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ABSTRACT 

Documentation in scientific literature is not available on prospective evaluation of the efficiency of the 

unlock measure related to COVID-19 transmission change points in India, projecting the infected 

population, planning suitable measures related to future interventions and lifting of restrictions so that 

the economic settings are not damaged beyond repair. We have applied SIR model and Bayesian 

approach combined with Monte Carlo Markov algorithms on the Indian COVID-19 daily new infected 

cases from 1 August 2020 to 30 September 2020. We showed that the COVID-19 epidemic declined 

after implementing unlock-4 measure and the identified change-points were consistent with the 

timelines of announced unlock-3 and unlock-4 measure, on 1 August 2020 and 1 September 2020, 

respectively, effectiveness of which were quantified as the  change in both effective transmission rates 

(100% reduction) and the basic reproduction number attaining 1, implying measures taken to control 

and mitigate the COVID-19 epidemic in India managed to flatten and recede the epidemic curve. 

Key words: COVID-19, epidemiological parameters in India, unlock-3 and unlock-4, SIR model, 

Bayesian inference, Monte Carlo Markov sampling. 

1. Introduction 

To contain COVID-19 spread in India, strong phasic lockdowns were implemented leading to reduction 

of human contact to a maximum 55%, and 34% at the end of lockdown, followed by stratified unlock 

measures with gradual return to activities, controlling social contacts to 19% reduction, as on 30 

September, 2020 (IHME, 2020). India, currently is the world’s second-worst-hit country with nearly 

11.7 million COVID-19 infections including more than 98,000 deaths, as on 30 September 2020 

(COVID19India, 2020). Until COVID-19 is completely eradicated, and effective treatment or vaccine 

become available, non-pharmaceutical intervention policies are the key public health options to control 

the epidemics (Varghese et al., 2020). During the evolution of COVID-19, India implemented 

lockdowns in four phases from 24 March to 31 May 2020 as containment and mitigation measure, 

followed by unlocks in four phases from 1 June to 30 September 2020, featured by conditional 

relaxations of restrictions outside containment zones in graded manner, to minimise the negative 

economic and social consequences of strict lockdown measures (MOHWF, GoI, 2020). With the 

escalating case numbers and prolonged COVID-19 epidemic situation in India, the present study is an 

investigation to determine, if within the currently implemented non-pharmaceutical strategies, taking 

into account the simulated stochastic SIR model of transmission dynamics, is effective in curbing the 

spread of COVID-19. For this purpose, we made posterior inference on transmission rate 𝜆, recovery 

rate 𝜇, reproduction number 𝑅0, number of initially infected people 𝐼0, reporting delay 𝐷, width of 

liklihood 𝜎 between observed daily infected cases and its best fit estimates, effective transmission rate 

λ∗ = λ − μ, based on data-driven likelihood updates of prior settings. We determined also the change-

points in disease transmission and investigated the effectiveness of unlock-3 and unlock-4 measures, 
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with respect to their strength, timing and duration. We used an open source probabilistic programming 

in Python code PyMC3 with theano to compute gradients via automatic differentiation variational 

inference (ADVI), and followed model interpretation on German COVID-19 data (Dehning et al., 

2020), based on GitHub repository (Priesemann-Group, 2020), to analyse the recent COVID-19 

pandemic situation in India with emphasis on unlock-3 and unlock-4 measure. 

2. Methods 

2.1. Data sources 

The data on ongoing new daily and cumulative COVID-19 cases in India were retrieved from Johns 

Hopkins University Centre for Systems Science and Engineering dashboard, up to September 30, 2020 

(CSSE, 2020). The codes for this research article pertaining to the analysis of unlock-3 and unlock-4 

situation in India was run on Jupyter notebook using PymC3=3.8 and was based on GitHub repository 

(Priesemann-Group, 2020), by importing python-based data analysis toolkit (pandas); libraries for 

working with arrays (numpy), plotting (matplotlib), scientific and technical computing (scipy), and 

multi-dimensional arrays (theano); modules including Basic date and time types (datetime), System-

specific parameters and functions (sys), and Python object serialization (pickle); package for Bayesian 

statistical modeling and probabilistic machine learning with MCMC and ADVI algorithms (PymC3) 

(Kucukelbir et al., 2007). 

2.2. SIR model 

The SIR model was based on time-varying cumulative number of COVID-19 cases, where the total 

population size (𝑁) was categorized into three mutually exclusive infection levels, assuming that any 

infectious person (𝐼), is likely to contact any susceptible person (𝑆), and later recovered (𝑅), so that 

𝑁 =  𝑆 +  𝐼 +  𝑅. The dynamics of the pandemic in India was modelled using the following three 

differential equations: 

𝑆̇ = −
𝜆𝑆𝐼

𝑁
, 𝐼 ̇ =

𝜆𝑆𝐼

𝑁
− 𝜇𝐼, 𝑅̇ = 𝜇𝐼,                                                                                                        (1) 

where 𝜆 represents the transmission rate of the infected people to infect susceptible people and 𝜇 denotes 

the recovery rate of the infected people to recover (Kermack et al., 1927). This is solved by using a 

forward finite-difference scheme (Carcione et al., 2014): 

𝑆𝑛+1 = 𝑆𝑛 + 𝑑𝑡(−
𝜆𝑆𝑛𝐼𝑛

𝑁𝑛 ), 𝐼𝑛+1 = 𝐼𝑛 + 𝑑𝑡 (
𝜆𝑆𝑛𝐼𝑛

𝑁𝑛 − 𝜇𝐼𝑛) , 𝑅𝑛+1 = 𝑅𝑛 + 𝑑𝑡(𝜇𝐼𝑛),                       (2) 

where 𝑛 is a natural number which divides time 𝑡 in 𝑛 discrete 𝑑𝑡 time steps, 𝑡 = 𝑛𝑑𝑡. 

