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Abstract

Background: As part of a concerted pandemic response to protect public health, businesses can enact
non-pharmaceutical controls to minimise exposure to pathogens in workplaces and premises open to
the public. Amendments to working practices can lead to the amount, duration and/or proximity of
interactions being changed, ultimately altering the dynamics of disease spread. These modifications
could be specific to the type of business being operated.

Methods: We use a data-driven approach to parameterise an individual-based network model for
transmission of SARS-CoV-2 amongst the working population, stratified into work sectors. The net-
work is comprised of layered contacts to consider the risk of spread in multiple encounter settings
(workplaces, households, social and other). We analyse several interventions targeted towards working
practices: mandating a fraction of the population to work from home; using temporally asynchronous
work patterns; and introducing measures to create ‘COVID-secure’ workplaces. We also assess the
general role of adherence to (or effectiveness of) isolation and test and trace measures and demonstrate
the impact of all these interventions across a variety of relevant metrics.

Results: The progress of the epidemic can be significantly hindered by instructing a significant pro-
portion of the workforce to work from home. Furthermore, if required to be present at the workplace,
asynchronous work patterns can help to reduce infections when compared with scenarios where all
workers work on the same days, particularly for longer working weeks. When assessing COVID-secure
workplace measures, we found that smaller work teams and a greater reduction in transmission risk
reduced the probability of large, prolonged outbreaks. Finally, following isolation guidance and en-
gaging with contact tracing without other measures is an effective tool to curb transmission, but is
highly sensitive to adherence levels.

Conclusions: In the absence of sufficient adherence to non-pharmaceutical interventions, our results
indicate a high likelihood of SARS-CoV-2 spreading widely throughout a worker population. Given
the heterogeneity of demographic attributes across worker roles, in addition to the individual nature of
controls such as contact tracing, we demonstrate the utility of a network model approach to investigate
workplace-targeted intervention strategies and the role of test, trace and isolation in tackling disease
spread.
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Introduction 1

Globally, many countries have employed social distancing measures and non-pharmaceutical interven- 2

tions (NPIs) to curb the spread of SARS-CoV-2 [1]. For many individuals, infection develops into 3

COVID-19 disease, with symptoms including fever, shortness of breath, and altered sense of taste 4

and smell, potentially escalating to a more severe state which may include pneumonia, sepsis, and 5

kidney failure [2]. In the United Kingdom (UK), the enaction of lockdown on 23rd March 2020 saw 6

the closure of workplaces, pubs, restaurants and the restriction of a range of leisure activities. As the 7

number of daily confirmed cases went into decline during April, May and into June [3], measures to 8

ease lockdown restrictions began; some non-essential businesses were permitted to re-open and small 9

groups of individuals from different households were allowed to meet up outdoors, whilst maintaining 10

social distancing. 11

By the end of September 2020, exponential growth had returned in almost all regions of the UK [4, 5] 12

and stricter controls were subsequently reintroduced to curtail growth. Whilst lockdown has been a 13

strategy used around the world to reduce the public health impacts of COVID-19, it is important to 14

recognise that such strategies are very disruptive to multiple elements of society [6, 7], especially given 15

that restrictions are largely unpredictable to local populations and businesses. 16

As part of a collective effort to protect public health by disrupting viral transmission, businesses also 17

need to act appropriately by taking all reasonable measures to minimise exposure to coronavirus in 18

workplaces and premises open to the public. In the UK, each of the four nations (England, Wales, 19

Scotland, Northern Ireland) has published guidance to help employers, employees and the self-employed 20

to work safely [8–11]. Adjustments in working practices can result in changes to the amount, duration, 21

and/or proximity of interactions, thereby altering the dynamics of viral spread. These modifications 22

could be variable depending upon the type of business being operated and may include limiting the 23

number of workers attending a workplace on any given day, as well as introducing measures to make a 24

workplace COVID-secure, such as compulsory mask wearing and the use of screens. For this paper, we 25

are interested in how interventions targeting workplace practices may affect infectious disease control 26

efforts, whilst accounting for the variation in employee demographics across working sectors. 27

Modelling has been contributing to the COVID-19 pandemic response, with analyses having been 28

carried out pertaining to transmission of SARS-CoV-2 within specific parts of society, including health 29

care workers [12], care homes [13], university students [14–16], and school pupils and staff [17–19]. As 30

in these studies, we view the contact structure for the adult workforce as being comprised of several 31

distinct layers. Knowledge of the contact structure allows models to compute the epidemic dynamics 32

at the population scale from the individual-level behaviour of infections [20]. More generally, such 33

models of infectious disease transmission are a tool that can be used to assess the impact of options 34

seeking to control a disease outbreak. 35

In this study, we outline an individual-based network model for transmission of SARS-CoV-2 amongst 36

the working population. Informed by UK data, the model takes into account work sector, workplace 37

size and the division of time between work and home. In addition to workplace interactions, contacts 38

also occur in household and social settings. Given the heterogeneity of demographic attributes across 39

worker roles, as well as the use of individual-based NPIs such as contact tracing, we demonstrate 40

the utility of a network model approach in investigating workplace-targeted control measures against 41

infectious disease spread. 42
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Methods 43

We simulated an epidemic process over a network of workers and assessed the impact of workplace- 44

targeted non-pharmaceutical interventions. In this section we detail: (i) the structure of the network 45

model, (ii) the data sources used to parameterise the network contact structure, (iii) the model for 46

SARS-CoV-2 transmission and COVID-19 disease progression, and (iv) the simulation protocol used 47

to assess the scenarios of interest. 48

Network model description 49

Each node in the network represented a worker. We did not include in the network children, the elderly, 50

or working-age individuals not in employment (this is an acknowledged limitation of the system). The 51

entire network was assumed to be contained within the same geographical area, such that any node 52

could possibly be linked with any other node. We used a multi-layered network model to capture 53

common contact settings. Our model was comprised of four layers: (i) households, (ii) workplaces, 54

(iii) social contacts, and (iv) other contacts. 55

Household contact layer 56

To allocate workers to households, we sampled from an empirical distribution based on data from the 57

2011 census in England [21]. To obtain this distribution, we calculated the proportion of households 58

containing 1 to 6+ people between the ages of 20 - 70 (Fig. S8). Thus, as previously highlighted, we 59

omit children and the elderly from our analysis. When sampling from this distribution, we restricted 60

the maximum household size to six people. Since we assumed that everyone in a household is an 61

active worker, this size restriction helped to reduce the overestimation of the number of active workers 62

mixing within households. Within each household, members formed fully connected networks. 63

Workplace contact layer 64

To disaggregate working sectors, we used data from the 2020 edition of the ONS ‘UK business: activity, 65

size and location database’ [22]. Specifically, we took counts (for the UK) of the number of workplaces, 66

stratified into 88 industry divisions/615 industry classes (Standard Industrial Classifications (UK 67

