key epidemiological quantities from 15 

transmission pair data indicates that a higher proportion of SARS-CoV-2 transmissions occur 16 

prior to symptoms than previously thought. Furthermore, a significant proportion of 17 

transmissions arise shortly before symptom onset, indicating that contact tracing is beneficial 18 

even if the contact elicitation window is short. Continued use and refinement of contact 19 

tracing programmes in countries worldwide is therefore of clear public health importance. 20 

  21 
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 11 

Materials and Methods: 1 

Notation and general details 2 

Here, we outline the notation used in this section when describing the different models that 3 

we considered. For a given transmission pair, we label the source as 1 and the recipient 2, and 4 

define: 5 

𝑡!" = (time	of	infection	of	host	𝑘), 𝑘 = 1,2,	6 

𝑡#" = (time	of	symptom	onset	of	host	𝑘), 𝑘 = 1,2,	7 

𝜏!$%," = (incubation	period	of	host	𝑘), 𝑘 = 1,2,	8 

𝜏'($ = (generation	time),	9 

𝑥)*#) = (time	from	symptom	onset	of	1	to	transmission	to	2	(TOST)),	10 

𝑥#(+ = (serial	interval). 11 

Here, 𝑡 is used to denote calendar times, 𝜏 for time intervals relative to the time of infection, 12 

and 𝑥 for time intervals relative to the time of symptom onset. We denote the probability 13 

density functions of the incubation period, generation time, TOST and serial interval as 𝑓!$%, 14 

𝑓'($, 𝑓)*#) and 𝑓#(+, respectively, and use a capital 𝐹 for the corresponding cumulative 15 

distribution functions. 16 

 17 

In addition, we denote the expected infectiousness of a host at time since infection 𝜏 as 𝛽(𝜏), 18 

and the expected infectiousness at time since symptom onset 𝑥 as 𝑏(𝑥). Note that 19 

𝛽(𝜏) = 𝑅,𝑓'($(𝜏),	20 

𝑏(𝑥) = 𝑅,𝑓)*#)(𝑥), 21 

where 𝑅, is the basic reproduction number (for hosts that develop symptoms at some stage 22 

during infection). We also let 𝛽(𝜏 ∣ 𝜏!$%) and 𝑏(𝑥 ∣ 𝜏!$%) be the expected infectiousness at 23 

time 𝜏 since infection and at time 𝑥 since onset, respectively, conditional on an incubation 24 
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 12 

period of 𝜏!$% (note that 𝛽(𝜏 ∣ 𝜏!$%) = 𝑏( 𝜏 − 𝜏!$% ∣∣ 𝜏!$% ) and 𝑏(𝑥 ∣ 𝜏!$%) =1 

𝛽( 𝑥 + 𝜏!$% ∣∣ 𝜏!$% )). 2 

 3 

We considered several different models for infectiousness (details of individual models are 4 

given below). In each model, the conditional infectiousness, 𝛽(𝜏 ∣ 𝜏!$%), or equivalently, 5 

𝑏(𝑥 ∣ 𝜏!$%), is specified. The distributions of the generation time and TOST can be recovered 6 

from this conditional infectiousness by averaging over the incubation period distribution 7 

(which is assumed to be known): 8 

𝛽(𝜏) = 𝑅,𝑓'($(𝜏) = L 𝛽(𝜏 ∣ 𝜏!$%)𝑓!$%(𝜏!$%)d𝜏!$%
-

,
,	9 

𝑏(𝑥) = 𝑅,𝑓)*#)(𝑥) = L 𝑏(𝑥 ∣ 𝜏!$%)𝑓!$%(𝜏!$%)d𝜏!$%
-

,
. 10 

Alternative (equivalent) expressions for the generation time and TOST distributions are 11 

available for some of the models considered (these are detailed in the “Models of 12 

infectiousness” subsection below). 13 

 14 

To obtain an expression for the serial interval distribution, we note that 15 

𝑥#(+ = 𝑥)*#) + 𝜏!$%,.. 16 

We assume throughout that 𝑥)*#) and 𝜏!$%,. are independent, so that the serial interval 17 

distribution is given by the convolution 18 

𝑓#(+(𝑥#(+) = L 𝑓)*#)(𝑥#(+ − 𝜏!$%)𝑓!$%(𝜏!$%)d𝜏!$% .
-

,
 19 

The proportion of presymptomatic transmissions (out of all transmissions generated by 20 

individuals who develop symptoms) can be calculated as 21 

𝑞/ = L 𝑓)*#)(𝑥)*#))d𝑥)*#) ,
,

0-
 22 

although simpler equivalent expressions for individual models are also detailed later.  23 
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 1 