The fraction of maximum number of infected people, (𝐼𝑚𝑎𝑥) = 1 +
1

𝑅0
(𝑙𝑛

1

𝑅0
− 1), where 𝑅0 =

𝜆

𝜇
 and 

the fraction of people remaining susceptible to infection (𝑆𝑖𝑛𝑓) is related to 𝑅0 by: 𝑅0 =
𝑙𝑛𝑆𝑖𝑛𝑓

𝑆𝑖𝑛𝑓−1
. The 

overall infection attack rate (𝐼𝐴𝑅) defined as the fraction of the population that eventually becomes 

infected is related to 𝑅0 by: 𝑅0 = −
ln(1−𝐼𝐴𝑅)

𝐼𝐴𝑅
.                                                                                  (3) 

2.3. SEIR model 

The SEIR model is an extension of the SIR with an added exposure (𝐸) period due to the reported 

incubation period of COVID-19 during which individuals are not yet infectious (Hethcote, 2000).  The 

SEIR models the total population size (𝑁) divided into four mutually exclusive infection stages, 𝑁 =

 𝑆 +  𝐸 +  𝐼 +  𝑅, and is based on following differential equations:  

𝑆̇ = −
𝜆𝑆𝐼

𝑁
, 𝐸̇ =

𝜆𝑆𝐼

𝑁
− 𝜎𝐸, 𝐼̇ = 𝜎𝐸 − 𝜇𝐼, 𝑅̇ = 𝜇𝐼,                                                                               (4) 

where, σ is the rate at which individuals in incubation become infectious. The differential equation is 

solved as (Carcione et al., 2014): 

𝑆𝑛+1 = 𝑆𝑛 + 𝑑𝑡(−
𝜆𝑆𝑛𝐼𝑛

𝑁𝑛 ), 𝐸𝑛+1 = 𝐸𝑛 + 𝑑𝑡(
𝜆𝑆𝑛𝐼𝑛

𝑁𝑛 − 𝜎𝐸𝑛),  

𝐼𝑛+1 = 𝐼𝑛 + 𝑑𝑡(𝜎𝐸𝑛 − 𝜇𝐼𝑛), 𝑅𝑛+1 = 𝑅𝑛 + 𝑑𝑡(𝜇𝐼𝑛)                                                                               (5) 
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2.4. Model inclusions 

A reporting delay D, was incorporated in becoming infected (𝐼𝑛𝑒𝑤) and being reported, such that the 

daily reported cases 𝑅𝑡 at any time t was given by (Dehning et al., 2020), 𝑅𝑡 = 𝐼𝑡−𝐷
𝑛𝑒𝑤. To examine if 

there was any weekend effect on daily reported case numbers, a periodic sine function was assigned to 

the reporting fraction 𝑓(𝑡) expressed as,   

𝑅𝑡 = 𝐼𝑡−𝐷
𝑛𝑒𝑤(1 − 𝑓(𝑡)),                                                                                                                           (6) 

𝑓(𝑡) = (1 − 𝑓𝑤).(1 − |sin 
𝜋𝑡

7
− 0.5𝜙𝑤)|)                                                                                          (7) 

where 𝑓𝑤  and 𝜙𝑤  are the weekly modulation amplitude and phase respectively (Dehning et al., 2020).   

2.5. Bayesian Inference 

For a statistical model, 𝑝(𝑥|𝜃), that reflects our beliefs about 𝑥 given𝜃, with the prior distribution 

𝜋(𝜃),on an observed data 𝐷𝑛 = {𝑋1, … , 𝑋𝑛}, the posterior distribution is expressed as (Bayes, 1763; 

Box et al., 1992): 𝑝(𝜃, 𝑋1, … , 𝑋𝑛) =
𝑝(𝑋1,…,𝑋𝑛,𝜃)𝜋(𝜃)

𝑝(𝑋1,…,𝑋𝑛)
 

𝐿𝑛(𝜃)𝜋(𝜃)

𝑐𝑛
∝ 𝐿𝑛(𝜃)𝜋(𝜃)                                                                                                                         (8) 

where, 𝐿𝑛(𝜃) = ∏ 𝑝(𝑋𝑖 , 𝛩)𝑛
𝑖=1  is the likelihood function. 

The likelihood is a measure of the goodness of fit between model prediction and the observed data on 

reported case numbers, applied hereby using Student-t distribution. The evidence 

𝑐𝑛 = 𝑝(𝑋1, … , 𝑋𝑛) = ∫ 𝑝(𝑋1, … , 𝑋𝑛, 𝜃)𝜋(𝜃)𝑑𝜃 = ∫ 𝐿𝑛(𝜃)𝜋(𝜃)𝑑𝜃.                                                     (9) 

The Bayesian posterior interval estimate for 𝑎 and 𝑏, 𝛼 ∈ (0,1), 𝐶 = (𝑎, 𝑏), is given by, 

𝑃(𝜃 ∈ 𝐶|𝐷𝑛) = ∫ 𝑝(𝜃|𝐷𝑛)𝑑𝜃 = 1 − 𝛼
𝑏

𝑎
                                                                                         (10) 

The Bayesian predictive distribution is 

𝑝(𝑥, 𝐷𝑛) = ∫ 𝑝(𝑥, 𝜃)𝑝(𝜃|𝐷𝑛)𝑑𝜃                                                                                                        (11) 

The inferences about a function 𝜏 = 𝑔(𝜃), so that cumulative distribution function for 𝜏is 𝐻(𝑡, 𝐷𝑛) =

𝑃(𝑔(𝜃 ≤ 𝑡, 𝐷𝑛) 

=∫ 𝑝(𝜃|𝐷𝑛)𝑑𝜃
𝐴

                                                                                                                               (12) 

where 𝐴 = (𝜃: g(θ) ≤ t); the posterior density is 𝑝(𝜏, 𝐷𝑛) = 𝐻ˊ(𝜏, 𝐷𝑛). 

2.6. Priors 

The prior distribution settings for the model parameter estimation were made by incorporating 

LogNormal values of λ, μ, and D and half-Cauchy distribution for I0, and σ (Table 1 and 2). The priors 

on change points in transmission rate were based on announcements of applied intervention including 

unlock-3 on 1 August 2020 and unlock-4 on 1 September 2020. 