SIC2007)) and workforce sizes (0 - 4, 5 - 9, 10 - 19, 20 - 49, 50 - 99, 100 - 249, 250+). 68

We reassigned the industry types to one of 41 sectors (see Table 1 for a listing of the work sectors). 69

We generated a set of workplaces and workplace sizes for each of the 41 sectors in a two-step process: 70

first, we sampled from the relevant empirical cumulative distribution function of the binned workplace 71

size data to obtain the relevant range. For a bounded range (all but the largest bin), we then sampled 72

an integer value according to a uniform distribution that spanned the selected range. Since the 73

largest data bin (250+ employees) is unbounded, in this instance we instead sampled from a shifted 74

Gamma(1,100) distribution (shape and scale parameterisation, shifted to 250). When sampling the 75

number of workplaces and individual workplace sizes in each simulation run, there was variation in 76

these distributions, though qualitative features were retained in individual realisations (Fig. S9). 77

We separated workplace contacts into static contacts and dynamic contacts. For static contacts, we 78

constructed the network to allow for contacts both within a worker’s workplace (most common) and to 79

other workplaces in the same industrial sector (less common). These contacts occurred every workday, 80

unless either person was working from home, and remained unchanged throughout the simulation. We 81

generated static contacts using a ‘configuration model’ style algorithm, allowing the specification of a 82

desired degree distribution for each sector. We adapted the standard configuration model to allow a 83

variable amount of clustering, where a higher value of clustering led to more contacts being made within 84

a workplace compared to between different workplaces. We subjectively assumed throughout that the 85

probability of making contact with an individual in another workplace, compared to an individual 86

within the same workplace, was 0.05. We applied this consistently across sectors as a simplifying 87
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assumption, however, were relevant fine-scale data available then sector-specific parameterisations 88

may be more appropriate. Unlike the standard configuration model, we did not allow edges to be 89

made with oneself or repeated edges. As such, the resulting degree distribution was an approximation 90

of the distribution used as an input. For the steps defining the algorithm, see Section 1.1 of Supporting 91

Text S1. 92

Dynamic contacts represented those that may occur between workers and non-workers, though still 93

in the workplace, for example contacts between retail workers and shoppers. These were regenerated 94

every day: for each worker (not working from home), we generated a number of dynamic contacts from 95

a sector-specific degree distribution and assigned the recipients at random. These were not clustered 96

in any way; that is, every person in the population had an equal probability of being the recipient, 97

though we did not allow repeated edges or edges with oneself. Given that the number of dynamic 98

contacts per person is small compared to the size of the population, the desired degree distribution 99

was approximately preserved. 100

Table 1: Within the network model, workplaces were grouped into the following 41 industrial sectors.

1. Agriculture 12. Postal 23. Employment and HR 34. Betting

2. Mining 13. Accommodation 24. Travel Agency 35. Sport

3. Manufacturing (food & beverages) 14. Restaurant and Bar 25. Security 36. Theme Parks

4. Manufacturing (other) 15. Broadcasting and Communications 26. Cleaning 37. Religious and Political Organisations

5. Utilities and Waste 16. Information Technology 27. Office (other) 38. Repair

6. Construction 17. News 28. Public Administration and Defence 39. Hairdressers

7. Motor Trade 18. Banking/Accounting 29. Education 40. Funeral

8. Wholesale 19. Real Estate 30. Hospital/Doctor/Dental 41. Personal Services

9. Retail 20. Professional/Science/Tech 31. Care Homes

10. Transport 21. Veterinary 32. Social Work

11. Transport Support 22. Rental Companies 33. Arts

Social contacts 101

Social contacts were generated in two stages. First, we generated a ‘social group’ for each person. We 102

used a similar configuration model style algorithm as for the generation of static workplace contacts, 103

allowing the specification of a desired degree distribution. We adapted the standard configuration 104

model to allow for greater clustering (which in this context relates to the probability that each contact 105

is made with a friend-of-a-friend, opposed to someone at random, set at 0.5) and did not allow edges 106

with oneself or repeated edges. This resulted in an acceptable approximation of the desired degree 107

distribution. The second step specified who a person socialised with each day: for each individual on 108

each day, we sampled a subset of their social group to construct the social contacts made on that day. 109

The number of social contacts made per day was specified by a degree distribution (but restricted by 110

the size of their social group), which we allowed to differ between workdays and non-workdays. We 111

provide a description of the steps for constructing the social contact layer of the network in Section 112

1.2 of Supporting Text S1). 113

Other contacts 114

The final contact layer captured random, dynamic, contacts made each day with any other individ- 115

uals in the population (for example on public transport). We used a fixed daily probability of each 116

individual interacting with any other individual in the network, without clustering or preference. We 117

justify this with the assumption that the entire network is contained within the same geographical 118

area. 119

Contact parameterisation 120

We parameterised the number of contacts that occurred within each layer of the network using data 121

from the University of Warwick Social Contact Survey [23–25]. The Social Contact Survey was a 122

paper-based and online survey of 5,388 participants in the United Kingdom conducted in 2010. We 123

extracted records provided by 1,860 participants, with a total of 34,004 contacts (eligibility criteria 124
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are outlined in Supporting Text S2). This data informed the network construction parameters for 125

the workplace and social layers, with stratification according to sector. We fit parameters for these 126

contact distributions using maximum likelihood estimation via the fitdistrplus package in R. We 127

present a summary of network parameters in Table 2. 128

Workplace contacts 129

We used the Warwick Social Contact Survey to parameterise the degree distributions for both static 130

and dynamic contacts occurring in workplaces. For a full description of the workplace contact layer pa- 131

rameterisation, including the mapping between the ONS sectors and occupations listed in the Contact 132

Survey, see Section 2.1 of Supporting Text S2. 133

We found that, across all work sectors, the daily number of workplace contacts displayed a heavy tail. 134

Thus, we chose to fit lognormal (LN) distributions to the data, which consistently provided stronger 135

correspondence to the data, across different occupations, than alternative choices of distribution. 136

Social contacts 137

We used data from the Warwick Social Contact Survey to acquire a distribution of social group sizes 138

and estimate the daily number of social contacts on both work and non-work days. To acquire a 139

distribution of social group sizes, we scaled up the contacts recorded in the Warwick Social Contact 140

Survey, resulting in a LN(3.14, 1.41) distribution with a mean and standard deviation parameterisation 141

(Fig. 1 and Table 2, full methodological details in Section 2.2 of Supporting Text S2). 142

Through fitting distributions to the workday and non-workday data independently, we obtained 143

LN(1.40, 1.27) and LN(1.54, 1.15) distributions for workday and non-workday social contacts respec- 144

tively (Fig. 1 and Table 2, for additional information see Section 2.3 of Supporting Text S2). 145

Other contacts 146

To capture other miscellaneous, randomly-occurring contacts, for each individual on each day, we gen- 147

erated random contacts according to a fixed probability. We set this probability so that each individual 148

had, on average, one additional contact per day (Table 2), resulting in a Poisson(1) distribution across 149

the entire population. 150

Table 2: Description of network contact parameters. Lognormal distributions are described using a mean and
standard deviation parameterisation. All values are given to 2d.p.