Data 2 

Following (4), we considered COVID-19 transmission pair data from five different studies 3 

(3, 9, 19–21), totalling 191 source-recipient pairs. In all 191 transmission pairs, both the 4 

source and the recipient developed symptoms, and the symptom onset date of each host was 5 

recorded. In four of the five studies (3, 9, 19, 20), intervals of exposure were available for 6 

either the source or recipient (or both), whereas in the other (21), only symptom onset dates 7 

were recorded. 8 

 9 

Incubation period 10 

In the main text, the incubation period was assumed to follow a Gamma distribution with 11 

shape parameter 5.807 and scale parameter 0.948 (26). This corresponds to a mean 12 

incubation period of 5.5 days and a standard deviation of 2.3 days. However, to demonstrate 13 

that our main conclusions are robust to the exact incubation period distribution used, we also 14 

repeated our analyses using an alternative, more dispersed, Gamma distributed incubation 15 

period with a mean of 5.3 days and a standard deviation of 3.2 days (30) (Fig. S4). 16 

 17 

Models of infectiousness 18 

Independent transmission and symptoms model 19 

In this model, the infectiousness of each host at a given time since infection is assumed to be 20 

independent of their incubation period, so that 21 

𝛽(𝜏 ∣ 𝜏!$%) = 𝛽(𝜏) = 𝑅,𝑓'($(𝜏), 22 

where the generation time distribution, 𝑓'($, is prescribed. We assumed (3, 8) that 23 

𝜏'($ ∼ Gamma(𝑎, 𝑏). 24 
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 14 

The shape parameter (𝑎) and scale parameter (𝑏) were estimated when we fitted the model to 1 

transmission pair data. 2 

 3 

The TOST distribution for this model is given by 4 

𝑓)*#)(𝑥)*#)) = L 𝑓'($(𝑥)*#) + 𝜏!$%)𝑓!$%(𝜏!$%)d𝜏!$%
-

,
, 5 

whilst the proportion of presymptomatic transmissions is 6 

𝑞/ = L 𝑓'($(𝜏)(1 − 𝐹!$%(𝜏))d𝜏.
-

,
 7 

Derivations of these expressions are given in the Supplementary Text. 8 

 9 

Ferretti model 10 

Ferretti et al. (4) proposed a model in which the conditional infectiousness was specified as 11 

the re-scaled skew-logistic distribution, 12 

𝑏( 𝑥 ∣∣ 𝜏!$% ) =

⎩
⎪
⎨

⎪
⎧ 𝐶𝑅,𝑒0(23!"#/5!"#06)/8

(1 + 𝑒0(23!"#/5!"#06)/8)9:; , −𝜏!$% ≤ 𝑥 < 0,

𝐶𝑅,𝑒0(206)/8

(1 + 𝑒0(206)/8)9:;
, 𝑥 ≥ 0.

 13 

Here, 𝑚!$% is the mean incubation period, 𝜇, 𝜎 and 𝛼 are estimated parameters, and we set 14 

𝐶 =
𝛼

𝜎(1 − (1 + 𝑒(3!"#:6)/8)09) 15 

in order to ensure the correct scaling for the infectiousness (see the Supplementary Text). 16 

 17 

The proportion of presymptomatic transmissions is 18 

𝑞/ =
_1 + 𝑒6/8`09 − _1 + 𝑒(3!"#:6)/8`09

1 − (1 + 𝑒(3!"#:6)/8)09 . 19 

A derivation of this expression is given in the Supplementary Text. 20 

 21 
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 15 

Our mechanistic model 1 

In our mechanistic approach, we divided each infection into three stages: latent (E), 2 

presymptomatic infectious (P), and symptomatic infectious (I). The stage durations were 3 

assumed to be independent, and infectiousness was assumed to be constant over the duration 4 

of each stage. We denote the stage durations by 𝑦<///=, their density and cumulative 5 

distribution functions by 𝑓<///= and 𝐹<///=, and the infectiousness of hosts in the P and I 6 

stages by 𝛽//=, respectively. We also define the ratio 7 

𝛼 = 𝛽/ 𝛽=⁄ . 8 

Note that in this model, the basic reproduction number is 9 

𝑅, = 𝛽/𝑚/+𝛽=𝑚= , 10 

where 𝑚//= are the respective mean durations of the P and I stages. 11 

 12 

We further assumed that the durations of each stage followed Gamma distributions, with 13 