2.7. Markov Chain Monte Carlo (MCMC) sampling 

This method is essentially a Monte Carlo sampling with multiple Markov chains, used to approximate 

the posterior distribution of model parameters by including ADVI, 1000 tuning steps with NUTS (No 

U Turn Sampling) algorithm (Hoffman et al., 2014) for each of four chains, and R-hat diagnostics for 

equilibrated chain convergence of model parameters (Vehtari et al., 2019). A sequence of random 

variables{𝑋1, … , 𝑋𝑛}, on a discrete state apace is called a Markov chain if 

𝑝(𝑋𝑡 = 𝑥𝑡 , 𝑋𝑡−1 = 𝑥𝑡−1, … , 𝑋1 = 𝑥1) = 𝑝(𝑋𝑡 = 𝑥𝑡, 𝑋𝑡−1 = 𝑥𝑡−1)                                                 (13) 

We wanted to find a setting of a parameter 𝑥 ∈ 𝑅, such that the expectation ℎ(𝑥) ≡ 𝐸𝑡(𝐻𝑡, 𝑥) = 0, the 

updates were applied as (Hoffman et al., 2014): 

𝑥𝑡+1 ← 𝜇 −
√𝑡

𝛾

1

𝑡+𝑡0
∑ 𝐻𝑖

𝑡
𝑖=1 ;  𝑥̅𝑡+1 ← 𝜂𝑡𝑥𝑡+1 + (1 − 𝜂𝑡)𝑥𝑡 ,                                                             (14) 

where t is iteration, 𝜂𝑡is the step size schedule, 𝜇 is a freely chosen point that the iterates 𝑥𝑡 are shrunk 

towards, 𝛾 > 0 is a free parameter that controls the amount of shrinkage towards 𝜇, 𝑡0 ≥ 0 is a free 

parameter that stabilizes the initial iterations of the algorithm, 𝜂𝑡 ≡ 𝑡−𝜅 is a step size schedule satisfying 
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the conditions, ∑ 𝜂𝑡𝑡 = ∞; ∑ 𝜂𝑡
2 < ∞.𝑡  The step size parameter was set for NUTS using stochastic 

optimization with vanishing adaptation of the primal-dual algorithm. For each iteration we defined the 

statistic 𝐻𝑡
𝑁𝑈𝑇𝑆 and its expectation when the chain reached equilibrium as (Hoffman et al., 2014): 

𝐻𝑡
𝑁𝑈𝑇𝑆 ≡

1

|𝐵𝑡
𝑓𝑖𝑛𝑎𝑙

|
∑ 𝑚𝑖𝑛

𝜃,𝑟𝜖𝐵𝑡
𝑓𝑖𝑛𝑎𝑙 {1,

𝑝(𝜃,𝑟)

𝑝(𝜃𝑡−1,𝑟𝑡,0)
} ; ℎ𝑁𝑈𝑇𝑆 ≡ 𝐸𝑡[𝐻𝑡

𝑁𝑈𝑇𝑆];                                          (15) 

where 𝐵𝑡
𝑓𝑖𝑛𝑎𝑙

 is the set of all states explored during the final doubling of iteration 𝑡 of the Markov chain; 

𝜃𝑡−1, 𝑟𝑡,0 are the initial position and sampled momentum for the 𝑡𝑡ℎ iteration of the Markov chain; 

𝐻𝑁𝑈𝑇𝑆 is the average acceptance probability. We applied in the above updates equation: 

𝐻𝑡 ≡  𝛿 − 𝐻𝑁𝑈𝑇𝑆 and 𝑥 ≡ 𝑙𝑜𝑔𝜖 for the step size 𝜖 to combine ℎ𝑁𝑈𝑇𝑆 = 𝛿 for any 𝛿 ∈ (0,1). 

2.8. Model comparison 

For model fit and comparison using MCMC, following computations were made using 𝐿𝑂𝑂 (leave one 

out) package in PyMC3: the Bayesian 𝐿𝑂𝑂 estimate of the expected log pointwise predictive density 

(𝐸𝐿𝑃𝐷-𝐿𝑂𝑂) for a new point, standard error (𝑆𝐸) of 𝐸𝐿𝑃𝐷-𝐿𝑂𝑂, the difference between 𝐸𝐿𝑃𝐷-𝐿𝑂𝑂 

and the non-cross-validated log posterior predictive density (𝑝𝐿𝑂𝑂)interpreted as the effective number 

of parameters (Vehtari et al., 2017). Lower 𝐿𝑂𝑂 scores indicated better consistency between models. 

𝐿𝑂𝑂 scores with 𝑆𝐸 < 1 represented model compatibility while 𝐿𝑂𝑂 scores 𝑆𝐸 > 1 indicated 

mismatch between the models. 

For data 𝐷𝑛 = (𝑋1, … , 𝑋𝑛), 𝐸𝐿𝑃𝐷 ∑ ∫ 𝑝𝑡(~𝑋𝑖)𝑙𝑜𝑔𝑝(~𝑋𝑖|𝑋)𝑑~𝑋𝑖
𝑛
𝑖=1 , where 𝑝𝑡(~𝑋𝑖)is the distribution 

of the true data generating process for ~𝑋𝑖, which is approximated by cross-validation with 𝐿𝑃𝐷 =

∑ 𝑙𝑜𝑔𝑝(𝑋𝑖|𝑋)𝑛
𝑖=1 = ∑ 𝑙𝑜𝑔∫ 𝑝(𝑋𝑖|𝜃)𝑝(𝜃|𝑋𝑖)𝑑𝜃𝑛

𝑖=1                                                                   (16) 

The 𝐿𝑃𝐷 computed with 𝑆 draws from a posterior distribution= 𝐿𝑃𝐷̂ = computed log pointwise 

predictive density = ∑ 𝑙𝑜𝑔 (
1

𝑆
𝑛
𝑖=1 ∑ 𝑝(𝑋𝑖|𝜃𝑠)𝑆

𝑠=1                                                                                 (17) 

The 𝐸𝐿𝑃𝐷-𝐿𝑂𝑂, calculated by cross-validation by running the model 𝑛 times is 

∑ 𝑙𝑜𝑔𝑝(𝑋𝑖 , 𝑋−𝑖)𝑑𝜃,𝑛
𝑖=1  where  𝑝(𝑋𝑖 , 𝑋−𝑖) = ∫ 𝑝(𝑋𝑖 , 𝜃)𝑝(𝜃, 𝑋𝑖)𝑑𝜃.                                                     (18) 

3. Results and Discussion 

The median posterior distribution of COVID-19 epidemiological parameters using SIR model (from 

Eqs. 1 and 2) combined with Bayesian inference (generated by Eqs. from 8 to 15) during unlock-3 were 

𝜆 =  0.15 (0.11 − 0.22), 𝜇 =  0.14 (0.10 − 0.21), 𝑅0 = 1.07 (1.05 − 1.10), 𝐼0  =

 327139 (220028 − 450505), 𝐷 =  8 days (5.5 − 11.8), 𝜎 =  18.7 (13.4 − 26.1), λ∗ = 1(1 − 2), 

the values in bracket indicate 95% confidence-intervals 𝐶𝐼𝑠 (Fig. 1), according to Eqs. from 16 to 18,   

𝐸𝐿𝑃𝐷-𝐿𝑂𝑂 =  −305.07, 𝑝𝐿𝑂𝑂 =  3.04, computed from 2000 by 30 log-likelihood matrix (Table 3). 