Description Degree distribution Source

N , network size 10,000 Assumption

Household (static) Fully connected Assumption

Work setting See Section 2.1 of Supporting
Text S2

Fitted from Social Contact Sur-
vey [23–25]

Friendship group size Lognormal(3.14,1.141) Fitted from Social Contact Sur-
vey [23–25]

Social contacts (workday) Lognormal(1.40,1.27) Fitted from Social Contact Sur-
vey [23–25]

Social contacts (non-workday) Lognormal(1.54,1.15) Fitted from Social Contact Sur-
vey [23–25]

Other contact probability 1
N Assumption

Between workplace contact
probability

0.05 Assumption

Friend-of-friend probability 0.5 Assumption
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Fig. 1: Density functions of the best fit lognormal distributions with respect to number of social
contacts each day and friendship group size. All traces are plotted against the number of contacts,
presented on a log scale. The stated lognormal (LN) distributions that follow are given using a mean and
standard deviation parameterisation. We obtained a heavier tailed distribution for number of social contacts
per day on non-workdays (red dashed line, LN(1.54, 1.15)) versus workdays (blue solid line, LN(1.40, 1.27)).
The histograms show the associated empirical probability densities in a matching colour scheme. Friendship
group sizes were sampled from a LN(3.14, 1.41) distribution, depicted by the green dotted line.

Epidemiological model 151

Disease states 152

We ran a disease process on the network structure, with each individual being in either a susceptible, 153

latent (infected but not infectious), infectious or recovered state. 154

Once infected, we assumed infectiousness could start from the following day. We assumed an Erlang- 155

distributed incubation period, with shape parameter 6 and scale parameter 0.88 [26]. 156

The distribution of infectiousness had a four day pre-symptomatic phase, followed by a ten day symp- 157

tomatic phase. This gave a total of 14 days of infectivity and a minimum 15 day infection duration 158

(for the full temporal profile, see Table 3). It was based on a Gamma(97.2, 0.2689) distribution, with 159

shape and scale parameterisation, shifted by 25.6 days [27, 28]. Following completion of the infectious 160

period, the individual entered the recovered state. 161

Asymptomatic transmission 162

Infected individuals could be either asymptomatic or symptomatic, according to a specified asymp- 163

tomatic probability. There remains significant uncertainty as to what this probability should be, 164

however community surveillance studies informed this parameter. The REal-time Assessment of Com- 165

munity Transmission-1 (REACT-1) study found approximately 70% of swab-positive adults and 80% 166

of swab-positive children were asymptomatic at the time of swab and in the week prior [3]. Note that 167
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this includes presymptomatic infected individuals who would later go on to display symptoms. This 168

fell to 50% at later stages of the study [5]. To reflect this uncertainty, for each simulation we sampled 169

the asymptomatic probability from a Uniform(0.5, 0.8) distribution. 170

There remains limited data available to provide a robust quantitative estimate of the relative infectious- 171

ness of asymptomatic and symptomatic individuals. However, there are indications that asymptomatic 172

individuals could be less infectious than symptomatic individuals [29, 30]. Therefore, we assumed that 173

asymptomatic individuals had a lower risk of transmitting infection compared to symptomatic individ- 174

uals. To reflect the uncertainty in this area, for each simulation we sampled the relative infectiousness 175

of asymptomatics compared to symptomatics from a Uniform(0.3, 0.7) distribution. This was sam- 176

pled independently to the asymptomatic probability. The sampled value was applied as a scaling 177

on transmission risk, applied evenly throughout the duration of infectiousness (i.e. with no time 178

dependence). 179

Setting transmission risk 180

Attributing risk of transmission to any particular contact in a particular setting is complex, due to 181

the huge heterogeneity in contact types. We used a data-driven approach to obtain the relative risk 182

of transmission within each network layer. We then scaled these risks equally in order to obtain an 183

appropriate growth rate of the disease. 184

For household transmission, we used estimates of adjusted household secondary attack rates from a UK 185

based surveillance study [31]. We attributed a household secondary attack rate to each student based 186

on the size of their household. We sampled the attack rates from a normal distribution with mean 187

dependent on the household size: 0.48 for a household size of two, 0.40 for three, 0.33 for four, and 0.22 188

for five or more. The standard deviation of the normal distribution for households of size two or three 189

was 0.06, and for households of four or more was 0.05. We highlight that these estimates were made 190

using a sample of 379 confirmed COVID-19 cases, meaning the robustness of the central estimates 191

could be low. As such, we sampled from a distribution to ensure this uncertainty was captured. 192

For transmission risk in other settings, we performed a mapping from the Social Contact Survey [23–25] 193

to obtain a relative transmission risk compared to household transmission. To obtain the means, we 194

used the central estimate of adjusted household secondary attack rate for those aged 18-34 of 0.34 [31] 195

and scaled this based on the characteristics of contacts in different locations, obtained from the contact 196

survey (further details in Supporting Text S3). Standard deviations were set to have a constant size 197

relative to the mean. Transmission risks were consistent across all non-household settings, except 198

within organised societies where we assigned a lower transmission risk to reflect the implementation 199

of COVID-secure measures that would be required to permit these meetings to take place. 200

We calibrated the relative transmission risks to achieve an uncontrolled reproductive number, Rt, that 201

was, on average, in the range 2 − 4 for the initial phase of the outbreak. To obtain these early phase 202

transmission dynamics, we applied an equal scaling of 0.8 to all of the transmission risks calculated 203

above (see Supporting Text S4). 204

Isolation, test and trace 205

Testing and isolation measures 206

Upon symptom onset, an adhering individual would immediately take a test and enter isolation for 207

10 days. At that time, their household would also enter self-isolation for 14 days (matching the UK 208

government guidance prior to 14th December 2020, when self-isolation for contacts of people with 209

confirmed coronavirus was shortened from 14 days to 10 days across the UK) [32]. Isolation was 210

assumed to remove all non-household contacts for the period of isolation. 211

We assumed that an isolating individual would remain in isolation for the required amount of time, 212
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Table 3: Description of epidemiological parameters.