𝑦<	 ∼ Gamma c𝑘< ,
1

𝑘!$%𝛾
e ,	14 

𝑦/	 ∼ Gamma c𝑘/ ,
1

𝑘!$%𝛾
e ,	15 

𝑦=	 ∼ Gamma c𝑘= ,
1
𝑘=𝜇

e, 16 

where 17 

𝑘!$% = 𝑘< + 𝑘/ . 18 

In particular, the scale parameters of 𝑦<	and 𝑦/	were both assumed to be equal to 1 (𝑘!$%𝛾⁄ ), 19 

in order to ensure a Gamma distributed incubation period, 20 

𝜏!$% = 𝑦<	 + 𝑦/	 ∼ Gammac𝑘!$% ,
1

𝑘!$%𝛾
e. 21 

We fixed 𝑘!$% = 5.807 and 𝛾 = 1/(5.807 × 0.948), in order to obtain the specified 22 

incubation period distribution (see “Incubation period” subsection above). When we fitted the 23 
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model to data, we assumed that 𝑘= = 1, so that the symptomatic infectious period followed an 1 

exponential distribution. The parameters 𝑘< and 𝜇 were estimated in the fitting procedure. 2 

We considered two versions of the model: one in which we assumed 𝛼 = 1 (the constant 3 

infectiousness model), and one in which 𝛼 was also estimated (the variable infectiousness 4 

model). 5 

 6 

For this model, the infectiousness of a host at time 𝑥 since symptom onset, conditional on an 7 

incubation period of 𝜏!$%, can be calculated to be 8 

𝑏( 𝑥 ∣∣ 𝜏!$% ) = m
𝛼𝐶𝑅,(1 − 𝐹?()@(−𝑥/𝜏!$%; 𝑘/ , 𝑘<)), −𝜏!$% ≤ 𝑥 < 0,

𝐶𝑅,(1 − 𝐹=(𝑥)), 𝑥 ≥ 0,  9 

where 𝐹?()@(𝑠; 𝑎, 𝑏) is the cumulative distribution function of a Beta distributed random 10 

variable with parameters 𝑎 and 𝑏, and 11 

𝐶 =
𝛽=
𝑅,

=
𝑘!$%𝛾𝜇

𝛼𝑘/𝜇 + 𝑘!$%𝛾
. 12 

The TOST distribution is given by 13 

𝑓)*#)(𝑥)*#)) = m𝛼𝐶(1 − 𝐹/
(−𝑥)*#))), 𝑥)*#) < 0,

𝐶(1 − 𝐹=(𝑥)*#))), 𝑥)*#) ≥ 0. 14 

The generation time can be written as 15 

𝜏'($ = 𝑦< + 𝑦∗, 16 

where 𝑦∗ is the time between the start of the P stage and the transmission occurring, and 17 

therefore the generation time distribution is given by the convolution 18 

𝑓'($_𝜏'($` = L 𝑓∗_𝜏'($ − 𝑦<`𝑓<(𝑦<)d𝑦< ,
5$%"

,
 19 

where the density, 𝑓∗, of 𝑦∗ satisfies 20 

𝑓∗(𝑦∗) = 𝐶 p𝛼_1 − 𝐹/(𝑦∗)` + L _1 − 𝐹=(𝑦∗ − 𝑦/)`𝑓/(𝑦/)d𝑦/
B∗

,
q. 21 

The proportion of presymptomatic transmissions is 22 
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𝑞/ =	
𝛽/𝑚/

𝑅,
=

𝛼𝑘/𝜇
𝛼𝑘/𝜇 + 𝑘!$%𝛾

. 1 

Derivations of these formulae are given in the Supplementary Text. 2 

 3 

Likelihood and model fitting 4 

For a single transmission pair (labelled 𝑛), suppose that the times of infection for the source 5 

and recipient are known to lie in the intervals [𝑡!;,C , 𝑡!;,D] and [𝑡!.,C , 𝑡!.,D], respectively (where 6 

these intervals may be infinite), and that their symptom onset times, 𝑡#; and 𝑡#., are known 7 

exactly. In this case, the likelihood of the parameters, 𝜃, of the model of infectiousness under 8 

consideration (when only that transmission pair is observed) is given by	9 

𝐿($)(𝜃) =
1
𝑅,

L L 𝑏(𝑡!. − 𝑡#; ∣ 𝑡#; − 𝑡!;, 𝜃)