The corresponding values during unlock-4 were 𝜆 =  0.15 (0.10 − 0.20), 𝜇 =  0.15 (0.10 −

0.20), 𝑅0 = 1.00, 𝐼0  =  642500 (455336 − 922684), 𝐷 =  8.0 days (5.4 − 11.9), 𝜎 =

 19.1 (13.5 − 26.8), λ∗ = (−1 − 0) (Fig. 2), 𝐸𝐿𝑃𝐷-𝐿𝑂𝑂 = −299.14, 𝑝𝐿𝑂𝑂 =  2.74, computed from 

2000 by 29 log-likelihood matrix (Table 3). The median estimates of 𝑅0 decreased from 1.07 in the 

unlock-3 period to 1.00 in the unlock-4 period, with SIR model, indicating slowing down of the spread 

of the disease. The 𝑅0 was reported as 1.14 at the end of August 2020, and 1.12 in the mid of September 

2020 in India, with stationary-time-series auto regressive integrated moving average model (Yadav et 

al., 2020). The mathematical models help to determine the effect of preventive policies against COVID-

19, primarily by maintaining the reproduction number 𝑅0 <  1 to inhibit further spread of infection, 

whereas 𝑅0 > 1 indicate continuation of the epidemics, which fade away when the transmissibility is 

reduced by (1 − 
1

𝑅0
) (Ferguson et al.,  2020; Mandal et al., 2020; Pan et al., 2020). 

The median daily COVID-19 infected cases in India at the end of unlock-3 reached ≈ 80,000, that 

increased about 1.09 times, to ≈  87,500 at the end of unlock-4 (Figs. 1A and 2A), while the  median 

cumulative infected cases increased 1.8 fold to 6.3 million at the end of unlock-4 from 3.5 million at 
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the end of unlock-3 (Figs. 1B and 2B). The difference in daily infected cases showed approximately 

1.125 fold change to 5,625 during unlock-4 on 30 September, 2020, from 5000 during unlock-3 on 31 

August, 2020 (Figs. 1C and 2C). The COVID-19 daily cases increased during unlock-3 but decreased 

during unlock-4, though with a higher end point (Figs. 1A and 2A). The real-time daily and cumulative 

cases were consistent with SIR-model displaying linear-semi-logarithmic variation. A decreasing first 

order differences of the logarithm of the cumulative cases over time indicated exponential growth as 

found for India, whereas a constant trend indicated logarithmic growth of the epidemic curve as seen in 

the US, for the period from 17 September 2020 to 1 October 2020 (Baruah, 2020). 

The priors and posteriors exhibited different 𝜆, 𝐼0, and 𝜎 (Figs. 1D, 1F, 1H, 2D, 2F, and 2H) implicating 

informative feature of the observed data; and matched 𝜇 and 𝐷, indicating dependency of the observed 

data on prior informatives (Figs. 1E, 1G, 2E, and 2G), in unlock-3 and unlock-4 exhibiting exponential 

transmission rates. The λ∗ became zero in unlock-4, from 10% in unlock-3 (Figs. 1I and 2I), indicating 

post unlock-4 effect through inhibition of new infections. The 𝜎, a measure of goodness of fit between 

𝜆 and 𝜇, showed equipotential line for the maximum liklihood (Figs. 1J and 2J), implicating λ∗ as an 

important and independent regulator of COVID-19 transmission dynamics.   

Both daily and cumulative infected cases remain unaltered until the duration of 𝐷 and change-point 

were over, beyond which both continued to rise, build on the hypothesis that ongoing unlock phase and 

its post-effect prevailed, but continuation of pre-unlock situation caused decline in both, the effect being 

more significant in the daily cases (Fig. 3A and 3D). The daily as well as cumulative case numbers 

showed rising trend in post unlock-3 scenario (Fig. 3A), however, the onset timings of intervention had 

no effect on case numbers (Fig. 3B). With declining new cases and rising cumulative cases (Fig. 3D), 

during unlock-4, advancing or delaying change-point onset by five days showed insignificant difference 

in cumulative cases (Fig. 3E). The cumulative cases remained unchanged with the change in transient 

duration of intervention, the new cases showed similar variation as 𝜆 (Fig. 3C and 3F). 

The SIR-model parameters with two identified change-points without weekend effect showed that the 

first change-point matched with the timelines of publicly announced strategies around 1 August 2020, 

when unlock-3 began, coinciding with continued closure of educational institutions and banned social 

gatherings, permission of interstate transport, besides release of night curfews. This change-point 

featured λ1 = 0.17 (0.12 − 0.21) that unfolded over 2.9 days (1.6 − 5.4) (Fig. 4F). The second change-

point was detected around 1 September 2020, which coincided with the announcement of unlock-4, 

featured by lockdown measures remaining in force in containment zones, some activities permitted 

outside containment zones with reopening of metro-rail in graded manner, small gatherings permitted, 

continued compulsion of face-masking in public. The second change point had λ2 =  0.15 (0.10 −

0.19) that unfolded over 3.3 days (1.7 − 6.7) (Fig. 4F). With λ0 =  0.16, 𝜎 =  15.6, 𝐷 =

 9.6 days, 𝜇 =  0.15, the change-points were quantified as λ1
∗= λ1-𝜇 =  0.02, 𝑅0 = 1.13 during unlock-

3 and λ2
∗ = λ2-𝜇 = 0, 𝑅0 = 1 during unlock-4, implying effectiveness of unlock-4 measure bringing 

100% reduction of 𝜆* and decline of the COVID-19 epidemic (Fig. 4). Thus the effectiveness of an 

intervention modelled as Bayesian change points could help us interpret the impact of different control 

measures and to include them into forecasts. Previously, Bayesian inference of COVID-19 change 

points correlating with social distancing restrictions were applied using the example of Germany 

(Dehning et al., 2020). Similar model was used to detect and assess latent events associated with 

spreading rates in South Africa (Mbuvha et al., 2020) and the US (Jiang et al., 2020). 

