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Summary 7 

Self-instigated isolation is heavily relied on to curb SARS-CoV-2 transmission. Accounting for 8 

uncertainty in the latent and prepatent periods, as well as the proportion of infections that remain 9 

asymptomatic, the limits of this intervention at different phases of infection resurgence are 10 

estimated. We show that by October 2020, SARS-CoV-2 transmission rates in England had already 11 

begun exceeding levels that could be interrupted using this intervention alone, lending support to 12 

the second national lockdown on November 5th 2020.  13 
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A general population lockdown occurred in England on 23rd March 2020 to reduce SARS-CoV-2 22 

transmission. This drastic intervention successfully inhibited disease spread by rapidly depleting the 23 

opportunities for transmission events between infected and susceptible people remaining in general 24 

circulation [1].  25 

Subsequent to easing out of lockdown from July 4th 2020, infections resurged and England entered 26 

its second national lockdown on November 5th 2020. The return of millions of (largely susceptible) 27 

people to general circulation underlies the epidemic re-entering an exponential growth phase. 28 

However, also culpable in the current public health emergency is the failure of interventions during 29 

the period following lockdown’s release. 30 

Contact tracing endeavours in 2020 to reduce SARS-CoV-2 transmission have been ineffective in 31 

England and so isolation has been primarily instigated by those responding to symptoms’ 32 

development in themselves or their close associations [2]. The mechanism by which this reactive 33 

isolation operates is importantly distinct from pre-emptive mass quarantine (lockdown). Symptoms-34 

prompted, reactive isolation only applies to individuals who are infected (c.f. the total population), 35 

and, more specifically, to those who register symptoms. Hence infectious individuals who have not 36 

yet experienced symptoms, or who will never experience them, are missed.  37 

The mathematical epidemiology of reactive isolation is fairly nascent yet critical in the context of the 38 

current epidemic. Here, we generate estimates for reactive isolation thresholds that account for 39 

uncertainties in the latent and pre-patent period of infection as well as in the proportion of infected 40 

individuals that register and respond appropriately to symptoms. 41 

 42 

Mathematical derivation of reactive self-isolation 43 

Beginning with the simplest derivation for physical isolation: the pre-emptive quarantine threshold 44 

proportion (Q) is Q > (1 – (1/R)) where ‘R’ is the reproduction number [3]. For reactive isolation (Q*), 45 
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this threshold is inflated to account for the leaked infections occurring because of the delay between 46 

becoming infectious and first exhibiting symptoms: Q* > (1 – (1/R)) x [1/(1 – ((p – l)/g))]. 47 

Respectively, p and l are the prepatent and latent period of infection (in days), and g is time until 48 

recovery (12 days on average [4]). If symptoms typically develop at the same time as an individual 49 

becomes infectious, the square-bracket component equals one and the original threshold (Q) is 50 

regained. A further modification can be made to account for the proportion of infections that never 51 

give rise to symptoms (denoted ‘a’): Q** > (1/(1 - a)) x (1 – (1/R)) x [1/(1 – ((p – l)/g))]. For example, 52 

if half of infections remained asymptomatic, the proportion of symptomatic infections that need to 53 

be isolated to achieve an equivalent impact must be doubled. As with those who never develop 54 

symptoms, individuals who fail to respond appropriately to developing symptoms – early indication 55 

is that this is not a negligible proportion [5] – will continue to contribute to transmission, so ‘a’ could 56 

be considered a composite of these two proportions. 57 

 58 

 59 

Accounting for uncertainty in parametrization 60 

The latent and prepatent periods are quite variable for COVID-19 patients. Instead of single point 61 

estimates for these parameters, collated data form a distribution of reported times. The latent 62 

period is drawn at random from a Weibull distribution and then subtracted from the random draw 63 

from a second Weibull distribution depicting the range of reported prepatent periods. Fig 1A 64 

illustrates these distributions as informed by the clinical and epidemiological literature [6-8]. Also 65 

shown is the distribution of times between development of infectiousness and symptoms onset as 66 

fitted to 10,000 random draws. The distributions of prepatent and latent periods overlap so to avoid 67 

the possibility of symptoms developing prior to infectiousness, random draws whereby 68 