)!',)

)!',*

𝑓!$%(𝑡#; − 𝑡!;)𝑓!$%(𝑡#. − 𝑡!.)d𝑡!;d𝑡!.,

)!+,)

)!+,*

 10 

where the dependence of the conditional expected infectiousness, 𝑏(𝑥 ∣ 𝜏!$% , 𝜃), on the model 11 

parameters, 𝜃, is indicated explicitly. A derivation of this expression is given in the 12 

Supplementary Text. Assuming that each transmission pair in our dataset was independent, 13 

the overall likelihood was therefore given by the product of the contributions, 𝐿($)(𝜃), from 14 

each individual transmission pair, i.e., 15 

𝐿(𝜃) =w𝐿($)(𝜃)
E

$F;

, 16 

where 𝑁 is the total number of transmission pairs. 17 

 18 

In order to account for uncertainty in the exact symptom onset times within the day of onset, 19 

we fitted the models to the data using data augmentation MCMC. In particular, in alternating 20 

steps of the chain, we updated either the vector of model parameters, 𝜃, or the symptom onset 21 

times of each source and recipient. The chain was run for 2.5 million steps, of which the first 22 
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500,000 were discarded as burn-in. Posterior distributions of parameters were obtained by 1 

recording only every 100 iterations of the chain (assuming a uniform prior distribution for 2 

each model parameter), whilst the parameter values that maximised the likelihood were taken 3 

as point estimates. Full details of the model fitting procedure are given in the Supplementary 4 

Text. 5 

 6 

Distributions of the presymptomatic and total non-symptomatic proportion of transmissions 7 

Expressions for the proportion of transmissions, 𝑞/, generated prior to symptom onset, are 8 

given for the individual models above. Once asymptomatic cases are accounted for, the 9 

overall non-symptomatic proportion of transmissions can be written as 10 

𝑝G𝑟G + (1 − 𝑝G)𝑞/
𝑝G𝑟G + (1 − 𝑝G)

, 11 

where 𝑝G is the proportion of infected individuals who remain asymptomatic, and 𝑟G is the 12 

ratio between the average number of secondary cases generated by an asymptomatic host and 13 

the number generated by a host who at some point develops symptoms. A derivation of this 14 

expression is given in the Supplementary Text. 15 

 16 

For each model, we used the posterior parameter distributions that were obtained when we 17 

fitted the model to data to obtain a sample from the posterior distribution of 𝑞/. In order to 18 

estimate the total proportion of non-symptomatic transmissions, we assumed the distributions 19 

𝑝G ∼ Beta(85,186),	20 

𝑟G ∼ Lognormal(−1.04, 0.65.), 21 

which are consistent with estimates in (1). These distributions are shown in Fig. S2. We then 22 

combined samples from the assumed distributions of 𝑝G and 𝑟G with the sample that we 23 

generated from the posterior distribution of 𝑞/ to obtain a distribution for the total proportion 24 

of non-symptomatic transmissions. 25 
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  1 

Contact tracing 2 

First, we considered the proportion of the infectious contacts of a symptomatic index case 3 

that will be found, if contacts are traced up to 𝑑; days before the time of symptom onset (of 4 

the index host). In this case, assuming that it is possible to trace a fraction 𝜀; of the host’s 5 

total contacts between times −𝑑; and ∞ since symptom onset, then the proportion of 6 

infectious contacts found is equal to 7 

𝜀;(1 − 𝐹)*#)(−𝑑;)). 8 

Note that we assumed that the TOST distribution for a detected index case does not differ 9 

from that of a random infected individual. 10 

 11 

We then considered the proportion of transmissions that can be prevented, if an infected 12 

individual (identified through contact tracing) is isolated 𝑑. days after exposure. Assuming 13 

that a proportion 𝜀. of infectious contacts that would otherwise occur are prevented during 14 

the isolation period, the overall proportion of onward infections prevented through isolation 15 

is 16 

𝜀._1 − 𝐹'($(𝑑.)`. 17 

 18 

In the main text, we assumed that 𝜀; = 𝜀. = 1 (i.e., contact identification and isolation are 19 

both 100% effective), although values of 𝜀; and 𝜀. below 1 are considered in the 20 

Supplementary Materials (Fig. S3). 21 

  22 
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