Compared to the two-change-point model without weekend-correction (𝐸𝐿𝑃𝐷-𝐿𝑂𝑂 =

 −687.67, 𝑆𝐸 =  8.00, 𝑝𝐿𝑂𝑂 =  6.71, computed from 2000 by 68 log-likelihood matrix) (Table 3), 

the 𝐸𝐿𝑃𝐷-𝐿𝑂𝑂 for the SIR-model, also computed from 2000 by 68 log-likelihood matrix, with two 

change-points and weekend-modulation was higher by 30.76 (𝐸𝐿𝑃𝐷-𝐿𝑂𝑂 = −656.91, 𝑆𝐸 =

6.82, 𝑝𝐿𝑂𝑂 = 7.43) (Table 3), [𝜆0 = 0.16, 𝜆1 = 0.17, 𝜆2 = 0.15, 𝜇 = 0.15, 𝜎 = 10.2, 𝐷 =

12.8days, 𝜆1
* = 𝜆1 − 𝜇 = 0.02, 𝜆2

* = 𝜆2 − 𝜇 = 0, 𝑓𝑤 = 0.8, 𝜙𝑤 = 2.7] (Fig. 5). Sampling were run for 

4 chains with 1000 tunes and 500 draw iterations so that a total of 6000 draws occurred. Thus, in our 
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study the lower 𝐿𝑂𝑂 in the former, differing by 1.18𝑆𝐸, indicated higher consistency of the two-

change-points SIR model with data excluding the weekend-factor that implied homogenous reporting 

of daily new cases through the entire week irrespective of weekend effect. However, higher number of 

COVID-19 daily new cases were reported during weekdays compared to weekends in Germany, 

substantiated by lower 𝐿𝑂𝑂 score in weekend-effect model compared to that without weekend-effect 

model (Dehning et al., 2020). 

Application of SEIR model based on Eqs. 4 and 5 with two-change-points and weekend-modulation as 

per Eqs. 6 and 7 (𝑓𝑤 = 0.8, 𝜙𝑤 = 2.7), exhibited greater negativity of the effective transmission rate 

with unlock-4 compared to unlock-3 measure (λ1
∗ = 𝜆1 − 𝜇 = −0.03, λ2

∗ = 𝜆2 − 𝜇 = −0.07) (Fig. 6), 

and higher transmission and recovery rates (𝜆0 =  0.36, 𝜆1 =  0.30, 𝜆2 =  0.26, 𝜇 =  0.33) (Fig. 6) 

compared to the SIR model (Fig. 5). Cross-validation showed the 𝐸𝐿𝑃𝐷-𝐿𝑂𝑂 for the SEIR-model 

(−650.94, 𝑆𝐸 = 7.16, 𝑝𝐿𝑂𝑂 = 13.66, computed from 2000 by 68 log-likelihood matrix) slightly 

greater (by 5.97) than that of the corresponding SIR-model (Fig. 5), with 1𝑆𝐸(0.34) higher variation 

(Table 3), indicating considerably greater evidence for SIR model with respect to SEIR in explaining 

current COVID-19 data in Indian context. Similarly, SIR model displayed superior goodness of fit to 

the SEIR on South African data whereas SEIR produced a slightly better 𝐿𝑂𝑂 score than the SIR main 

model on German data (Dehning et al., 2020; Mbuvha et al., 2020). 

Estimating the effect of change-points is vital for priors settings that help to anticipate the effects of any 

impending change points and accordingly make future projections. The SIR-model with one change 

point (Fig. 7) centred around the implementation of unlock-3 on 1 August 2020 showed superior 

goodness of fit with the COVID-19 observed data in India compared to the model with two change-

points announcement of unlock-3 and unlock-4 on 1 August 2020 and 1 September 2020 respectively 

(Fig. 5); both models examined over the period from 25 July 2020 to 30 September 2020, with weekend-

modulation. This was evident from the lower (by 43.14) 𝐸𝐿𝑃𝐷-𝐿𝑂𝑂 score with one change point 

(−700.05, 𝑆𝐸 = 6.14, 𝑝𝐿𝑂𝑂 =  6.24) (Table 3), (𝜆0 =  0.17,  and 𝜆1 =  0.16, 𝜇 =  0.15, 𝜎 =

17.6, 𝑓𝑤 =  0.8, 𝜙𝑤 = 2.6, 𝐷 =  8.7 days, λ1
∗ = 𝜆1 − 𝜇 = 0.01) (Fig. 7) that fitted the observed data 

better compared to that with two change-points (Fig. 5) with < 1 𝑆𝐸 (= 0.68) lower difference (Table 

3). This was also clear from the simulation effect of hypothetical inventions on future COVID-19 cases 

in India, which showed that continuation of pre-unlock situation would have caused further decrease in 

both daily new and cumulative infected cases (Fig. 3A and 3D), implying that extension of stricter 

social-distancing measures would have been advantageous in reducing cases. Association of COVID-

19 transmission in India in the context of containment measures demonstrated lower 𝐸𝐿𝑃𝐷-𝐿𝑂𝑂 =

 −305.39 (𝑆𝐸 =  4.58, 𝑝𝐿𝑂𝑂 =  3.45) for unlock-3, computed from 2000 by 30 log-likelihood 

matrix, and for the unlock-4 computed from 2000 by 29 log-likelihood matrix as -299.04 (𝑆𝐸 =

 4.08, 𝑝𝐿𝑂𝑂 =  2.75) (Table 3), using Eqs. 16 to 18. SIR models with three change-points described 

the data better than fewer change points on German data and SIR model with two change points was 

the best fit on South African data, as exhibited by the 𝐿𝑂𝑂 cross-validation and all change points 

coinciding with respective government interventions (Dehning et al., 2020; Mbuvha et al., 2020). 