infectiousness trailed the day of symptoms onset were removed and resampled. 10,000 random 69 

draws were then made from this newly derived distribution of the delay between infectiousness and 70 
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symptoms, and the isolation threshold (Q**) was estimated for a range of R values and a range of 71 

asymptomatic proportions (Python code for this analysis is freely available on 72 

https://github.com/lwyakob/COVIDquarantine). 73 

 74 

 75 

Figure 1. A) Dashed lines indicate distributions for the latent (blue, Weibull(α=4, β=2)) and 76 

prepatent period (red, Weibull(α=6, β=3)) as derived from the COVID-19 literature [6-8]. The solid 77 

line is the resulting distribution for the time difference between the two from which 10,000 78 

random draws were made (inset). B) The isolation threshold (Q*) as calculated for the 10,000 79 

random draws along with the mean (white line) and 95% predictive interval (dashed lines). The 80 

blue cross indicates the theoretical maximum R number for which reactive isolation may interrupt 81 

transmission. C) The maximum asymptomatic proportion of COVID-19 infections that permits 82 

transmission interruption by reactive isolation for a range of R values (the hatched curve is 83 

calculated using the expression for Q**). The red boxes illustrate estimates for the asymptomatic 84 

proportion and the R for England as of October 2020 [9, 10]. 85 

 86 
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Isolation thresholds accounting for uncertainty 87 

Fig 1B shows the mean isolation threshold required to control SARS-CoV-2 accounting for the range 88 

of estimates for the prepatent and latent periods. The value for R is dynamic, varying according to 89 

current intervention effectiveness and population-level susceptibility, so the isolation threshold is 90 

shown for a range of plausible R values. The form of the relationship between Q* and R shows an 91 

isolation threshold that increases asymptotically with reproduction number. However, allowing for 92 

uncertainty in prepatent and latent periods results in a wide 95% prediction interval. The 93 

interpretation is that when accounting for both the uncertainty in estimating the population mean, 94 

plus the random variation of the individual values, reactive isolation cannot interrupt transmission 95 

(at least 95 times out of 100) if R already exceeds a value of ~1.7 (blue cross on Fig 1B marks the R 96 

value whereby the isolation threshold proportion exceeds unity).  97 

Reactive isolation is further limited when asymptomatic infections comprise a non-negligible 98 

proportion (alternatively, when those exhibiting symptoms fail to isolate themselves to some 99 

degree). Fig 1C shows the theoretical limits of the proportion of infections that can be asymptomatic 100 

and yet SARS-CoV-2 transmission interrupted through isolating symptomatic individuals (using the 101 

Q** expression). Superimposed on this trade-off between the reproduction number and the 102 

isolation threshold are estimates for R in England as of October 2020 [10], and the 95% confidence 103 

and predictive intervals for the proportion of infections that remain asymptomatic as generated by a 104 

living systematic review [9]. Respectively, by October 75% and 85% of these parameter spaces were 105 

already beyond the level at which reactive isolation can be sufficient to interrupt transmission (i.e., 106 

these regions fall to the right of the hatched arc in Fig 1C meaning the isolation threshold proportion 107 

exceeds unity).  108 

 109 

 110 
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Limitations and future work 111 

One limitation of the current analysis is the consideration of transmission and control at the 112 

population level rather than stratified by various risk factors. To address this, results were generated 113 

for a full range of R values. It is important to note that stratification would impact the derivation of R 114 

but not the population-level isolation thresholds calculated for a given R value [11]. Another 115 

limitation is the implicit assumption that, in the absence of intervention, asymptomatically infected 116 

individuals contribute to onwards transmission as much as symptomatically infected individuals. It is 117 

unclear how questionable this assumption is but clinical studies indicate that asymptomatic and 118 

symptomatic individuals have similar viral loads [12]. Should evidence arise of their differential 119 

contributions to transmission, the model and code associated with this study can be modified easily 120 

to account for this feature.  121 

Even during pre-emptive quarantine (i.e., lockdown) the formulae described here continue to apply 122 

to those who remain in general circulation (e.g., essential personnel). Future work should look at 123 

how isolation thresholds can be estimated to inform this intervention combination, among others. 124 

 125 
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