Description Distribution Source

Incubation period Erlang(6, 0.88) [26]

Infectiousness profile Infectivity profile over 14 days:
[0.0369, 0.0491, 0.0835, 0.1190,
0.1439, 0.1497, 0.1354, 0.1076,
0.0757, 0.0476, 0.0269, 0.0138,
0.0064, 0.0044]

[27, 28]

Proportion of cases asymp-
tomatic

Uniform(0.5, 0.8) REACT-1 study [3, 5]

Relative infectiousness of an
asymptomatic

Uniform(0.3, 0.7) [29, 30]

or until a negative test result was returned. We included a two day delay between taking the test 213

and receiving the result. We assumed the test had 100% specificity and its sensitivity was dependent 214

upon time since infection (we used the posterior median profile of the probability of detecting infection 215

reported by Hellewell et al. [33]). 216

In the event that the test result from the index case was negative, household members would be 217

released from isolation, as long as no other members had become symptomatic during that time. The 218

index case remained in self-isolation if they had independently been identified via contact tracing as 219

a contact of a known infected; otherwise, that individual also left self-isolation. 220

Forward contact tracing 221

The modelled tracing scheme looked up contacts for an index case up to five days in the past. It 222

was assumed that tracing took place on the third day after symptom onset, following testing and a 223

two day delay to return a positive result. Thus contacts may be recalled up to two days prior to 224

the onset of symptoms. We assumed that an individual would be able to recall all of their regular 225

contacts for that time. However, we assumed that the probability of being able to recall their ‘dynamic’ 226

contacts diminished with time, from 0.5 one day previously, reducing in increments of 0.1, such that 227

the probability of successfully tracing a contact five days in the past is 0.1. Other assumptions could 228

be explored and a wider range of assumptions, collectively, would generate more variation in the 229

results. 230

Contacts of a confirmed case were required to spend up to 14 days in self-isolation [34] (matching the 231

UK government guidance prior to 14th December 2020, when self-isolation for contacts of people with 232

confirmed coronavirus was shortened from 14 days to 10 days across the UK). We set the isolation 233

period to elapse 14 days after the index case became symptomatic. 234

Adherence 235

We used an adherence parameter to capture the proportion of individuals that follow the recommended 236

guidance. This was applied to the isolation and test-and-trace measures, representing the probability 237

that an individual would both adhere to isolation guidance and engage with test and trace. We did 238

not allow partial adherence to one measure and not the other. Adherence to isolation encompassed 239

isolation for any reason: presenting with symptoms themselves, being in the same household as some- 240

one displaying symptoms, or being identified as a close contact of an infected individual via contact 241

tracing. Unless otherwise stated, we assumed a constant 70% adherence to isolation and test-and-trace 242

measures. 243

We give an overview of isolation, test and trace related parameters in Table 4. 244
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Table 4: Description of isolation, test and trace related parameters.

Description Value Source

Duration of self-isolation if
symptomatic

10 days UK government guidance [32]

Household isolation period 14 days UK government guidance (prior
to 14th December 2020) [32]

Duration of isolation if contact
traced

14 days (beginning from the
day the index case first displays
symptoms)

UK government guidance (prior
to 14th December 2020) [34]

Delay in receiving test result 2 days Assumption

Dynamic contact recall For five previous days,
[0.5, 0.4, 0.3, 0.2, 0.1]. Zero
probability beyond five days.

Assumption

Adherence 0.7 Assumption

Simulation outline 245

We used this model framework to evaluate the transmission dynamics of SARS-CoV-2 amongst the 246

workforce under different workplace-targeted NPIs. We also assessed the role of adherence to the 247

underlying social distancing guidance and engagement with test-and-trace. 248

We ran all simulations with a population of 10,000 workers and a simulation time corresponding to 249

365 days. The size of the network was kept small due to the assumption that any node could contact 250

any other, thus must be in the same geographical area. For the default working pattern, we applied a 251

simplifying assumption that all workers had the same working pattern of five days at the workplace 252

(that can be considered to be Monday to Friday) and two days off (Saturday and Sunday). This 253

applied unless otherwise stated. Ten individuals began the simulations in an infectious state, of whom 254

between 5 - 8 were asymptomatic (randomly sampled) and the remaining symptomatic (between 2 - 255

5 individuals). All other individuals began the simulations in a susceptible state. 256

Unless stated otherwise, we assumed that all NPIs, including isolation and test-and-trace, were im- 257

plemented from day 15. For the two weeks prior to this, the virus was assumed to spread unhindered. 258

Once isolation guidance began, any pre-existing symptomatic, adherent individuals would follow the 259

new guidance, entering isolation themselves until 10 days after symptom onset. Adhering household 260

members would also enter isolation until 14 days after symptom onset for the index case. However, 261

only those that developed symptoms after the implementation of test-and-trace would be tested and 262

contact traced. 263

For each parameter configuration, we ran 1,000 simulations, amalgamating 50 batches of 20 replicates. 264

Each batch of 20 replicates was obtained using a distinct network realisation. We performed the 265

model simulations in Julia v1.5. The code repository for the study is available at: https://github. 266

com/EdMHill/covid19 worker network model. 267

Our assessment comprised of four strands, assessing the impact of: i) a proportion of workers working 268

from home; ii) different working patterns; iii) the introduction of COVID-secure workplace measures; 269

and iv) the level of adherence to isolation and test-and-trace interventions. We detail these below. 270

Across all sections of analysis, we primarily focused on measures associated with outbreak severity 271

(size and peak in infectious case prevalence), outbreak duration, and extent of isolation (cumulative 272

isolation time). Further measures are provided in the Supporting Information. 273
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Proportion of the workforce working from home 274

We investigated the impact of different proportions of the workforce working from home full time. 275

We varied this proportion (consistent across all sectors) from 0 to 1 in increments of 0.1. We also 276

included a scenario in which the proportion of workers working from home was not consistent across 277

work sectors (summarised in Table 5). For this, we subjectively set the proportion of workers working 278

from home to be highest in office based roles (70% working from home), at a moderate level in 279

primary and manufacturing trade occupations (for example, repair with 50% working from home and 280

construction with 30% working from home), lower in sales and customer service roles such as retail 281

(20% working from home) and zero for those in the education, health, care home and social work 282

sectors (0% working from home). Overall for this scenario, approximately 35% of the workforce was 283

working from home. 284

Table 5: Sector-specific working from home proportions

Sector Prop. Sector Prop. Sector Prop.