Surveillance of COVID-19 pandemic involved a reporting delay factor (range: 7 − 13 days) that was 

composed of testing delay between the incubation period of the virus (time period for the symptoms to 

develop following infection with the virus, with median estimates of 5 − 6 days) and the testing date 

(1 − 3 days); an additional delay occured between the testing date and results date (1 − 4 days) (Lauer 

et al., 2020). The D extrapolated from SIR-model with two change-points (12.8 days) (Fig. 5F) versus 

one change point (8.7 days) with weekend modulation (Fig. 7F), SIR model with two change points 

without weekend modulation (10.2days) (Fig. 5F), SEIR model with two change points with weekend 

modulation (reporting plus incubation delay 10.9 days) (Fig. 6F), indicate consistency with the above 

mentioned summated delay factor; the inherent difference within the obtained values might be due to 

the experimental conditions and model types adopted. The median change duration in all such situations 

were estimated to be around 3 days that were necessary to enact interventions, in the form of continuing 
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and lifting of restrictions based on containment areas. Thus, the reporting delay combined with the 

change duration ranged from 11 to 16 days, which represented the time gap required to identify any 

change points in infected case numbers that in conjunction with the effective COVID-19 transmission 

rate, help to determine pertinent containment measures. The India COVID-19 daily infected case 

numbers using SIR and SEIR models were estimated to be around 75,000 and 72,000 respectively; the 

cumulative infected case numbers using both models were estimated at 8000,000 as of October 18, 

2020 (for the period from 25 July 2020 to 30 September 2020); the effective transmission rate stabilized 

at less than zero, 𝑅0  = 1 and 0.79 using SIR and SEIR models respectively (Figs. 5 and 6). 

4. Conclusion 

Overall, the SIR model, including weekend-modulation and one-change point, with continuation of 

intervention similar to the unlock 3 situation was favoured over other models. However, the finding 

from the SIR model including weekend-modulation and two-change points that, 𝜇 was 0.15, 𝜆* was 

10% and ‘zero’ during unlock-3 and unlock-4 respectively, implied unlock-4 measure brought 100% 

reduction of 𝜆*, beginning around 5 September, 2020 (Fig. 5A-G), indicating new recoveries exceeding 

the new infections. Therefore, the epidemic curve is expected to decline to the baseline level, when the 

effective transmission rate becomes remarkably negative leading to sustained dwindling of new 

infections, provided no re-infection occurs and non-pharmaceutical interventions such as voluntary 

face-masking, physical-distancing, in addition to government measures including graded lockdown 

intervention in containment zones are maintained. 

Author’s contribution: Manisha Mandal and Shyamapada Mandal jointly designed the study, analysed 

and interpreted the data, discussed and wrote the manuscript. 

Funding Source: Nil 

Declaration of competing interests: There is no conflict of interest by the authors. 

References 

1. Baruah, H.K., 2020. A Numerical Study of the Current COVID-19 Spread Patterns in India, the 

USA and the World. MedRxiv Preprint. Available at. 

https://doi.org/10.1101/2020.10.05.20206839. 

2. Bayes, T., 1763.  Bayesian inference of phylogeny. Phil. Trans. Roy. Soc. 330. 

3. Box, G.E.P., Tiao, G.C., 1992. Bayesian inference in statistical analysis. Wiley-Interscience, 

USA, 1-608. 

4. Carcione, J. M., 2014. In wave Fields in Real Media: Theory and numerical simulation of wave 

propagation in anisotropic, anelastic, porous and electromagnetic media (3rd edn) Elsevier 

Science, Amsterdam, 38, 1-690 

5. CSSE (Center for Systems Science and Engineering), 2020. COVID-19 Dashboard. Johns 

Hopkins University. Available at. 

https://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd402994234

67b48e9ecf6. 

6. COVID19India, 2020. Available at. https://www.covid19india.org/ 

7. Dehning, J., Zierenberg, J., Spitzner, F.P., Wibral, M., Neto, J.P., Wilczek, M., Priesemann, V., 

2020. Inferring change points in the spread of COVID-19 reveals the effectiveness of 

interventions. Science. 369, 161-171. 

8. Ferguson, N., Laydon, D., Nedjati-Gilani, G., Imai, N., Ainslie, K., Baguelin, M., Bhatia, S., …, 

2020. Report 9: Impact of non-pharmaceutical interventions (NPIS) to reduce COVID-19 

mortality and healthcare demand. Imperial College London, https://doi.org/10.25561/77482. 

9. Hethcote, H.W., 2000. The mathematics of infectious diseases. SIAM Rev. 42, 599-653. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 18, 2020. ; https://doi.org/10.1101/2020.11.17.20233221doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.05.20206839
https://www.covid19india.org/
https://www.ncbi.nlm.nih.gov/pubmed/?term=Zierenberg%20J%5BAuthor%5D&cauthor=true&cauthor_uid=32414780
https://www.ncbi.nlm.nih.gov/pubmed/?term=Spitzner%20FP%5BAuthor%5D&cauthor=true&cauthor_uid=32414780
https://www.ncbi.nlm.nih.gov/pubmed/?term=Wibral%20M%5BAuthor%5D&cauthor=true&cauthor_uid=32414780
https://www.ncbi.nlm.nih.gov/pubmed/?term=Neto%20JP%5BAuthor%5D&cauthor=true&cauthor_uid=32414780
https://www.ncbi.nlm.nih.gov/pubmed/?term=Wilczek%20M%5BAuthor%5D&cauthor=true&cauthor_uid=32414780
https://www.ncbi.nlm.nih.gov/pubmed/?term=Priesemann%20V%5BAuthor%5D&cauthor=true&cauthor_uid=32414780
https://doi.org/10.25561/77482
https://doi.org/10.1101/2020.11.17.20233221
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

10. Hoffman, M.D., Gelman, A., 2014. The No-U-Turn sampler: Adaptively setting path lengths in 

Hamiltonian Monte Carlo. J. Machine Learning Res. 30, 1351-1381. 

11. Institute for Health Metrics and Evaluation (IHME), 2020. COVID-19 mortality, infection, 

testing, hospital resource use, and social distancing projections. University of Washington, 

USA. 

12. Jiang, S., Zhou, Q., Zhan, X., Li, Q., 2020. BayesSMILES: Bayesian segmentation modeling 

for longitudinal epidemiological studies. MedRxiv Preprint. Available at. 

https://doi.org/10.1101/2020.10.06.20208132. 

13. Kermack, W.O., McKendrick, A.G., 1927. A contribution to the mathematical theory of 

epidemics. Proc. R. Soc. Lond. 115(172), 700-721. 

14. Kucukelbir, A., Tran, D., Ranganath, R., Gelman, A., Blei, D.M., 2017. Automatic 

differentiation variational inference. J. Mach. Learn. Res. 18, 1-45. 

15. Lauer, S.A., Grantz, K.H., Bi, Q., Jones, F.K., Zheng, Q., Meredith, H.R., Azman, A.S., …, 

2020. The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported 

confirmed cases: Estimation and application. Ann. Intern. Med. 172, 577-582. 