Agriculture 0.3 Broadcasting/Comm. 0.7 Education 0

Mining 0.3 IT 0.7 Hospital/Doctor/Dental 0

Manufact. (food) 0.3 News 0.7 Care Homes 0

Manufact. (other) 0.3 Banking/Accounting 0.7 Social Work 0

Util. and Waste 0.3 Real Estate 0.7 Arts 0.2

Construction 0.3 Professional/Sci/Tech 0.7 Betting 0.2

Motor Trade 0.5 Vet 0.2 Sports 0.2

Wholesale 0.2 Rental Company 0.7 Theme Parks 0.3

Retail 0.2 Employment/ HR 0.7 Religious Org. 0.7

Transport 0.5 Travel Agency 0.7 Repair 0.5

Transport Support 0.5 Security 0.3 Hairdressers 0.2

Postal 0.2 Cleaning 0.5 Funerals 0.2

Accomm. 0.2 Office 0.7 Personal Services 0.7

Restaurant/Bar 0.2 Public/Admin/Defence 0.7

Worker patterns 285

We explored two alternative choices related to the scheduling of workers being present at their usual 286

workplace: (i) synchronous work pattern - workers returned to work for a given number of days per 287

week (between Monday to Friday inclusive), with all workers scheduled to work on the same days; or 288

(ii) asynchronous working pattern - workers returned to work for a given number of days per week, with 289

the days of return randomly assigned to each worker (between Monday to Sunday inclusive). 290

COVID-secure workplaces 291

We defined a workplace to be ‘COVID-secure’ if measures had been taken to reduce the number of 292

contacts workers had and decrease the risk of transmission for those contacts that remained. We 293

assessed the impact of all workplaces undergoing changes to their contact structures, combined with a 294

possible reduction in transmission risk across work based contacts. We simulated all combinations of 295

work team sizes of 2, 5 or 10, in conjunction with the scaling of the baseline work sector transmission 296

risks (for both static and dynamic work contacts) by a factor of either 0.25, 0.5, 0.75 or 1. We assumed 297

that everyone within a team was connected with each other, but with no one else at the workplace. No 298

regular work contacts were made outside a worker’s workplace. We did not amend the distributions 299

of dynamic contacts occurring at the workplace. 300
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As well as the baseline assumption of 70% adherence to isolation and test-and-trace measures, in 301

order to highlight the effects brought about solely by COVID-secure measures (in the absence of other 302

NPIs), we also ran simulations with 0% adherence (i.e. in the absence of) and 100% adherence to 303

isolation and test-and-trace measures. 304

Adherence to isolation, test and trace 305

Finally, we analysed the sensitivity of our model to the underlying adherence parameter, which defines 306

whether or not an individual will both adhere to isolation guidelines and engage with test-and-trace. 307

We sampled adherence between 0 and 1 in increments of 0.1. To conclude, we explored the sensitivity 308

to the adherence parameter of the impact of workplace interventions on outbreak severity, outbreak 309

duration, and extent of isolation. 310

Results 311

Working from home 312

We found that a greater proportion of the workforce working from home was effective in reducing the 313

final size of the outbreak, the peak in infectious cases, and total-isolation-days (Figs. 2(a) to 2(c)). 314

An increase from no one working from home (corresponding to there being no changes in the work 315

pattern policy) to everyone working from home resulted in a 60 - 70% decrease in the medians of each 316

of these metrics. However, working from home was relatively ineffective in reducing outbreak duration 317

and displayed a non-monotonic relationship (Fig. 2(d)). For increases in the proportion working from 318

home between 0 - 70%, we observed an increase in the median outbreak duration from 186 days (95% 319

prediction interval (PI): 140 - 272 days) to 230 days (95% PI: 128 - 365 days). Further increases in 320

the proportion working from home between 70 - 100% resulted in a decrease in the median duration, 321

reaching 211 days (95% PI: 81 - 365 days). Finally, we observed a consistent increase in variability in 322

duration across simulations as more people worked from home. 323

The relationships observed in Fig. 2 can also be seen in the temporal profiles of the proportion of the 324

population infectious, the proportion isolating, and Rt (Fig. S10, left column). A greater proportion 325

of the workforce working from home resulted in a faster decrease in Rt towards 1 during the early 326

stages of the outbreak. This resulted in a flattened epidemic curve, observed in both infection and 327

isolation levels. However, in the long run, Rt remained marginally higher (though below 1), due to a 328

larger susceptible population. This allowed the outbreaks to last longer. 329

Thus far, we have assumed that the proportion working from home applies equally across all industry 330

sectors. However, in reality, such an approach may not be implementable, due to the differing nature 331

of such sectors. We demonstrated the flexibility of the model construction by also simulating one 332

example of a scenario in which the proportion working from home was sector-dependent (labelled 333

N-U in Fig. 2). The sector-dependent proportions used resulted in approximately 35% of the total 334

population of workers working from home. However, when compared to the results using an equal 335

proportion across all sectors, the non-uniform simulations appeared closer to the results obtained from 336

a proportion working from home lower than 35% (10 - 25% depending on the metric used). Thus, 337

correlation between the amount of contacts workers within a sector have with the general public and 338

the ability of those workers to work from home may reduce the effectiveness of a work from home 339

policy. 340

We note that there was significant variation in infection and isolation outcomes for each working 341

from home intervention scenario. This was primarily due to the variability in epidemiological factors 342

between simulation runs, such as the distribution of initial infections, the asymptomatic probability, 343
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and the relative infectiousness of an asymptomatic case, all of which were randomly generated at the 344

start of each simulation. The different network structures contributed relatively less variation. Results 345

from a collection of simulations performed on a single network realisation also display a large amount 346

of variation (Fig. S11), a characteristic observed for each form of intervention studied in subsequent 347

result subsections (not shown). 348

(a) (b)

(c) (d)

Fig. 2: Case and isolation summary statistics under differing fractions of workers working from
home. We introduced NPIs from day 15 onwards, with varying proportions of the workforce working from
home. N-U corresponds to non-uniform proportions working from home across the work sectors (see Table 5).
Outputs are summarised from 1,000 simulations (20 runs per network for 50 separate network realisations). We
assumed an adherence of 70% in all runs. The white markers denote medians and solid black lines span the
25th to 75th percentiles. We give central and 95% prediction intervals in Table S4. (a) Additional proportion
of the population that were infectious post introduction of NPIs (day 15 onwards). (b) Peak in infectious case
prevalence. (c) Total isolation-days. (d) Outbreak duration.
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Worker patterns 349

Rather than stipulating a proportion of the population to work from home full-time (five days a 350

week), we can instead consider the case where workers only work from home on specified days and are 351

physically present at their workplace otherwise. We varied the number of days spent at the workplace 352

from 0 to 5 and considered working schedules that were: i) synchronous: workers returned to work 353

for the given number of days per week, with all workers scheduled to work on the same days (between 354

Monday and Friday inclusive); or ii) asynchronous: workers returned to work for the given number 355

of days per week, with the days of return randomly assigned to each worker (between Monday and 356

Sunday inclusive). 357

The number of days workers spend at the workplace had a similar effect on the reported metrics as 358

the proportion working from home. Fewer days at the workplace resulted in fewer infections overall 359

(Fig. 3(a)), a lower peak in infectious case prevalence (Fig. 3(b)) and fewer isolating individuals 360