16. Mandal, M., Mandal, S.,   2020. COVID-19 pandemic scenario in India compared to China and 

rest of the world: a data driven and model analysis. MedRxiv Preprint. Available at.  

https://doi.org/10.1101/2020.04.20.20072744. 

17. Mbuvha, R., Marwala, T., 2020. Bayesian inference of COVID-19 spreading rates in South 

Africa. PLoS ONE. 15(8): e0237126. https://doi.org/10.1371/journal.pone.0237126. 

18. Ministry of Health and Family Welfare. Government of India, 2020. Available at.  

https://www.mohfw.gov.in/ 

19. Pan, A., Liu, L., Wang, C., Guo, H., Hao, X., Wang, Q., Huang, J., …, 2020. Association of 

public health interventions with the epidemiology of the COVID-19 outbreak in Wuhan, China. 

JAMA 323(19), 1889-1890. 

20. Priesemann-Group, 2020. Available at.  https://github.com/Priesemann-

Group/covid19_inference_forecast. 

21. Varghese, G.M., John, R., 2020. COVID-19 in India: Moving from containment to mitigation. 

Indian J. Med. Res. 151(2), 136-139. 

22. Vehtari, A., Gelman, A., Gabry, J., 2017. Practical Bayesian model evaluation using leave-one-

out cross-validation and WAIC. Statistics Computing. 27(5), 1413-1432. 

23. Vehtari, A., Gelman, A., Simpson, D., Carpenter, B., B¨urkner, P-C., 2020. Rank-normalization, 

folding, and localization: An improved R-hat for assessing convergence of MCMC. Bayesian 

Analysis. Available at.  https://doi.org/10.1214/20-BA1221. 

24. Yadav, S., Yadav, P.K., 2020. The peak of COVID-19 in India. MedRxiv Preprint. Available at. 

https://doi.org/10.1101/2020.09.17.20197087.  

 

 

 

 

 

 

 

 

 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 18, 2020. ; https://doi.org/10.1101/2020.11.17.20233221doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.06.20208132
https://doi.org/10.1371/journal.pone.0237126
https://www.mohfw.gov.in/
https://github.com/Priesemann-Group/covid19_inference_forecast
https://github.com/Priesemann-Group/covid19_inference_forecast
https://github.com/Priesemann-Group/covid19_inference_forecast
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7366532/
https://doi.org/10.1214/20-BA1221
https://doi.org/10.1101/2020.11.17.20233221
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Table 1. Prior distribution settings for India unlock-3 and unlock-4 SIR model parameters with 

fixed transmission rate 

 

Parameter Variable Prior distribution 

Transmission rate 𝜆 𝐿𝑜𝑔𝑁𝑜𝑟𝑚𝑎𝑙[𝑙𝑜𝑔(0.4), 0.5] 

Recovery rate 𝜇 𝐿𝑜𝑔𝑁𝑜𝑟𝑚𝑎𝑙[𝑙𝑜𝑔(0.125), 0.2] 

Reporting delay 𝐷 𝐿𝑜𝑔𝑁𝑜𝑟𝑚𝑎𝑙[𝑙𝑜𝑔(8);  0.2] 

Initially infected 𝐼0 𝐻𝑎𝑙𝑓𝐶𝑎𝑢𝑐ℎ𝑦(100) 

Scale factor 𝜎 𝐻𝑎𝑙𝑓𝐶𝑎𝑢𝑐ℎ𝑦(10) 

 

 

 

Table 2. Prior distribution settings for SIR model parameters with changing transmission rates 

and weekend reporting factor 

Parameter Variable            Prior distribution 

Change points        𝑡1  01 𝐴𝑢𝑔𝑢𝑠𝑡 2020 

 𝑡2 01 𝑆𝑒𝑝𝑡𝑒𝑚𝑏𝑒𝑟 2020 

Change duration          ∆𝑡𝑖 𝐿𝑜𝑔𝑁𝑜𝑟𝑚𝑎𝑙[𝑙𝑜𝑔(3), 0.3] 

Spreading rate            λ0      𝐿𝑜𝑔𝑁𝑜𝑟𝑚𝑎𝑙[𝑙𝑜𝑔(0.4), 0.5] 

       λ1 𝐿𝑜𝑔𝑁𝑜𝑟𝑚𝑎𝑙[𝑙𝑜𝑔(0.16), 0.5] 

       λ2 𝐿𝑜𝑔𝑁𝑜𝑟𝑚𝑎𝑙[𝑙𝑜𝑔(0.15), 0.5] 

Recovery rate 𝜇 𝐿𝑜𝑔𝑁𝑜𝑟𝑚𝑎𝑙[𝑙𝑜𝑔(0.125), 0.2] 

Reporting delay 𝐷 𝐿𝑜𝑔𝑁𝑜𝑟𝑚𝑎𝑙[𝑙𝑜𝑔(8), 0.2] 

Initially infected        I0 𝐻𝑎𝑙𝑓𝐶𝑎𝑢𝑐ℎ𝑦(100) 

Scale factor 𝜎 𝐻𝑎𝑙𝑓𝐶𝑎𝑢𝑐ℎ𝑦(10) 

Weekly modulation amplitude        f𝑤 𝛽(𝑚𝑒𝑎𝑛 =  0.7, 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 =  0.17) 

Weekly modulation phase        ϕ𝑤 𝑉𝑜𝑛𝑀𝑖𝑠𝑒𝑠(𝑚𝑒𝑎𝑛 =  0, 𝑘 =  0.01) 

 

 

Table 3. Bayesian LOO estimate of the ELPD for model comparison 

Model ELPD- 

LOO 

p-LOO StandardE

rror 

n log-liklihood 

matrix 

SIR during unlock-3 -305.07 3.04 4.39 30 

SIR during unlock-4 -299.14 2.70 3.90 29 

SIR during unlock-3 and intervention evaluation -305.39 3.45 4.58 30 

SIR during unlock-4 and intervention evaluation -299.04 2.75 4.08 29 

SIR with 2 change points and without weekend factor -687.67 6.71 8.00 68 

SIR with 2 change points and with  weekend factor -656.91 7.43 6.82 68 

SEIR with 2 change points and with  weekend factor -650.94 13.66 7.16 68 

SIR with 1 change point and with  weekend factor -700.05 6.24 6.14 68 
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Figure legends: 

Fig. 1. Bayesian inference of India SIR COVID-19 epidemic model parameters during unlock-3 

from 1 to 31 August 2020.  