(Fig. 3(c)). However, there was relatively less effect on the outbreak duration and the relationship is 361

non-monotonic (Fig. 3(d)). These relationships were again displayed in the temporal profiles of the 362

proportion of people infectious, isolating, and Rt (Fig. S10, centre and right columns). 363

Compared to a work from home policy, in which a proportion of workers work from home all the 364

time, allowing all workers to work from home some of the time was less effective if work patterns were 365

synchronous, but more effective if they were asynchronous. For example, comparing a policy of 40% of 366

workers working from home all the time (Fig. 2) to a policy of all workers spending 40% of their time 367

working from home (two days per week working from home, three days per week at the workplace; 368

Fig. 3), we found the former resulted in a median of 37% (95% PI: 19% - 51%) of the population 369

infected (post-introduction of interventions on day 15) and the latter 42% (95% PI: 25% - 55%) if 370

worker patterns were synchronous, or 35% (95% PI: 15% - 51%) if they were asynchronous. 371

When using asynchronous work patterns we observed fewer total infections, a reduced expected 372

peak prevalence and fewer total isolation-days compared to when using synchronous work patterns 373

(Figs. 3(a) to 3(c)). These differences depended on the number of days the workers attended the 374

workplace. For total infections and days spent in isolation, the difference between synchronous and 375

asynchronous worker patterns was most pronounced when fewer days were spent at the workplace 376

(assuming this was non-zero). For peak sizes, the same was true for 2 - 4 days spent at the workplace, 377

with differences diminishing at the extremes. Finally, we found that asynchronous working schedules 378

tended to result in longer outbreaks than synchronous (Fig. 3(d)). Note that, for 0 days per week spent 379

at the workplace, synchronous and asynchronous schedules are theoretically identical, with variation 380

between the two caused by stochasticity alone. 381
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(a) (b)

(c) (d)

Fig. 3: Case and isolation summary statistics under differing worker patterns. We introduced NPIs
from day 15 onwards and tested synchronous (brown) and asynchronous (cyan) worker patterns, for a range
of days spent at the workplace. In all panels, we summarise outputs from 1,000 simulations (with 20 runs per
network, for 50 network realisations). We assumed an adherence of 70% in all runs. The white markers denote
medians and solid black lines span the 25th to 75th percentiles. We give central and 95% prediction intervals
in Table S5. (a) Additional proportion of the population that were infectious post introduction of NPIs (day
15 onwards). (b) Peak in infectious case prevalence. (c) Total isolation-days. (d) Outbreak duration.
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COVID-secure workplaces 382

We assessed the impact of all workplaces undergoing changes to their contact structures, combined 383

with a possible reduction in transmission risk across workplace contacts (Fig. 4). 384

Without a reduction in transmission risk, we found that restricting workers to teams of up to 10 385

people was sufficient to reduce the total number infected and size of the infectious case peak (purple 386

violins; Figs. 4(a) and 4(b)). Although we did not include team sizes greater than 10, based on the 387

relationship observed in Fig. 4(a), we extrapolate that greater team sizes may cause an increase in 388

infections overall. This is likely due to the overall increase in the average number of contacts per worker 389

compared to a non-COVID-secure context, caused by fully connected teams. Intuitively, smaller team 390

sizes resulted in fewer infections. We observed a similar relationship with total isolation-days, although 391

at a team size of 10, isolation-days increased in comparison to a non-COVID-secure context (Fig. 4(c)). 392

In contrast, the introduction of teams of workers increased the duration of the outbreak, with smaller 393

teams causing longer outbreaks (Fig. 4(d)). 394

If the risk of transmission was also reduced through COVID-secure measures, we observed further re- 395

ductions in total infections, the peak in infectious case prevalence and isolation-days (colours; Figs. 4(a) 396

to 4(c)). The relationship with duration was non-monotonic, with a transmission risk scaling of 1 or 397

0.75 (no reduction in transmission risk or a 25% reduction in transmission risk) resulting in an increase 398

in duration, but greater reductions (transmission risk scalings of 0.5 and 0.25) resulting in a decrease 399

(Fig. 4(d)). However, compared to a non-COVID-secure context, duration was increased in all tested 400

scenarios. Finally, a reduction in transmission risk resulted in more significant changes across all 401

metrics compared to a reduction in team size. 402

These relationships were reflected in the temporal profiles of the number of infectious and isolating 403

individuals (Figs. S12&S13). As team sizes decreased (right to left), we observed a slight flattening 404

and lengthening of the curves for both metrics. A similar, but more pronounced, effect was seen for 405

decreasing transmission risk (bottom to top). 406

15

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 6, 2021. ; https://doi.org/10.1101/2020.11.18.20230649doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.18.20230649
http://creativecommons.org/licenses/by/4.0/


(a) (b)

(c) (d)

Fig. 4: Case and isolation summary statistics under COVID-secure workplace measures. We
introduced NPIs from day 15 onwards, alongside COVID-secure workplace measures. We tested sensitivity to
the maximum work team size (2, 5 or 10) and to the relative scaling of transmission risk under COVID-secure
conditions: 0.25 (blue violins), 0.50 (orange violins), 0.75 (yellow violins), 1.00 (purple violins). In all panels, we
summarise outputs from 1,000 simulations (with 20 runs per network, for 50 network realisations). We assumed
an adherence of 70% in all runs. The white markers denote medians and solid black lines span the 25th to 75th
percentiles. The grey dashed horizontal line corresponds to the median estimate with no active COVID-secure
workplace interventions. (a) Additional proportion of the population that were infectious post introduction
of NPIs (day 15 onwards). (b) Peak in infectious case prevalence. (c) Total isolation-days. (d) Outbreak
duration. We give central and 95% prediction intervals for each summary statistic distribution in Table S6.
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Adherence to isolation guidelines and engagement with test-and-trace 407

Finally, we assessed the sensitivity of our model set-up to different levels of adherence. This applied 408

to both the adherence to isolation measures and engagement with test-and-trace. 409

We found that increased adherence to isolation and test-and-trace measures resulted in fewer infec- 410

tions overall and a lower peak (Figs. 5(a) and 5(b)). From 0% adherence (effectively no NPIs) to 411

100%, we saw a 50% reduction in overall outbreak size and 75% reduction in infectious prevalence 412

peak size. Nonetheless, whilst increasing adherence introduced greater variability in the final epidemic 413

size (lengthening violin plots with increasing adherence probability), it simultaneously caused a re- 414

duction in the variation in the peak in infectious cases (shorter violin plots with increasing adherence 415

probability). 416

In contrast, higher adherence caused an increase in both the total number of days spent in isolation 417

and the duration of the outbreak (Figs. 5(c) and 5(d)). Variability in both these metrics also increased 418

significantly at higher levels of adherence. 419

These relationships can also be observed in the temporal profiles of infectious cases, isolating indi- 420

viduals and Rt (Fig. S14). Increased adherence resulted in a faster decline in Rt at early stages. 421