Exponential growth of (A) daily infected cases 𝑦 = 53694.96𝑒0.01050x and (B) cumulative infected 

cases 𝑦 = 1702723.32𝑒0.025xwith decreasing variation in rate of change of the logarithmic cumulative 

case, average 0.0108 (0.0104 − 0.0116); (C) difference in daily infected cases between fit and data; 

priors (red) based posterior (cyan) inference of (D) transmission rate 𝜆, (E) recovery rate 𝜇, (F) number 

of initially infected people 𝐼0, (G) reporting delay 𝐷, (H) scale factor of liklihood 𝜎 between observed 

daily infected cases (blue) and its median fit with 95% 𝐶𝐼 (orange), (I) effective transmission rate 𝜆∗ =

 𝜆 − 𝜇; (J) log-likelihood combination of transmission and recovery rates with maximum value (black 

line) and data non-convergence (white rectangle). Serial interval (𝑆𝐼) across India during unlock-3 was 

27.43 days (26.06 − 29.25); recovery rate (𝑅𝑅) 71.9 % (76.35 − 79.16); fatality rate 

(𝐹𝑅) 1.93% (1.91 − 1.97); reproduction number 𝑅01.07; 𝐼𝐴𝑅 14.2% people per million population, 

𝐼𝑚𝑎𝑥 = 0.00218 during unlock-3, and 𝑆𝑖𝑛𝑓 = 0.9345 after unlock-3, computed from Eqn. 3. 

Fig. 2. Bayesian inference of India SIR COVID-19 epidemic model parameters during unlock-4 

from 1 to 30 September 2020.  

Implementation of unlock-4 measure was consistent with exponential (A) decay of daily infected cases 

𝑦 =  87133.43𝑒−0.00049x and (B) growth of cumulative infected cases 𝑦 = 3700990.43𝑒0.018x with 

diminished rate and continued dwindling in rate of change of the logarithmic cumulative case, average 

0.0080 (0.0075 − 0.0084); (C) difference in daily infected cases between fit and data, with declining 

width of liklihood; priors based posterior inference of (D) 𝜆, (E) 𝜇, (F) 𝐼0, (G) 𝐷, (H) 𝜎, (I) 𝜆∗; (J) log-

likelihood between 𝜆 and 𝜇. Compared to unlock-3, unlock-4 strategies featured higher 𝑆𝐼 37.35 days 

(36.43 − 42.21), enhanced 𝑅𝑅 79.23 % (78.44 − 80.01), reduced 𝐹𝑅 1.64% (1.62 − 1.67), 

decreased 𝑅0 1.00, increased 𝐼𝐴𝑅 at 18.6%, 𝐼𝑚𝑎𝑥decreased to zero during unlock-4; 𝑆𝑖𝑛𝑓 increased to 

1.075 after unlock-4. 

Fig. 3. Effect of strength, timing and duration of unlock-3 and unlock-4 measures on infected case 

numbers.  

Each unlock measure featured re-opening of activities outside Containment Zones in phased manner 

and strict lockdown in containment zones only. Specifically unlock-3 removed night curfews, reopened 

recreational centres like gymnasiums and yoga centres. Unlock4 reopened metro rail in graded manner, 

and permitted limited gatherings. Under the extended relaxations, social distancing were hypothesized 

to be ~ 0.9 factor stronger and ~0.9 factor milder respectively, as a pre- and post-effect of unlock 

measure. (A) With respect to the strength of unlock-3, the transmission rate remained nearly the same 

but the daily and cumulative infected cases increased. Perpetuation of pre-unlock scenario would have 

caused decline in all. (B) Delaying the onset timings of unlock-3 measure showed insignificant change 

in cumulative case numbers: unlock-3 starting on 1 August 2020 (green), 5 days later (magenta), or 5 

days earlier (gray). (C)  The cumulative cases remained unchanged with change in transient [immediate 

(brown), intermediate (green), long (cyan)] duration of unlock-3, the new cases showed similar 

variation as λ. (D), (E), (F) same effect as (A), (B), (C) but with declining daily infected cases in unlock-

4 starting 1 September 2020. 
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Fig. 4. Identification and quantification of change points in COVID-19 transmission rate of India 

during unlock-3 and unlock-4 phase using SIR model without weekend effect.  

Time-series SIR model fit estimates of the (A) effective transmission rate 𝜆∗(𝑡), (B) daily infected cases 

compared to the observed data, and (C) cumulative infected cases compared to the observed data. Inset 

shows semi-log plots. Underreporting factor on 18 October 2020, for daily and cumulative infected 

cases were and respectively, using SIR model. (D-G) Priors and posterior distribution of model 

parameters, values are expressed in median and 95% 𝐶𝐼𝑠 of the posteriors. The SIR exhibited 5.97 

lower LOO score than SEIR, both models with 2 change points and a weekend factor. Thus SIR model 

represented better consistency with observed data compared to SEIR model. 

Fig. 5. Identification and quantification of change points in COVID-19 transmission rate of India 

during unlock-3 and unlock-4 phase using SEIR model with weekend effect.  

Time-series SIR model fit estimates of the (A) 𝜆*(𝑡), (B) daily infected cases compared to the observed 

data, and (C) cumulative infected cases compared to the observed data. Inset shows semi-log plots. 

Underreporting factor on 18 October 2020, for daily infected cases were higher  using SEIR model 

compared to SIR model whereas the underreporting factor for cumulative  infected cases were same  as 

SIR model. (D-G) Priors and posterior distribution of model parameters, values are expressed in median 

and 95% CIs of the posteriors. The SEIR model featured an additional incubation period 𝐷𝑖𝑛𝑐 with prior 

lognormal (5, 1) scale parameter 0.418, and an initial exposed function 𝐸0 ~HalfCauchy(10). The 

corresponding priors for reporting delay 𝐷 were (5, 0.2), 𝜆0 (2, 0.7), 𝜇 (0.3, 0.3), and the other priors 

were same as SIR model. 

Fig. 6. SIR model with two change points and weekend effect. Same as Fig. 4 but with weekend 

effect and higher LOO score. 

Fig. 7. SIR model with one change point with weekend effect.  

Same as Fig. 4 but with one change point and weekend effect and lower LOO score. Most favoured 

model. Underreporting factor on 18 October 2020, for daily infected cases were higher 2.1 

(=130,000/61,871) with this model compared to SIR model in Fig. 4. 
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