However, Rt remains higher during later stages (but still below 1) due to a greater proportion of the 422

population remaining susceptible, causing the temporal profiles of Rt for different adherence levels to 423

cross over. This caused a flatter, longer outbreak, resulting in fewer infections but longer duration. 424

Finally, increased adherence resulted in greater amounts of isolation throughout. 425

To give an indication of the sensitivity of workplace interventions to adherence, we tested the im- 426

plementation of COVID-secure workplaces with adherence probabilities of 0 (equivalently, without 427

isolation and test-and-trace), 0.7 (the default adherence probability), and 1 (all individuals adherent). 428

We present the results for a fixed team size of 5, with varying transmission risk and the three levels 429

of adherence (Figs. 6(a) to 6(c)), as well as for a fixed scaling of transmission risk of 0.5, with varying 430

team size and the three levels of adherence (Figs. 6(d) to 6(f)). 431

We observed that, on average, a lower underlying level of adherence (lighter colours) diminished the 432

relative effectiveness of a workplace targeted intervention at reducing total infections and peak size 433

(Figs. 6(a), 6(b), 6(d) and 6(e)). This reduction in median relative effectiveness was generally more 434

pronounced for more intensive interventions (smaller team sizes and greater reduction in transmis- 435

sion risk). Lower adherence also reduced the relative variability between simulations in these two 436

metrics. 437

We observed the opposite effect on outbreak duration (Figs. 6(c) and 6(f)): lower adherence caused a 438

relatively greater increase in outbreak duration from the implementation of workplace targeted inter- 439

ventions. Again, this was most pronounced for more intensive interventions. The relative variability 440

in duration appeared to increase with lowered adherence. However, we note that the duration without 441

intervention (dashed lines) is significantly shorter when adherence is lower, thus we are less likely to 442

reach the upper bound for outbreak duration of 365 days (Figs. S15&S16). 443

Overall, a lack of adherence to underlying isolation and test-and-trace measures led to larger (al- 444

though shorter duration) outbreaks and worsened the relative performance of workplace interventions. 445

We obtained qualitatively similar relationships between adherence and the effectiveness of the other 446

workplace targeted interventions considered in this paper (Figs. S17-S19). 447
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(a) (b)

(c) (d)

Fig. 5: Case and isolation summary statistics under differing levels of adherence to NPIs. We
introduced NPIs from day 15 onwards, with varying levels of adherence. In all panels, outputs are summarised
from 1,000 simulations (with 20 runs per network, for 50 network realisations). The white markers denote
medians and solid black lines span the 25th to 75th percentiles. We give central and 95% prediction intervals
in Table S4. (a) Additional proportion of the population that were infectious post introduction of NPIs (day
15 onwards). (b) Peak in infectious case prevalence. (c) Total isolation-days. (d) Outbreak duration.
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(a) (b) (c)

(d) (e) (f)

Fig. 6: COVID-secure workplace measures and sensitivity of epidemiological quantities to adher-
ence. We introduced NPIs from day 15 onwards, alongside COVID-secure workplace measures. We compare
three scenarios of adherence to isolation and test-and-trace measures: 0% (lightest shaded violins); 70% adher-
ence (moderate shaded violins); 100% (darkest shaded violins). In panels (a-c) we fixed the work team size
at 5 and varied the relative scaling of transmission risk under COVID-secure conditions. In panels (d-f) we
fixed the relative scaling of transmission risk at 0.5 and varied the work team size. We summarise outputs from
1,000 simulations (with 20 runs per network, for 50 network realisations). The white markers denote medi-
ans and solid black lines span the 25th to 75th percentiles. The dashed horizontal line corresponds to where
estimates from simulations including COVID-secure measures match estimates from simulations that had no
active COVID-secure interventions. We present the following summary statistics: (a,d) additional proportion
of the population that were infectious post introduction of NPIs (day 15 onwards); (b,e) peak in infectious
case prevalence; (c,f) outbreak duration, where we note that some of the violin plots are flat topped, caused
by the outbreak duration in any single run being unable to exceed the simulated time horizon of 365 days.
We give central and 95% prediction intervals for each summary statistic distribution in Tables S7&S8. For the
distributions of absolute values for these scenarios, see Fig. S15 and Tables S7&S8.
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Discussion 448

In this study, we have developed a model to analyse the spread of SARS-CoV-2 in the working 449

population, considering the risk of spread in workplaces, households, social and other settings. We 450

have investigated the impact of working from home, asynchronous working patterns, and COVID- 451

secure measures upon disease spread and the time spent in isolation by the working population. 452

In the UK, an instruction to work from home where possible formed part of a collection of measures 453

that were effective in forcing the initial wave of SARS-CoV-2 infection into decline [35]. Our work sup- 454

ports this effect, finding that requiring a proportion of the population to work from home was effective 455

in reducing the final size of the outbreak and total isolation-days. Under our modelling assumptions 456

and default parameter values, we found a 60 - 70% decrease in the median estimates of infections, 457

peak infectious prevalence and total isolation-days with everyone working remotely compared to ev- 458

eryone attending the workplace Monday-Friday. However, flattening the epidemic curve in this way 459

would typically result in a prolonged outbreak duration compared to a scenario without workplace 460

targeted interventions. Furthermore, we demonstrated that a non-uniform proportion working from 461

home across different industry sectors can affect the efficacy of this intervention, even if the overall 462

proportion remains the same. In particular, if sectors with a greater number of dynamic contacts (e.g. 463

hospitality) are also less able to function with workers at home, this could hinder the effectiveness 464

of this intervention. Nonetheless, a sector-specific approach may be explored to determine optimal 465

combinations of work from home percentage across applicable sectors (where working from home is 466

possible), whilst maximising the overall proportion of workers able to attend the workplace. 467

Another approach to modify work-associated mixing patterns is to alter the scheduling of when workers 468

attend the workplace. We observed (under our default parameter set) up to 20% fewer infections and 469

up to a 40% lower infection peak when using an asynchronous work schedule rather than a synchronous 470

work schedule. These differences between worker pattern implementations were most pronounced when 471

fewer (but non-zero) days were spent at the workplace. We postulate similar outcomes for flexible start 472

and finish times that suit an employee’s needs. There are also indications that some businesses envisage 473

retaining flexible working habits longer-term [36], incorporating flexible work times and working from 474

home [37]. This may result in the percentage of the UK workforce reporting a flexible working pattern 475

increasing above a October-December 2019 estimate of 28.5% [38]. 476

It is clear that not all work sectors would be able to implement a work from home policy or allow 477

flexible, asynchronous work patterns. In April, during the first wave of infection in the UK, 46.6% 478

of respondents to a UK-based survey reported having done any work from home in the reference 479

week [39]. However, we have shown that the introduction of COVID-secure measures in the workplace 480

that reduce the number and transmission risk of contacts between workers can help to stem the spread 481

of the virus in the population. 482

The use of these workplace-targeted interventions should be carefully considered, and the effect and 483

fallout from each weighed against each other. Every decision has an impact on people’s lives and 484

livelihoods. In the event of enforced alterations to working practices, it is vital to consider harms to 485

businesses and to personal well-being and mental health, with those affected being fully supported. 486

We believe that a sector-specific combination of workplace-targeted policies could help to both slow 487

the spread of SARS-CoV-2 and reduce the negative impact to workers, as well as the people and 488

businesses that depend on them. 489

Prior modelling studies have indicated that nationally applied NPIs (such as social distancing, self- 490

isolation upon symptom onset and household quarantine) may reduce the spread of SARS-CoV-2 [40– 491

42]. Our analysis corroborates these findings, demonstrating that increased adherence to isolation 492

and test-and-trace measures can significantly reduce the size of an outbreak. However, conversely, 493
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lower adherence not only worsens the outbreak, but can also reduce the relative effectiveness of work- 494

place targeted interventions. The true adherence of the population, and how this could change over 495

time, should be carefully considered when interpreting these results and applying them in other con- 496

texts. 497

The success of contact tracing operations is not only dependent on engagement from the population, 498

but also on the rapid detection of cases and isolation of contacts (for simplicity we applied a consistent 499

two day turnaround time for this process, though there is observed non-uniformity and temporal 500

variation in these distributions [43]). Given the burden when tracing large numbers of contacts, there 501

is the potential the system could be overwhelmed when the incidence of new cases occurs at a rapid 502

rate [44]. Other operational considerations include the adoption of digital approaches to enable the 503

application of tracing at scale [45]. From the policy maker perspective there are, therefore, trade-offs 504

to consider between investing costs and care in designing sophisticated monitoring networks to enhance 505

rapid detection, or allocating finite resources to alternative interventions as part of the overall package 506

of infectious disease control measures. There would be merits in the use of a coupled transmission 507

model and health economic analysis to determine under what circumstances sophisticated contact 508

tracing systems would be most efficient. 509

Our evaluations using multiple simulations have incorporated network and epidemiological uncertainty. 510

That being said, there were network, epidemiological and intervention parameters that we assumed 511

fixed and did not vary. In our network contact parameters, we fixed the probability of making contact 512

with an individual in another workplace, compared to an individual within the same workplace, as 0.05 513

for all work sectors. Sector-specific values would lead to disparities in the amount of clustering between 514

sectors, with higher values increasing the likelihood of multiple workplaces in a sector having cases (less 515

clustering). Additionally, we did not explore uncertainty in the underlying degree distributions for the 516

contact networks. Our conjecture would be inclusion of such uncertainty would increase variability in 517

outcomes. The contact distributions were also informed from a single data source, and it is possible that 518

contact patterns may have changed in the intervening time since the contact survey was undertaken 519

(approximately 10 years). However, contact studies with the richness of data to parameterise work 520

sector contacts are infrequent, thus we have used the most recent data of the required quality available 521

to us. 522

Another item of prospective sensitivity analysis pertaining to network structure is having a repre- 523

sentative proportion of part time workers, though this requires additional assumptions on contact 524

patterns during non-workday weekdays and adds complexity to the network generation. Hence, we 525

have presented a pragmatic approach where we have sought broad insights from what we acknowl- 526

edge is a simplification of a complex real-world system. Using the analysis we performed around 527

worker patterns, we can postulate that replacing a proportion of the full-time working population 528

with asynchronous, part-time workers would result in a reduced outbreak size and severity. 529

As part of our epidemiological parameters, we assumed the absolute infectiousness of an asymptomatic 530

case to be less than a symptomatic case, but the duration of infectiousness to be equal. Recent data 531

suggests that while symptomatic and asymptomatic individuals have similar average peak viral loads 532

and proliferation stage durations, their average duration of clearance stages have been observed to 533

differ [46, 47]. Furthermore, our intervention parameters included a fixed delay in receiving a test result 534

of two days and (for most analyses) a 70% adherence assumption. Our findings may be sensitive to 535

alternative epidemiological model structures and intervention assumptions, with this being a direction 536

of further study. 537

Our data-driven approach to parameterise the work sector populations and contact structures high- 538

lights the heterogeneities that are present in the system. Our work has shown that changing workplace 539

interactions can make a difference to disease transmission and outbreak size, suggesting that relative 540
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effectiveness of these factors could contribute to regional variations in epidemiological outcomes. How- 541

ever, there are characteristics of the underlying contact structure that our model formulation does not 542

presently capture. We have not considered clustering of individuals within an individual workplace to 543

capture the fact that, for example, individuals who share an office will be exposed to higher risk. We 544

would expect this to have a stronger effect upon transmission within larger workplaces. In addition, 545

the risk of contracting COVID-19 at work, and the risk of developing serious or fatal COVID-19 should 546

infection occur, will also depend on personal vulnerability [48]. Strong determinants of individual risk 547

are the presence of comorbidities and age, which could be correlated with job type. 548

Furthermore, our system contained active workers only, with children and the elderly not present. The 549

susceptibility to infection and severity of clinical outcomes generally differs in the youngest and eldest 550

ages compared to those of adults. Within multi-generational households, the relative amount of contact 551

between each generation may differ. Our assumption of members of each household forming a fully 552

connected network could be too general in these circumstances, with an alternative parameterisation 553

required. The impact of age-specific interventions on contact structures also requires attention, such 554

as children switching from attending school in-person to online learning (or vice versa). Thus, the 555

incorporation of age and risk stratification in an expanded network model, and the consequential 556

impact of the disease dynamics amongst the population, merits further investigation. 557

Another aspect we have not included here is the presence of other respiratory infections. Such an 558

extension would permit the study of test capacity requirements when levels of cough and fever are 559

high due to non-COVID-19 causes. This is especially of concern during the winter period, with 560

expectations of the national test and trace system being put under extra strain [49]. 561

Lastly, while we have informed our model based on UK data, the model may be applied to other coun- 562

tries given the availability of the necessary data to parameterise the model. Modifying the framework 563

to other contexts that have contacts occurring across several reasonably well-defined settings (such as 564

school communities) we perceive as another viable extension. 565

Models of infectious disease transmission are one tool that can assess the impact of options seeking 566

to control a disease outbreak. Here, we have presented a network model to study epidemic spread 567

of SARS-CoV-2 amongst a population with layered contacts capturing multiple encounter settings, 568

including distinct work sectors. Our work demonstrates the potential uses of this choice of model 569

framework in generating a range of epidemiological measures, which may be analysed to assess the 570

impact of interventions targeting the workforce. 571
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